Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

Automatic Code Generation from Nested
Petri nets to Event-based Systems on the
Telegram Platform

D.l. Samokhvalov <disamokhvalov@edu.hse.ru>
L.W. Dworzanski <leo@mathtech.ru>
National Research University Higher School of Economics,
Myasnitskaya st., 20, Moscow, 101000, Russia

Abstract. Nested Petri net formalisms is an extension of coloured Petri net formalism that
uses Petri Nets as tokens. The formalism allows creating comprehensive models of multi-
agent systems, simulating, verifying and analyzing them in a formal and rigorous way. Multi-
agent systems are found in many different fields — from safety critical systems to everyday
networks of personal computational devices; and, their presence in the real world in
increasing with the increasing number of mobile computational devices. While several
methods and tools were developed for modelling and analysis of NP-nets models, the
synthesis part of multi-agent systems development via NP-nets is still under active
development. The widely used method of automatic generation of target system code from
designed and verified formal models ensures obtaining correct systems from correct models.
In this paper, we demonstrate how Nested Petri net formalism can be applied to model
search-and-rescue coordination systems and automatically generate implementation in the
form of the executable code for event-driven systems based on the Telegram platform. We
augment the NP-nets models with Action Language annotation, which enables us to link
transition firings on the model level to Telegram Bot API calls on the implementation level.
The suggested approach is illustrated by the example annotated model of a search and rescue
coordination system.

Keywords: nested petri nets; telegram bot api; action language; event-based systems; code-
generation.

DOI: 10.15514/ISPRAS-2016-28(3)-5

For citation: Samokhvalov D.l., Dworzanski L.W. Automatic Code Generation from Nested
Petri nets to Event-based Systems on the Telegram Platform. Trudy ISP RAN / Proc. RAS,
vol. 28, issue 3, 2016. pp. 65-84. DOI: 10.15514/ISPRAS-2016-28(3)-5

1. Introduction

Messengers have become the integral part of our life in the recent years; and, almost
all the people who have Whatsapp, Viber or Telegram installed on their mobile

65

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

devices use them in everyday life. That is all because of hands-on approach in terms
of receiving and sending information. Telegram Bot API (TBA)[1] appeared not so
long time ago has made a breakthrough in the messengers evolution; and, many IT
and business experts see the great potential in appliance of the tool for both business
and computer science domains.

The variety of TBA usage shows the great diversity of different applied domains
starting with service bots, which are designed in order to meet customers
requirements, ending with Artificial Intelligence bots (e.g. YandexBot), which can
answer different kinds of queries and even strike up and sustain a coherent
conversation. The one sphere where TBA could be applied in — people
coordinating in different types of special operations. These operations turn out to be
extremely difficult to plan and support when it comes to coordination of big squads;
especially, in the state of emergency cases. A thorough planning of search and
rescue or military operations is rather struggling to deal with, because of the lack of
time to create a detailed schedule of part-taking for each agent and deprecated
methods for sending and receiving notifications from the agents who are involved in
such operations. TBA provides a great opportunity for that purpose because it is
extremely easy to use when the bot logic is designed according to a consecutive and
well-structured scheme. However, it is not easy to create a coherent TBA logic,
because it requires programming skills and is time-consuming. As the time factor
plays a crucial role, this makes such system much less attractive and unsuitable in
the fast changing context of emergency and rescue operations. Nested Petri Nets
(NP-nets) are a well-known formalism which provides an approach for modelling
multi-agent systems [2], [3], [4], [5]. NP-nets are generally used to describe the
complex processes with dynamic hierarchical structure. NP-nets are convenient for
specification of that kind of processes because of the visible and coherent structure
[6]. A number of methods for the analysis and verification of NP-nets were
developed [7], [8], [9]. However the practical application is impeded by the
necessity of manual implementation of the constructed model. Even if the model
correctness is verified, code defects can be introduced on the error-prone
implementation phase of software construction process. The reasons for such
defects: different understanding of the model by a software architect and software
developers; the complex behaviour of multi-agent systems with dynamic structure;
the distributed systems testing and debugging problems. The alternative to manual
coding is automatic code generation from a model to the executable implementation
of the modelled system. Automatic generation provide considerable saving of the
project resources, reproducible quality of the generated code, better support for
round-trip development by regenerating code after model changes. The approach
does not guarantee zero-defect implementation, but, after long term usage, a code
generation system becomes reliable and allows to obtain code with reproducible
quality.

The goal of the project is to develop a code generation system which allows to
automatically construct multi-agent systems on the Telegram platform from NP-nets

66

Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

models. The generated software is designed according to the event-base paradigm
and consists of a complex Telegram Bot and mobile Telegram applications. The
main purpose of the Telegram bot is to coordinate and communicate with the agents
according to the original NP-net model.

The section 2 contains basic notation and definitions. In the section 3, a motivating
example of Search and Rescue coordination system modelled with the NP-nets
formalism is given. In the section 4, we provide the architecture and technical
details on the implementation of the automatic code generation. The section 5
contains the suggested Action Language description. In the section 6, we discuss the
application of the suggested technology to the motivating example. The section 7
concerns the related work, the previous studies on NP-nets translations, and further
directions.

2. Preliminaries
At first, we provide the classical definition of a Petri Net. A Petri net (P/T-net) is a
4-tuple (P, T, F, W) where

e PandT are disjoint finite sets of places and transitions, respectively;

e Fc (PxT)U(T xP)isasetofarcs;

e W:F — N\{0}- an arc multiplicity function, that is, a function which

assigns every arc a positive integer called an arc multiplicity.

A marking of a Petri net (P, T, F, W) is a multiset over P, i.e. a mapping M: P — N.
By M(N) we denote the set of all markings of the P/T-net N.
We say that a transition 1 in the P/T-net N = (P, T, F,W) is active in a marking M
if for every p € {p|(p,t) € F}::M(p) = W(p,t). An active transition may fire,
resulting in a marking M'; such that, for all p € P: M'(p) = M(p) — W(p,t) if
p € {p|(p,t) € F}, and M'(p) = M (p) otherwise.
For simplicity, we consider here only two-level NP-nets, where net tokens are
classical Petri nets.

A nested Petri net is a tuple NPN = (Atom, Expr, Lab, SN, (EN,, ..., EN})), where
e Atom = Var U Con — a set of atoms;
e Lab is a set of transition labels;

e (ENy,..,ENy), where k =1 — a finite collection of P/T-nets, called
element nets;

o SN = (Psy, Tsn, Fsy, v, W, A) is a high-level Petri net where
o Pgy and Ty are disjoint finite sets of system places and system

transitions respectively;
o Fgy € (Psy X Tsn) U (Tsy X Pgy) is the set of system arcs;
o v:Pgy - {EN,,...,EN,}is a place typing function;

o W:Fgy = Expr is an arc labelling function, where Expr is the
67

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

arc expression language;,
o A:Tsy — Lab U {1} is a transition labelling function, T is the

special “silent” label.

Let Con be a set of constants interpreted over A = A, U{°}; and, A, =
{(EN,m)|3i =1, ..,k: EN = EN;,m € (EN;)} is a set of marked element nets. Let

Var be aset of variables. Then the expressions of Expr are multisets over Var U

Con. The arc labelling function W is restricted such that: constants or multiple
instances of the same variable are not allowed in input arc expressions of
transitions; constants and variables in the output arc expressions correspond to the
types of output places; and, each variable in an output arc expression of a transition
occurs in one of the input arc expressions of the transition.

A marking M of an NP-net NPN = (Atom, Expr,Lab,SN,(EN,,...,ENy)) is a
function mapping each p € Psy, to a multiset M (p) over A. The set of all markings
of an NP-net NPN is denoted by M(NPN) Let Vars(e) denote a set of variables in
an expression e € Expr For each t € Tsy we define W(t) = {W(x,y)|(x,y) €
Fsu/A(x =t vy = t)} —all expressions labelling arcs incident to t. A binding b of a
transition t is a function b:Vars(W (t)) - A, mapping every variable in the t-
incident arcs expressions to a token. We say that a transition 1 is active in a binding

b iff: vp € {p|(p,t) € Fou}: b(W(p,t)) € M(p). An active transition t may fire
yielding a new marking M'(p) = M(p) — b(W(¢t,p)) + b(W(¢,p)) for each

p € Psy (denoted as M tﬂl M').

A behaviour of an NP-net consists of three kinds of steps. A system-autonomous
step is the firing of a transition, labelled with 7 , in the system net without changing
the internal markings of the involved tokens. An element-autonomous step is a
transition firing in one of the element nets according to the standard firing rules for
P/T-nets. An autonomous step in a net token changes only this token inner marking.
An autonomous step in a system net can move, copy, generate, or remove tokens
involved in the step, but doesn’t change their inner markings.

A (vertical) synchronization step is a simultaneous firing of a transition labelled
with some A € Lab in a system net with firings of transitions labelled with the

same A in all consumed net tokens involved in the system net transition firing. For
further details see [5]. Note, however, that here we consider a typed variant of NP-
nets, when a type of an element net is instantiated to each place.

3. Motivating example

Search and rescue operations is what happens all over the world; they require the
well-trained and skilled employees, well-structured planning, and knowledgeable
human management. There were 2447 emergency callouts registered in Russia
throughout 2005-2014 [10], and about 100 times more in USA [11]. Earthquakes,
68

Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

water floods, and hurricanes hit the earth rarely than ordinary emergency cases like
fires or gas leaks, but they leave whole regions and even countries devastated,
thousands of people killed or lost without a trace. Therefore, the crucial goal of
rescuers is to treat such cases quickly and cohesively.

In this example, we will explain how a particular search and rescue operation in an
earthquake could be handled with a multi-agent model based on the nested Petri net
formalism. First, we need to introduce the purposes of the basic components which
we will use further to design our search and rescue coordination plan. Our model
consists of the following basic components:

e System net — the main component of an NP-net which is a high level Petri
net. It will be used to define the activity coordination of the agents
involved in the operation. The system net will be implemented as a bot on
the Telegram platform to receive the notifications from agents and to
process them with the Action Language (AL) event handlers assigned to
the transitions of the system net;

e Element net — represents the activity of a particular agent type that is
supposed to be performed by an agent while taking part in the operation.
There are two element nets in our example. The first one corresponds to the
acting plan for medical workers involved in the operation; the second one
will provide the plan for the rescuers participating in the operation.
The system net in Fig.1 represents the main model of our operation. Basically, it
reflects the dependence of the agent actions on server responses. In other words, it
describes how an operation coordinator interacts with the rescuers and medics and
reacts on their signals to the server. The model deals only with those agent requests
where coordinators answer is essential for the further operation progress. An actions
happen when the particular agent reaches the state and the coordinator response
expected is defined with AL code assigned to the system net transition. To
understand how the model works, we need to understand how the agents
intercommunicate with the operation coordinating server.

69

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

._,/ Contact \.

f A
Medical w 4}
'

Staff /s

L=
&;" ", [Gao tothe
‘?& place
)
Victim s —

found

A
- 505
- I |
/
f Contact
|| ’;"I
\ /,
\\-..._ .»-"J,

Fig. 1: The search and rescue system net example.

In the initial marking of the system net places “Medical Staff” and “Rescuers”, there
are all the agents — rescuers and medical staff respectively. The transitions have the
following functions:

e Transitions TO and T4 ”Contact” — handle communication between the
rescuers and the coordinator;

e Transition T1 ”Go to the place” — represents the event when a rescuer
has found a victim, and a medical agent is supposed to go to the place
where the victim is found;

e Transition T2 »Victim is found” — represents the event when a rescuer
agent has found a victim. It precedes the T1 event, as the medical agent
needs to start acting only when the victim is found by the rescuer;

e Transition T3 ”SOS” — a rescuer has stuck in emergency;

The agents behaviour is determined by two element nets. The medical staff element
net is depicted in Fig. 3; and, the rescuer element net — in Fig. 5.1. In the real
Search and Rescue operations there are usually more element nets and they are more
detailed.

Medical staff element net represents what kind of actions should a medical agent
performs while taking part in the operation. At first, the medical agent needs to get
the medicine and learn about the operation. He will not be allowed to the next stage
of the operation before he performs both of these actions. After doing that, he is
supposed to wait until he receives the notification on the accidence. Then he has to
send his arrival time, and start making his way to the place where the accidence had
happened. The next two steps are to report the victim condition and to transport the
victim to the infirmary. The medical agent also may contact coordinator at any time.
Rescuers element net is the model of part-taking for rescuers. Before entering the
operation, each agent is required to do the following: get the equipment; obtain the

70

Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

information about other agents; and, get briefing about the operation. The
equipment consists of three parts; and, the agent must equip them all. After entering
the operation, the agent has to go to the exploration area. If a victim is found, the
agent is supposed to send a photo, a description, and the accurate coordinates of the
victim location. If something goes wrong, the agent can just send the location and
the coordinator will handle it. Once the exploration is completed, he can receive the
coordinates of the new area to explore.

4. Architecture
The way this system is designed relies on three basic components:

NPNtool (Eclipse plugin) [7] for creating Nested Petri Nets models and
linking AL code to the transitions. The main purpose of this tool is to
model a system net and element nets which will represent the model of the
bot. The AL code will be linked to the transitions and then compiled to the
executable file according to the model,;

AL Java-library consists of the AL-compiler and the AL-linker. AL-linker
traces the system and element nets, collects all the code from the
transitions, and eventually converts in to text files that will be compiled by
the AL-compiler. AL-compiler is created with the ANTLR[12] tool. AL-
compiler gets an input text file and translates it to the executable artifact
that actually represents the Telegram bot;

Telegram Bot API library that consists of the code for requesting data via
HTTP-requests from the Telegram Bot API server.

NPM tool

Al code

F 3
b 4

AL linker

|
v

Telegram Bot

Fig. 2: The code generation scheme

71

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

The overall technology chain is as follows. At first, a developer creates and verifies
the NP-net model of a system via NPNtool. When the model is constructed, the
developer inscribes AL code to the transitions according to the expected logic of the
Bot. Then, the developer launches AL-linker which traverses the constructed NP-net
collecting the textual representation of the transitions AL code into a text file. After
that, AL-compiler reads the artifacts generated by AL-linker and generates a
Telegram Bot code. The codegeneration of distributed systems from NP-nets
models has been studied in [13]. Once a JAR file is compiled from that code, it
could be executed. All the actions of the agents are displayed on the Bot host and
could be processed at real-time (saved or directly answered) by the coordinator who
ran the Bot.

Telegram bot consists of TBA library and several Java classes. Each Java class
corresponds to an element net or a system net and stores a number of methods
corresponding to the transitions with AL-code inscribed to them. These methods
will use TBA to interchange the information. There is also a class that links all the
element and system nets libraries together and proceeds the logic using event-based
paradigm and asynchronous requests.

It shall be noticed that the compiled Telegram Bot is a server that communicates
with the software clients — the rescue and medical staff software mobile clients.
The bot is connected to the Telegram server via the webhook technology; namely,
all the requests that agents send to the Telegram server via Telegram mobile
applications are redirected to and served on the deployed bot server.

The fragment of code in Table 1 represents the method which corresponds to one of
the Medical Staff element net transition:

Table 1. Medical staff victim condition report action.

public void taskReportVictimsCondition (String
mes, String chatId) throws
TelegramApiException{
SendMessage message = new SendMessage();
String[] tasks = {"Report about the
victim’s condition"};
ReplyKeyboardMarkup replyKeyboardMarkup
= makeKeyboard(tasks);
message.setReplayMarkup (
replyKeyboardMarkup) ;
message.setText (mes) ;
sendTo (message, chatId);

5. Action language

AL compiler has been developed with ANTLR compiler which enables to define a
grammar in a ANTLR grammar language and compile it to the Java classes which
represent the lexer and the parser of AL. The code generated by ANTLR parses the

72

Camoxsano JI.U., JIBopsHckuii JI.B. ABToMaTHueckast reHepals Kojia Mo BIOXKEHHbIM ceTsiM [letpu a1 cucteM Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

AL code and apply specified semantical rules to the constructed syntax tree. To

translate the target Java code while traversing the nodes of this tree, the syntax tree
visitors were created that generate Java code from the initial AL code.

Get the respirator from the base

&
Qd’
t oo S
¥ %
(o)
1 .
S o
% OauHLOBO
% - Corgy,
K’G,;
 A100 |
Koumuohnc»«aa‘i“k
2
503
Google Map data 209650008
Confirm

i

Fig. 3: The agent is confirming the task implementation

get the respirator
get the gloves

get the helmet

Fig. 4: The rescuer agent Telegram mobile client interface.

73

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

5.1 AL grammar

Here we provide the formal definition of suggested Action Language. The
suggested Action Language is specific to Rescue and Search operations domain, and
shall be reconsidered for other applications of the technology.

» < SystemNet> ::= < SP> : < name> — the name of system net

» < ElementNet> ::= < EP> : < name> — the name of element net

* < file> ::= file(< text>) — loads file from file-system

* < initialization > ::= < variable> = < value> — it is possible to assign
variables of the types < file>, < float>, < string>

« < sendMessage> ::= sendMessage(< file> | < text> | < variable>) —
sends a message from a transition of an element net

« < sendPhoto> ::= sendPhoto(< file> | < variable>) — send a Photo from a
transition of an element net

« < sendLocation> ::= sendLocation(longitude : < variable> | < float>,

latitude : < variable> | < float> — sends Location
« < sendVideo> ::= sendVideo(< file> | < variable>) — sends Video

« < sendAudio> ::= sendAudio(< file> | < variable>) — sends Audio

* < transition element net> :: = < name> = < text> response: (<
sendAudio> | < sendVideo> | < sendLocation> | < sendPhoto> | <
sendMessage>)* — this is the structure of the code which should be inscribed on the
distinct transition of an element net.

* < connect> ::= connect (< name>.< transition>) — links a transition from
an element net to a transition of a system net.

* < display> ::= display() — displays the object received on a transition of a
system net

* < save> ::= save(< file> | < text> | < variable>) — saves the object
received on the transition of a system net

« < transition system net> ::= < name> = (receive (photo | video | audio |

message | location) : (save | display)*)*
* <loop> ::= forall < variable> in < variable botVariable.add(< variable>)

The AL example on Table 1 is from our search-and-rescue system model which was
provided in the motivating example. It illustrates what kind of code must be
inscribed to the transition of the Medical staff element net (Fig. 5) and the
coordinator system net (Fig. 5). We will not provide the code for Rescue element
net because it follows the same pattern of coding as for the Medical staff element
net.

74

Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

6. The application of the Telegram bot code generation
technology

In this section, we examine the application of the suggested technology to the
motivating example provided in the section 3. The main components of the system
are modelled with system net and element nets. Then the codegenerator translates
NP-nets into Telegram bots components of the target Telegram-based multi-agent
system being constructed.

The bot server serves the received requests according to the NP-net system net
behaviour and sends the answers to the agents. All the actions, except the actions
described on the system net transitions, of the developed Search and Rescue
operation are handled by the Bot automatically. However, it is possible to interact
ad-hoc during the operation, i.e. if an agent sends any kind of request that was not
described by AL, the coordinator will be notified and will be able to answer this
request with the standard Telegram client interface. All the event that were
described with the system net transitions require the direct interaction of the
coordinator. The agent will not be allowed to proceed to the next stage of operation,
unless he receives the answer from the coordinator.

As soon as we launch the compiled bot, all the rescuers and medicals that were
loaded to the system will receive notifications from the Telegram bot. The
concurrent transitions (e.g. Helmet, Respirator, Gloves) from the Rescuer element
net allow that all the actions inscribed on them could be executed by agents in any
order. An agent will not be allowed to the next stage unless he performed all of
them. After performing an action, the agent must confirm that in the mobile client
by pressing the «OK» button (Fig. 3). The button appears on the screen when the
agent has actions-transitions to fire.

When an agents reaches the “Begin the operation” action, the bot moves to the
awaiting state and notifies the coordinator, that the agent has reached the state and
waits till the next instructions will be provided. As soon as the coordinator fill the
form and submit the answer, the agent will be allowed to move to the next state of
his plan. That is due the «Begin the operation» transition is synchronized with the
T2 system net transition.

7. Related works and further directions

The codegeneration from models to executable software artifacts has attracted
attention when model driven development became industrial popular and valuable
approach [14]. The codegeneration from Petri net like models to executable
software systems is studied for many formalisms and semi-formal industrial
modelling languages like UML[15], [16] and SDL[17]. In [18], [19] the code
generation tool for Input-Output Place-Transition Petri Nets was developed. In [20]
the application of Sleptsov nets for modelling and implementation of hardware
systems is studied. In [21], the technology to construct embedded access control
systems from coloured Petri nets models is suggested. The approach to generate

75

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

C++ code from SDL models is developed in [8]. The code generation from the
UML state machines[15] and sequence [16] diagrams to executable code was
studied. These are a lot of studies in the field, so we only cited a few.

The translation from NP-nets to coloured Petri nets was developed in [8]. The
translation from NP-nets to PROMELA models to verify the correctness of LTL
properties is studied in [22]. The automatic translation from NP-nets models to
distributed systems components that preserve liveness, conditional liveness, and
safety properties was studied in [13]. In the current work, we adopted the translation
scheme developed in the latter work to obtain executable code from the structure of
NP-nets models.

The further research concerns theoretical as well as practical aspects of the
developed automatic codegeneration system. From the theoretical point of view, it is
interesting to study preservation of different behavioural properties by the
implemented translation and securing different behavioural consistencies of
generated systems and initial models. As the underlaying technologies are too large
to conduct exhaustive formal verification, the both dynamic and static behavioural
analyses techniques should be applied to study the correctness of the translation.
From the practical point of view, there are lot of attractive features that are to be
implemented. For example, it is not possible to change the deployed bots at runtime
in the tool. However, such function could be of use for long term operations, when
new actions should be integrated into an operating Telegram system without
recompiling the whole system. The runtime deployment will be considered in the
future research. Also, the scalability of generated Telegram systems and possible
schemes of agents distribution in the system are the subjects of the further research.

8. Conclusion

The developed technology enables developers to create Telegram Bots according to
a visually clear model that could be verified and tested with help of the developed
methods [22], [8], [9]. It allows to create distributed event-based Telegram Bots
systems that operate on the Telegram platform and the AL language supports all the
features provided by Telegram Bot API up to the moment.

The automatic code-generation reduces the risk of introducing defects on the
implementation phase of software development process and improves the quality of
the resultant code. It not only reduces the cost of software production, but also
makes the quality of developed systems more predictable. The suggested technology
is demonstrated with the example of a Search and Rescue system.

The authors would like to thank the anonymous referees for valuable and helpful
comments.

76

Camoxsano JI.U., JIBopsHckuii JI.B. ABToMaTHueckast reHepals Kojia Mo BIOXKEHHbIM ceTsiM [letpu a1 cucteM Ha
ocHoBe coObITHiT Ha miathopme Telegram. Tpyow HCII PAH, Tom 28, Boim. 3, 2016. c. 65-84.

Report about the victim's
conditicn

Get the

medicine

Go to the

Tranzport the
wictim

Fig. 5. The Medical Staff element net

Get the equipment

Begin the operation

End up the
operation

Contact the coordinator

Fig. 6. The Rescuer element net

77

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

[EP: MedicalStaff

|T5 = "Time of arriving"{ EP : MedicalStaff
response [T0 = "Gather medicine"{
sendMessage("Flease, send the estimated\+ response:
time of aiving to the place” sendLocation(longitude:123.12345, latitude: 89.12545)

path"))

[EP: Medicalstaff

14 = "Go ta the place”{

response;
connect{Coordinator.T2)

[T6 = “Victim conition”{
response:
sendMessage(“Flease, send thelr
informatian about the victim™)

[EP: Medicalstaff
|T3 = "Await emergency call"{

respanse:
<onnect{Coordinator.T1}
s
EP: Medical Staff -
variables : message = file{"path_m"), Ep: Medicalstall
[EP: Medicalstaff photo = file{* path_g"] [T7 = “Get the victim"{
[T2 = “Contact the coordinatar™{ TL=" about the accidence® | response: .
respanse: response sendMessage|*Please, geths
sendMessagel “Please, wait") sendMessage(message) the victim tok+
connect(Coordinator. T0) sendPhotolphota) the infirmary”|
. i sendLacation({longitude : 12312348,
i latitude : 89.12124)
i

Fig. 7. The element net augmented with code

78

Camoxsano JI.U., JIBopsHckuii JI.B. ABToMaTHueckast reHepals Kojia Mo BIOXKEHHbIM ceTsiM [letpu a1 cucteM Ha
ocHoBe coObITHiT Ha miathopme Telegram. Tpyow HCII PAH, Tom 28, Boim. 3, 2016. c. 65-84.

5P Coordinator
tok = “2 10434956 AAGLUIHUEW 10K X KeDqkfu |48H56_bRVIE"
botl = connect{token: tok)
dectors = file["path_m")
rescues = file["path_r")
forall doctor : doctors{
baotl.addidoctor)
I
forall rescue : recues]
botl.add{rescue)
|
Td = receive]
phioto -
display()
save]"path”)
Message :
displayf}
location -

displayi)

SP: Coordinator

T1 = receive]
send(T2.location)
send([T2.message)

I

[5P: Coordinator

T2 = receive|
location:
displayl}

Mressage:
display])

[5P: Coordinator

T3 = receive]

locatiom:

[5P: Coordintator dizplay{}

T4 = receive]

photo :
displayi))

ressage
display{)

location @
display{)

Fig. 8. The system net augmented with code

79

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

Acknowledgement

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics and Russian Foundation for Basic
Research, project No. 16-01-00546.

References

[1]. Telegram Bot APl online documentation. [Online]. Available at:
https://core.telegram.org/bots/api

[2]. L. Chang, X. He, J. Li, and S. M. Shatz. Applying a Nested Petri Net Modelling
Paradigm to Coordination of Sensor Networks with mobile agents. In Proc. of Workshop
on Petri Nets and Distributed Systems. Xian, China, 2008, pp. 132-145.

[3]. I. A. Lomazova, “Nested Petri Nets - a Formalism for Specification and Verification of
Multi-Agent Distributed Systems,”Fundamenta Informaticae, vol. 43, no. 1, pp. 195—
214, 2000.

[4]. Nested Petri nets: Multi-level and Recursive Systems. Fundamenta Informaticae, vol.
47, no. 3-4, pp. 283-293, Oct 2001.

[5]. Nested Petri Nets for Adaptive Process Modelling. In Pillars of Computer Science, ser.
Lecture Notes in Computer Science, A. Avron, N. Dershowitz, and A. Rabinovich, Eds.
Springer Berlin Heidelberg, 2008, vol. 4800, pp. 460-474.

[6]. K. Hoffmann, H. Ehrig, and T. Mossakowski. High-Level Nets with Nets and Rules as
Tokens. In ICATPN, 2005, pp. 268-288.

[7]. D. Frumin and L. Dworzanski. NPNtool: Modelling and Analysis Toolset for Nested
Petri Nets. In Proceedings of the 7th Spring/Summer Young Researchers Colloguium on
Software Engineering, 2013, pp. 9-14.

[8]. L. Dworzanski and I. A. Lomazova. CPN Tools-Assisted Simulation and Verification of
Nested Petri Nets. Automatic Control and Computer Sciences, vol. 47, no. 7, pp. 393—
402, 2013.

[9]. L. Dworzanski and I. A. Lomazova. On Compositionality of Boundedness and Liveness
for Nested Petri Nets. Fundamenta Informaticae, vol. 120, no. 3-4, pp. 275-293, 2012.

[10]. The Ministry of the Russian Federation for Civil Defence. Emergencies and Elimination
of Consequences of Natural Disasters. Emergency Cases Registered in Russia. [Online].
Auvailable at: http://25.mchs.gov.ru/document/2644168

[11]. (2013) United States Coast Guard Search and Rescue Summary Statistics. [Online].
Auvailable at:
https://www.uscg.mil/hg/cg5/cg534/SARfactsInfo/SAR%20Sum%20Stats%2064-13.pdf

[12]. T. Parr. The Definitive ANTLR 4 Reference. 2nd ed. Pragmatic Bookshelf, 2013.

[13]. L. Dworzanski and I. A. Lomazova. Automatic Construction of Distributed Component
System from Nested Petri Nets. In print, Programmirovanie, vol.6, 2016 (in Russian).

[14]. B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, vol. 20, no. 5,
p. 19, 2003.

[15]. A. Knapp and S. Merz. Model Checking and Code Generation for UML State Machines
and Collaborations. Proc. 5th Wsh. Tools for System Design and Verification, pp. 59—
64, 2002.

[16]. D. Kundu, D. Samanta, and R. Mall. Automatic Code Generation From Unified
Modelling Language Sequence Diagrams. Software, IET, vol. 7,no. 1, pp. 12-28, 2013.

80

Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

[17]. P. Morozkin, I. Lavrovskaya, V. Olenev, and K. Nedovodeev. Integration of SDL
Models into a SystemC Project for Network Simulation. In SDL 2013: Model-Driven
Dependability Engineering: 16th International SDL Forum, Montreal, Canada, June 26-
28, 2013. Proceedings. Springer Berlin Heidelberg, 2013, pp. 275-290.

[18]. L. Gomes, J. P. Barros, A. Costa, and R. Nunes. The Input-Output Place-Transition Petri
Net Class and Associated Tools. In Industrial Informatics, 2007 5th IEEE International
Conference on, vol. 1. IEEE, 2007, pp. 509-514.

[19]. R. Campos-Rebelo, F. Pereira, F. Moutinho, and L. Gomes. From IOPT Petri Nets to C:
An Automatic Code Generator Tool. In Industrial Informatics (INDIN), 2011 9th IEEE
International Conference on.

[20]. D. Zaitsev and J. Jurjens. Programming in the Sleptsov Net Language For Systems
Control. Advances in Mechanical Engineering, vol. 8, no. 4, p. 1-11, 2016. DOI:
10.1177/1687814016640159.

[21]. K. H. Mortensen. Automatic Code Generation Method Based on Coloured Petri Net
Models Applied on an Access Control System. In Application and Theory of Petri Nets
2000. Springer, 2000, pp. 367-386.

[22]. M. L. F. Venero and F. S. C. da Silva. Model Checking Multi-Level and Recursive Nets.
Software & Systems Modeling, pp. 1-28, 2016.

ABTOMaTU4ecKas reHepauus Koga no BroOXeHHbIM ceTsM
MeTpu ans cuctemMm Ha OCHOBE COObLITUM Ha nnarcgpopme
Telegram

.U Camoxsanos<disamokhvalov@edu.hse.ru>
JI.B. [{eopanckuii <leo@mathtech.ru>
Hayuonanvnoiil ucciedosamenvckutl yrugepcumem Boicuias wkoaa I9KOHOMUKU
yi. Macnuyxas., 20, Mocksa, 101000, P®.

Annotanusi. Bnoxennsie cetn Ilerpum — 3T0 pacmmpeHune QGopManmzmMa pacKpameHHBIX
cereii Ilerpu, koTopsle Hcnonb3yIOT cetn Iletpu B kadecTBe ¢umiek. Jlanublii Gopmannim
MO3BOJIAET CO3/aBaTh IOAPOOHBIE MOZAEIM MYJNbTHATEHTHBIX CHCTEM, OCYIIECTBIATH
UMUTAI[MOHHOE MOJEJIMPOBaHKHE, BepU(PHUIMPOBATH W aHAJIM3MPOBAaTh WX CBOWCTBAa Ha
(opMaIBHOM W CTPOTOM ypOBHE. MyIbTHAreHTHBIE CHCTEMBI HAXOMAT INPHMEHEHHE BO
MHOTHX 00JIaCTSIX — HAuMHAS CHCTEMaMH, JUIl KOTOPBIX 0€30IIaCHOCTh HTPaeT KPUTHIECKYIO
poNb, 3aKkaHUYMBas IOBCEAHEBHBIMH CHCT€MaMH, pa0OTalOMMH Ha IEPCOHAIBHBIX
BBIYHCIIHTENBHBIX yCTpOHCTBaX. UNCIIO TaKMX CHCTEM B COBPEMEHHOM MHpE PacTeT BMECTE C
YBEJIMYHBAIOIINMCS YHCIOM MOOMIIBHBIX BBIYMCIHMTEIBHBIX yCTpoiicTB. Ha maHHBIIT MOMEHT
pa3paboTaHbl HHCTPYMEHTHI U METOABI MOJICIIUPOBAHUS U aHAJIHM3a BIOXKEHHBIX ceTel [leTpn,
HO CHHTE3 MYJbTHareHTHBIX CHCTEM [0 MOJEJSAM BJIOXKEHHbIX ceredl llerpu eme
HEJOCTaTOYHO HCCIENOBAaH M HAXOOUTCA B CTagUMM aKTHBHOTO u3ydeHHs. Meron
aBTOMAaTUYECKOU I'eHepalys UCIOIHAEMOro Ko1a LeIeBOM CUCTEMBI IO CIIPOCKTUPOBAHHOMN U
BepU(UIMPOBAHHON MOJIEIH BIIOKeHHOH cetH [leTpn obecrieunBaeT momydeHne KOPPEKTHBIX
CHUCTEMBI M3 KOPPEKTHBIX CICIH(HUKANMA Ha s3bIKE BIOKEHHBIX cereid [letpu. B manHOM
paboTe, IEMOHCTPHpYEeTCSl NpHMEHEHHEe (GopMaam3Ma BIOXKEHHBIX cereid Ilerpm uis
IIOCTPOEHMS MOJIENIN CHCTEMbl YHPaBJIECHHUs NMOMCKOBBIMU U CIACATEIbHBIMU ONEPALMSIMU U

81

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

ABTOMATHYECKOH TeHepaluyl pealn3aluyl B BHUAE HCHONHIEMOro Koja COOBITHITHO-
YIpaBJIsIEMbIX CHCTEM OCHOBaHHBIX Ha Iutatdopme Telegram. Mer no6aBisieM BO3MOXHOCTb
AHHOTHPOBATh MOJIENH BIOKEHHBIX cereil [lerpu ¢ momomsio Action Language, KoTopsiii
MO3BOJISIET CBA3BIBATH CPAaOATHIBAHUA IIEPEXOJOB HAa MOJEIBHOM YPOBHE C BBI30BAMHU
Telegram Bot API nHa ypoBre peanusanunu. [IpeioxeHHbIH TOIX0 TPOJASMOHCTPHPOBAH Ha
HpUMepe aHHOTHPOBAHHOH MOJIENN CUCTEMBI KOOPIUHUPOBAHHMS CIIACaTeIbHOH ONepaIHy.

KuoueBsbie ciioBa: BinoxeHHbie cetu Ilerpu;, telegram bot api; si3sik neficteuit; coObITHITHO-
yIpaBiIsieMble CUCTEMBI; KOJOTeHEpaIysI.

DOI: 10.15514/ISPRAS-2016-28(3)-5

Jia nutuposanus: Camoxsanos JI.U., JIsopsHckuil JI.B. ABromaruueckas reHepanus kKoja
[0 BJIOXKEHHBIM ceTsiM IleTpu Ui cHCTeM Ha OCHOBe coObiTHii Ha mmatdopme Telegram.
Tpyowt HCII PAH, tom 28, Bbm. 3, 2016. crp. 65-84 (ma anriumiickom). DOI:
10.15514/ISPRAS-2016-28(3)-5

Cnucok nutepartypbl

[1]. Telegram Bot APl online documentation. [Online]. JlocrymHO 1O CChUIKE:
https://core.telegram.org/bots/api

[2]. L. Chang, X. He, J. Li, and S. M. Shatz. Applying a Nested Petri Net Modelling
Paradigm to Coordination of Sensor Networks with mobile agents. In Proc. of Workshop
on Petri Nets and Distributed Systems. Xian, China, 2008, pp. 132-145.

[3]. I. A. Lomazova, “Nested Petri Nets - a Formalism for Specification and Verification of
Multi-Agent Distributed Systems,”Fundamenta Informaticae, vol. 43, no. 1, pp. 195—
214, 2000.

[4]. Nested Petri nets: Multi-level and Recursive Systems. Fundamenta Informaticae, vol.
47, no. 3-4, pp. 283-293, Oct 2001.

[5]. Nested Petri Nets for Adaptive Process Modelling. In Pillars of Computer Science, ser.
Lecture Notes in Computer Science, A. Avron, N. Dershowitz, and A. Rabinovich, Eds.
Springer Berlin Heidelberg, 2008, vol. 4800, pp. 460-474.

[6]. K. Hoffmann, H. Ehrig, and T. Mossakowski. High-Level Nets with Nets and Rules as
Tokens. In ICATPN, 2005, pp. 268-288.

[7]. D. Frumin and L. Dworzanski. NPNtool: Modelling and Analysis Toolset for Nested
Petri Nets. In Proceedings of the 7th Spring/Summer Young Researchers Colloquium on
Software Engineering, 2013, pp. 9-14.

[8]. L. Dworzanski and I. A. Lomazova. CPN Tools-Assisted Simulation and Verification of
Nested Petri Nets. Automatic Control and Computer Sciences, vol. 47, no. 7, pp. 393—
402, 2013.

[9]. On Compositionality of Boundedness and Liveness for Nested Petri Nets. Fundamenta
Informaticae, vol. 120, no. 3-4, pp. 275-293, 2012.

[10]. The Ministry of the Russian Federation for Civil Defence. Emergencies and Elimination
of Consequences of Natural Disasters. Emergency Cases Registered in Russia. [Online].
Hocrymao mo cesuike: http://25.mchs.gov.ru/document/2644168

[11]. (2013) United States Coast Guard Search and Rescue Summary Statistics. [Online].
HoctynHo o CCBIIKE::
https://www.uscg.mil/hg/cg5/cg534/SARfactsInfo/SAR%20Sum%20Stats%2064-13.pdf

82

Cawmoxsanos JI.1., [IBopsuckuii JI.B. ABToMaTHuecKas renepanus Koja 1o BIOKEHHbIM ceTsiM IleTpu juist cucrem Ha
ocHoBe coObITHil Ha miatdopme Telegram. Tpyoer HUCIT PAH, tom 28, Beim. 3, 2016. c. 65-84.

[12]
[13]

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

. T. Parr. The Definitive ANTLR 4 Reference. 2nd ed. Pragmatic Bookshelf, 2013.

. JBopsuckuii JI.B., JlomazoBa M.A. ABTOMaTHueckoe IOCTPOCHUE pacHpeAeSICHHON
KOMIIOHEHTHOHM cUCTeMBbI 10 BioxeHHO# cetu Ilerpu. B mewaru: [IporpammupoBanue,
no. 6, 2016 (in Russian).

B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, vol. 20, no. 5,
p. 19, 2003.

A. Knapp and S. Merz. Model Checking and Code Generation for UML State Machines
and Collaborations. Proc. 5th Wsh. Tools for System Design and Verification, pp. 59—
64, 2002.

D. Kundu, D. Samanta, and R. Mall. Automatic Code Generation From Unified
Modelling Language Sequence Diagrams. Software, IET, vol. 7,no. 1, pp. 12-28, 2013.
P. Morozkin, I. Lavrovskaya, V. Olenev, and K. Nedovodeev. Integration of SDL
Models into a SystemC Project for Network Simulation. In SDL 2013: Model-Driven
Dependability Engineering: 16th International SDL Forum, Montreal, Canada, June 26-
28, 2013. Proceedings. Springer Berlin Heidelberg, 2013, pp. 275-290.

L. Gomes, J. P. Barros, A. Costa, and R. Nunes. The Input-Output Place-Transition Petri
Net Class and Associated Tools. In Industrial Informatics, 2007 5th IEEE International
Conference on, vol. 1. IEEE, 2007, pp. 509-514.

R. Campos-Rebelo, F. Pereira, F. Moutinho, and L. Gomes. From IOPT Petri Nets to C:
An Automatic Code Generator Tool. In Industrial Informatics (INDIN), 2011 9th IEEE
International Conference on.

D. Zaitsev and J. Jurjens. Programming in the Sleptsov Net Language For Systems
Control. Advances in Mechanical Engineering, vol. 8, no. 4, p. 1-11, 2016. DOI:
10.1177/1687814016640159.

K. H. Mortensen. Automatic Code Generation Method Based on Coloured Petri Net
Models Applied on an Access Control System. In Application and Theory of Petri Nets
2000. Springer, 2000, pp. 367-386.

M. L. F. Venero and F. S. C. da Silva. Model Checking Multi-Level and Recursive Nets.
Software & Systems Modeling, pp. 1-28, 2016.

83

Samokhvalov D.lI., Dworzanski L.W. Automatic Code Generation from Nested Petri nets to Event-based Systems on the
Telegram Platform. Trudy ISP RAN / Proc. RAS, vol. 28, issue 3, 2016. pp. 65-84.

84

