Об одной задаче Коффмана-Шора, связанной с упаковкой прямоугольников в полосу

М.А. Трушников

Аннотация. Предложен новый онлайновый алгоритм упаковки прямоугольников в полосу, существенно превосходящий известный алгоритм Коффмана-Шора по качеству получаемой упаковки.

1. Введение

Задача упаковки в полосу (в англоязычной литературе Strip packing problem) состоит в размещении множества открытых прямоугольников внутри полубесконечной вертикальной полосы единичной ширины, при этом стороны прямоугольников должны быть параллельны сторонам полосы (вращения запрещены) и прямоугольники не должны пересекаться. Нужно минимизировать «высоту упаковки» --- расстояние от основания полосы до верхней грани верхнего прямоугольника в упаковке.

Эта задача рассматривалась с 1980 г. [1,2]. Она близка к известной задаче упаковки в контейнеры (bin packing) [3,4,10].

Задача имеет следующую естественную интерпретацию. Каждый прямоугольник --- вычислительная задача, ширина прямоугольника соответствует количеству процессоров необходимых для вычисления задачи, высота --- времени. Эффективное размещение прямоугольников внутри полосы требуется также в задачах разработки СБИС и раскройки материалов. Частным случаем упаковки в полосу при равенстве высот всех прямоугольников является NP-трудная задача упаковки в контейнеры. Поэтому для общей задачи упаковки в полосу интерес представляют приближенные полиномиальные алгоритмы.

Особый интерес представляют «онлайновые» алгоритмы, размещающие прямоугольники в полосе по мере их поступления, без знания параметров всех последующих прямоугольников.

Алгоритмы упаковки в полосу обычно оцениваются по худшему случаю (worst-case analysis) или в среднем (average-case analysis). При анализе по худшему случаю минимизируют «высоту упаковки». При анализе в среднем минимизируемой функцией является математическое ожидание

незаполненной прямоугольниками площади полосы от основания полосы до верхней грани самого верхнего прямоугольника в упаковке. При этом ширины и высоты всех прямоугольников являются независимыми в совокупности равномерно распределенными на (0,1] случайными величинами.

Известно, что математическое ожидание незаполненной площади полосы у оптимальной упаковки есть $O(N^{1/2})$, где N --- число прямоугольников. В 1993 году Коффман и Шор предложили «офлайновый» (информация о всех прямоугольниках известна заранее) алгоритм [6], для которого по порядку достигается нижняя оценка $O(N^{1/2})$. В той же работе они предложили онлайновый алгоритм, требующий знания числа прямоугольникой заранее, с оценкой $O(N^{2/3})$ для математического ожидания незаполненной площади полосы. Этот алгоритм относится к классу так называемых шельфовых алгоритмов, активно изучавшихся ранее [2,5,7].

В 2010 году Кузюрин и Поспелов предложили онлайновый алгоритм с той же оценкой $O(N^{2/3})$ [9], но не требующий знания числа прямоугольников заранее. Тем не менее вопрос о возможности улучшения оценки $O(N^{2/3})$ в классе онлайновых алгоритмов оставался открытым с 1993 г. Ранее были получены результаты о том, что в классе шельфовых алгоритмов (в котором была получена оценка Шором и Кофманом) существенно улучшить оценку качества упаковки невозможно [7].

В данной работе предложен принципиально новый онлайновый алгоритм упаковки прямоугольников. Проведенные эксперименты показали, что предложенный алгоритм обеспечивает верхнюю оценку $O(N^{1/2})$ для математического ожидания незаполненной площади полосы, что существенно лучше, чем у алгоритма Коффмана-Шора.

2. Постановка задачи

Вход: N --- число прямоугольников; $w_i, h_i, i = 1, ..., N$ --- ширины и высоты прямоугольников, являющиеся значениями независимых в совокупности равномерно распределенных на (0,1] случайных величин;

Выход: $x_i, y_i, i = 1, ..., N$ -- координаты центров прямоугольников, удовлетворяющие условию: прямоугольники без вращений и пересечений размещены внутри полубесконечной полосы единичной ширины. Основание полосы совпадает с отрезком [(0,0),(1,0)] в R^2 , а боковые стороны полосы параллельны оси y.

Высотой упаковки назовем величину

456

$$H = max_i \left(y_i + \frac{h_i}{2} \right)$$

Требуется минимизировать величину

$$H - \sum_{i=1}^{N} w_i * h_i,$$

равную незаполненной площади полосы.

Алгоритм

Предлагается алгоритм для описанной задачи со следующими свойствами. Алгоритму известно число прямоугольников N заранее, в остальном алгоритм является полностью онлайновым: прямоугольники подаются алгоритму по очереди, упаковка i-го прямоугольника зависит только от прямоугольников с номерами с 1-го по i-й. Более формально

$$\forall i = 1,..., N$$

$$x_i = x_i(h_1, w_1, h_2, w_2, ..., h_i, w_i)$$

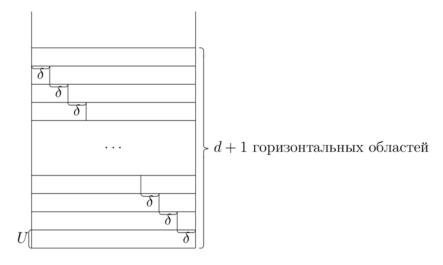
$$y_i = y_i(h_1, w_1, h_2, w_2, ..., h_i, w_i).$$

Где x_i, y_i --- координаты центров прямоугольников в упаковке, производимой данным алгоритмом.

Обозначим некоторые величины.

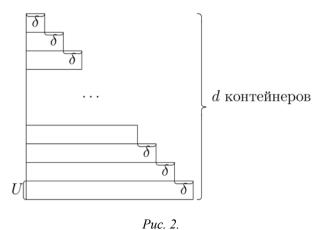
$$d = \left\lfloor \frac{N/4}{\sqrt{N}} \right\rfloor, \ U = \frac{N/4}{d} = \sqrt{N} + O(1), \ \delta = \frac{1}{d}$$

В основании полосы выделяется d+1 горизонтальная область, каждая высоты U в соответствии с рисунком.



Puc. 1.

Выделенную область в основании полосы можно разбить на две одинаковые (с точностью до поворота на 180 градусов) "пирамиды" вида:



Каждый четный прямоугольник будем упаковывать в одну пирамиду, каждый нечетный --- в другую.

Далее следует описание упаковки прямоугольника в пирамиду. Прямоугольники, из которых состоит пирамида будем называть контейнерами. Пронумеруем контейнеры внутри пирамиды числами от 1 до 459

d так, что i -й имеет ширину $i\delta$. Прямоугольники внутри контейнеров будут упаковываться просто друг над другом: первый упаковываемый прямоугольник кладется на дно контейнера, следующий --- поверх первого и так далее.

Пусть некоторое количество прямоугольников упаковано в пирамиду и следующим для упаковки в данную пирамиду приходит прямоугольник ширины w .

- Найдем такое i, что $(i-1)\delta < w \le i\delta$. Будем говорить, что этот прямоугольник **назначен** в i-й контейнер (тем не менее он не обязательно будет упакован именно в i-й контейнер).
- Далее ищем минимальное такое j, что $i \le j \le d$ и в j-м контейнере достаточно места, чтобы поместить туда данный прямоугольник.
- Если такое j существует --- помещаем данный прямоугольник в j-й контейнер.
- Если нет --- просто кладем прямоугольник сверху текущей упаковки. Такие прямоугольники, которым не нашлось места ни в одном из контейнеров, в которые они помещаются по ширине будем называть выпавшими.

3. Анализ алгоритма

Корректность и онлайновость алгоритма очевидны. Чтобы показать, что алгоритм обеспечивает высокое качество упаковки достаточно показать, что число выпавших прямоугольников мало (порядка $N^{1/2}$).

Мы приведем оценки экспериментального анализа предложенного алгоритма и оценки незаполненной площади полосы для него.

Для этого была реализована версия описанного алгоритма, эффективность которой исследовалась на случайных последовательностях прямоугольников. Результаты экспериментов приведены ниже. При этом через N обозначено число прямоугольников, величина незаполненной площади представлена в виде $CN^{1/2}$.

N	С
80000	1.5655
150000	1.5716
500000	1.5798
1000000	1.5798
4000000	1.5878
15000000	1.5975

30000000	1.5897
100000000	1.5934
300000000	1.6006
800000000	1.5912
1000000000	1.6044
1500000000	1.6027
2000000000	1.5949

Как видно из представленных экспериментальных результатов предложенный алгоритм существенно превосходит по качеству упаковки алгоритм Коффмана-Шора и обеспечивает оценку незаполненной площади порядка $O(\sqrt{N})$ с небольшой мультипликативной константой (меньшей двух). Получение аналогичных теоретических оценок для рассмотренного алгоритма представляется интересной исследовательской задачей.

Ссылки

- Baker B. S., Coffman E. J., Rivest R. L. Orthogonal packings in two dimensions. SIAM J. Computing. 1980. V. 9. 4. P. 846-855.
- [2] Baker B. S., Schwartz J. S. Shelf algorithms for two dimensional packing problems. SIAM J. Computing. 1983. V. 6. 2. P. 508-525.
- [3] Karp R. M., Luby M., Marchetti-Spaccamela A. A probabilistic analysis of multidimensional bin packing problems. Proc. Annu, ACM Symp. on Theory of Computing. New-York: ACM. 1984. P 289-298.
- [4] Shor P. W. The average-case analysis of some on-line algorithms for bin packing. Combinatorica. 1986. V. 6. 2. P. 179-200.
- [5] Csirik J., Woeginger G. J. Shelf algorithm for on-line strip packing, Inf. Process. Lett. 1997. V. 63. 4, P. 171-175.
- [6] Coffman E. G., Jr, Shor P. W. Packing in two dimensions: Asymptotic average-case analysis of algorithms. Algorithmica. 1993. V. 9. 3. P. 253-277.
- [7] Кузюрин Н. Н., Поспелов А. И. Вероятностный анализ шельфовых алгоритмов упаковки прямоугольников в полосу. Дискретная математика. 2006. Т. 18. 1. С. 76-90.
- [8] X. Han, K. Iwama, D. Ye, G. Zhang. Strip Packing vs. Bin Packing. Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science. 2009. V. 4508/2007. P. 358-367.
- [9] Кузюрин Н. Н., Поспелов А. И. Вероятностный анализ нового класса алгоритмов упаковки прямоугольников в полосу. ЖВМиМФ. 2011. Т. 51, N 10, с. 1931-1936.
- [10] Seiden S. S., On the online bin packing problem. J. ACM 49. 2002. P. 640-671.