
75

Approach to analyzing executable code
based on the software architecture recovery

D.S. Kononov <dspr2@yandex.ru>

Federal State Unitary Enterprise «18 CSRI», Ministry of Defence of RF,

4 Svobodny prospect, Moscow, Russia, 111123

Abstract. The article discusses a new approach to obtaining additional information about the

software module under study based on the preliminary software architecture recovery during

the executable code analysis. As a result, it is possible to reduce the requirements for the

resources spent by limiting the field of research, rational choice of priorities, and abstraction

from secondary elements. The paper demonstrates the feasibility of restoring the software

architecture in a two-step process: first, the separate components are isolated, and then their

purposes and relationships are determined. An automated method for decomposing a software

module is proposed, which allows allocating components corresponding to static libraries,

classes, and their groups. This method is based on the functions clustering by the distances

between them in the address space and on the call graph. A description of the implementation

of the developed method as a plug-in for the IDA disassembler is given.

Keywords: executable code analysis; software architecture; clustering; call graph; distance

between functions; software module; decomposition

DOI: 10.15514/ISPRAS-2018-30(5)-4

For citation: Kononov D.S. Approach to analyzing executable code based on the software

architecture recovery. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 75-88. DOI:

10.15514/ISPRAS-2018-30(5)-4

1. Introduction

The need to analyze the executable code is widely encountered in practice when

addressing issues related to the protection of intellectual property, the search for

software backdoors and vulnerabilities, the analysis of computer viruses,

certification of compilers, and software development. It should be noted that despite

all the achievements in this area, the task in question is still far from being solved.

This is due to the fundamental limitations expressed in the extreme complexity of

formalizing and automating the analysis of executable code (Каушан, Маркин,

Падарян, & Тихонов, 2013). If, when searching for vulnerabilities, there are still

effective automatic methods (fuzzing, symbolic execution), then, when restoring the

executable code algorithm, the result of the study is largely determined by the

quality of expert analysis. In this case, automation is limited to local signature or

statistical methods that facilitate the search for constants or a special set of

https://context.reverso.net/перевод/английский-русский/Ministry+of+Defence

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

76

instructions in specific algorithms. Particularly acute shortcomings of the modern

scientific and methodological apparatus appear when it is impossible to use dynamic

analysis methods. Taking into account the volume of the software modules under

study, which in the case of embedded systems reach tens and hundreds of thousands

of functions, the solution of practical tasks in this area requires significant

investments of both material and time resources and the availability of substantial

human capital.

Thus, it becomes necessary to provide an expert with information about a software

module, important for achieving a positive result. As practice shows, first of all, an

expert needs to understand the logic of the software module (Quist & Liebrock,

2009), since it allows targeted search through "reverse engineering" (Streekmann,

2012, стр. 27)p. 27]. In this case, the model of the expert's work changes: instead of

the direct restoration of the algorithms implemented in the program code, the

assumptions regarding their implementations are confirmed and specific parameters

are determined.

One of the important components of the "reverse engineering" approach is the

restoration of the software architecture, information about which is lost during

compilation. Software architecture (Streekmann, 2012, стр. 9)p. 9] can be described

in the framework of a hierarchical model of the structure of complex systems

(Косяков & Свит, 2014).

2. Hierarchical model of software

The development of complex software requires high-quality software architecture

with well-defined systems and subsystems that solve a specific problem and have

weak coupling (Макконнелл, 2010, стр. 96). Modern non-specialized programming

languages clearly support such programming paradigm (Microsoft Corp., 2006).

When examining a software module, it is possible to break it up into components

that correspond to the initially programmed systems and subsystems (for example,

using source code or debugging information (Ebert, Riediger, & Winter, 2008),

(Bohnet & Dollner, 2006)). For definiteness, one can designate such selected

subsets of a software module as components, and the process of breaking up a

software module – decomposition. According to the model used, the set of

components is hierarchical, in which the components located at the upper level

consist of a combination of the underlying ones. As part of the research, the

components classification is proposed, presented in Table 1.

Table 1. Classification of components

No. Name Description

1 Software A component that fully incorporates the software under
investigation. Always present in a single instance.

2 File A separate file in the corresponding file system included in the

software. For embedded systems without a file system, all
firmware is considered as a single file.

Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды

ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88

77

3 Embedded

operating system

For systems with multiple processors, there can be several

embedded operating systems running in parallel within the same
address space.

4 Static library For software modules (including embedded operating systems)

the presence of built-in libraries is typical. For example,

OpenSSL encryption libraries, various drivers, libraries of

standard functions (memcpy, strlen), etc. Components of a

similar size (500-3000 functions) that have a weak connection

(for example, only using API) with the rest of the code also
belong to this level.

5 Class group This level corresponds to a group of classes in the object-

oriented programming terminology. Typical size from 100 to

1000 functions. Differ from level 4 in a greater connectivity

with the rest of the code. For example, various classes that

implement the same interface (plug-ins), network protocol

handler, etc.

6 Class This level corresponds to a class in the object-oriented

programming terminology or an object (compiled) module in

the C language. They have a size of up to 100 functions. Differ

from level 5 in a greater connectivity with the rest of the code.

For example, the implementation of a circular buffer, hash
tables, etc.

7 Function Currently, the task of the allocation of automating functions

from executable code is solved and implemented in modern
disassemblers at a sufficient level.

8 Logical block in

a function

The part of the function consisting of basic units designed to

solve a subtask. For example, inline functions, condition
checking, loops, etc.

9 Basic unit A sequence of instructions without transitions automatically

isolated by modern disassemblers (cycle body, the condition

being checked, etc.).

10 Logically

isolated

sequence of
instructions

Part of the basic unit, designed to solve some subtasks. For

example, loading data from memory, untwisted cycle, etc.

11 Instruction Executable machine instruction. Automatically isolated by

modern disassemblers.

12 Instruction
argument

The executable machine instruction argument. Automatically
isolated by modern disassemblers.

In the modern scientific and methodological apparatus for analyzing executable

code, the information only about levels 1, 2, 3, 7, 9, 11, 12 is used due to the

absence of additional debugging data (Meng & Miller, 2016). The existing

significant gap between levels 3 and 7 makes it necessary to analyze software

modules consisting of tens and hundreds of thousands of functions using methods

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

78

that have exponential computational complexity (fuzzing, character execution, etc.)

(Каушан, Маркин, Падарян, & Тихонов, 2013). To overcome the existing

limitations, it is necessary to take into account levels 4, 5, 6 (Streekmann, 2012),

which will significantly reduce the requirement for the resources needed to conduct

the software module investigation (Quist & Liebrock, 2009). Thus, existing methods

with high computational complexity can be scaled for software modules with a

volume of more than 10,000 functions due to their decomposition into components

with a characteristic size falling within the range of effective application of the

corresponding methods. For embedded systems, this process is, in fact, analogous to

isolating dynamic libraries and programs from the general-purpose operating system

(OS) and examining them separately. At the same time, to implement the considered

approach, it is necessary that the separated integral parts have a specific isolated

functionality, that is, they would be components according to the terminology

adopted in the paper.

There are a large number of software architecture definitions (Clements, Bachmann,

& Bass, 2010, стр. 27), (Ian, 2011, стр. 20). The conceptual apparatus of the

research is based on the IEEE 1471 standard (ANSI/IEEE Standart 1471-2000

Recommended Practice for Architectural Description of Software-Intensive

Systems, p. 9), p. 9]: software architecture is the fundamental organization of the

system, embodied in its components, their relationships to each other, and to the

environment, and the principles guiding its design and evolution. Thus, from the

definition, it follows that the restoration of the disassembled software module

architecture (Streekmann, 2012, стр. 30)p. 30] should be carried out in two stages.

The first is the decomposition of the disassembled software module into levels 3-6

components, and the second is the determination of the functionality of the selected

components and the restoration of their relationships with each other and with the

environment.

3. Analysis of the executable code, taking into account the
software architecture

In the modern scientific and methodological apparatus, the main element of the

research is the function, which leads to the need to analyze and restore the

algorithms of a large number of interrelated functions to determine their common

purpose. In contrast, the preliminary decomposition of a software module allows

determining the role of a specific component in the architecture by analyzing only a

few of its functions (in some cases just one) or the data and strings used in it. As a

result, based on the described approach, a reasoned conclusion is made on the

assignment of hundreds and thousands of functions that form the corresponding

component by analyzing a small amount of data. Furthermore, additional

information about the purpose of the components is provided by an analysis of their

relationships.

Knowledge of the software architecture makes it possible to rationally prioritize the

research within the framework of solving a specific practical problem. For example,

Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды

ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88

79

if it is necessary to restore the network interaction protocol of the botnet, then the

emphasis in the study should be placed on the appropriate handler. One of the

features of this approach to restoring the executable code algorithm is the ability to

limit the study of functions from non-priority components to the conceptual level.

As an example, one can cite the situation when the algorithm of the bootloader is

investigated and the component of interaction with flash memory is isolated.

In this case, one should not restore the entire algorithm for writing or reading flash

memory, but logically assign the values "write" or "read" to the component

functions called from the bootloader. In addition, the joint analysis of a single

software module by several experts is significantly simplified due to the rational

differentiation of the studied areas into separate components.

Information about the software module architecture is also required when

conducting dynamic analysis. Thus, the lack of information about the components

used significantly complicates the analysis of execution routes and slicing

(Падарян, Гетьман, & д.р., 2014). Even when examining programs for the

Windows OS family under the x86 architecture, it is difficult to draw an

unequivocal conclusion about the algorithm being performed and its purpose

without separating the called functions by the system API. In the case of embedded

OS («firmware»), this problem is only aggravated.

In the framework of «fuzzing», it is impossible to correctly emphasize its direction

without knowing the architecture of the software module. The cases of work only

within one component from the study of their entirety are indistinguishable. The

availability of information about the software architecture makes it possible to

rationally select the area of study, excluding components that are not interesting in

the current context. This leads to the possibility of multiple reductions in

computational costs. For example, by isolating the component of working with

strings or with memory, one can prevent loop traversal in the functions of copying

memory or comparing strings, replacing them with appropriate heuristics.

Despite all the advantages described, in modern scientific and methodological

apparatus for analyzing executable code in the absence of debugging data, there are

no effective automated methods not only for restoring the software architecture but

also for decomposing a software module into components. As a result, such an

approach is not used in practice in the overwhelming majority of cases, since the

time and cost of resources do not pay off in the current realities. This situation

significantly limits the ability to analyze executable code.

4. Method of the software module decomposition

As the applied methods for decomposing a software module into components, apart

from the expert one, one can single out various modifications of the task of finding

strongly connected components (Новиков, 2009, стр. 283) of the call graph and

various imaging techniques. However, due to limited disassembling capabilities

(Meng & Miller, 2016), low call graph density, and the presence of widely used

functions (for example, working with strings and memory) that are called from

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

80

almost anywhere, there are low informative results that do not allow the software

module decomposition

(Streekmann, 2012, стр. 52, 96). Dynamic analysis methods simplify this process

insignificantly (Quist & Liebrock, 2009), but they themselves are not applicable in

the general case and work for relatively small amounts of code due to the coverage

problem (Каушан, Маркин, Падарян, & Тихонов, 2013), (Падарян, Гетьман, &

д.р., 2014). In this regard, similar approaches to the analysis of executable code are

practically not used, although they are quite widespread for the source code (Bohnet

& Dollner, 2006), (Kienle & Muller, 2010).

At the same time, the experience of software research has shown that often

interrelated functions are located nearby in the address space. This arrangement is

explained both by the optimization for the hardware architecture and by the

simplification of compiler development. For example, with paging memory, a speed

gain occurs when finding jointly called functions within a single page (Eagle, 2011,

стр. 114). On the other hand, the simplest implementation of the linker involves the

sequential addition of object modules (Bryant & O'Hallaron, 2016, стр. 672), and

shuffling the functions between them implies some optimization. As a rule, an

object module corresponds to a separate source code file (a class in object-oriented

programming) and, therefore, is a component by definition in software with a well-

developed architecture. Thus, to carry out the decomposition of the software

module, it is proposed to perform clustering of functions based on distances both in

the address space and on the call graph. It should be noted, however, that the

interrelated functions are absolutely not obliged to be located near each other in the

address space, but these cases are associated either with a significant level of

optimization or with the use of some protection measures (for example, small

granular randomization of address space allocation during compilation

(Нурмухаметов, Курмангалеев, Каушан, & С.С., 2014)).

As the distance between two functions in the address space, it is proposed to use the

number of positions enclosed between them in the list of functions sorted by starting

address. Such a choice is explained by the need to eliminate the dependence of the

distance on the size of the functions and the data placement order. However, it

should be taken into account that there is a certain selected size of a component of a

certain level (for example, 1000-3000 functions in the case of static libraries), and,

at the same time, it is necessary to consider the interaction of all functions in the

software module under study. Based on these prerequisites, in order to obtain the

final distance in the address space, an increasing step function was chosen

corresponding to the estimated sizes of the components at various levels

(see Table 1).

Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды

ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88

81

𝑑(𝑓𝑖 , 𝑓𝑗) = 𝑙(𝑗 − 𝑖)

𝑙(𝑥) =

{

0, 𝑥 = 𝑟0 = 0
𝑘1, 0 < 𝑥 < 𝑟1
𝑘2, 𝑟1 ≤ 𝑥 < 𝑟2

…
𝑘𝐾 , 𝑟𝐾−1 ≤ 𝑥 < ∞

𝑘𝑖+1 > 𝑘𝑖; 𝑟𝑖+1 > 𝑟𝑖
𝑘𝑖 , 𝑟𝑖 ∈ ℕ

(1)

where 𝑓𝑖 is a function with a sequence number 𝑖 in the list of functions, sorted in

order of increasing starting addresses; 𝑘𝑖 – step function coefficient for the 𝑖-th

range; 𝑟𝑖 – limit of the 𝑖-th range; 𝐾 – the number of ranges in the step function.

Then each edge of the call graph is assigned a weight equal to the distance 𝑑(𝑓𝑖, 𝑓𝑗)

between the functions in the address space (1). As a result, the distance between

functions on the call graph is defined as the minimum sum of edge weights that

form the path from one function to another. It is necessary to clarify that the call

graph, in this case, is considered as an undirected graph, that is, there is a path in the

graph from the calling function to the called one, and vice versa. It should also be

borne in mind that with an arbitrary choice of the step function, it is possible that the

distance calculated from the call graph will be less than the corresponding value of

the step function. The simplest example of this kind is

𝑙(𝑥) = {
0, 𝑥 = 0
1, 𝑥 = 1
+∞, 𝑥 > 1

 (2)

To eliminate this inconsistency, it is necessary to ensure that the selected step

function satisfies the condition: the coefficient value for each interval of the step

function must be less than or equal to the sum of the coefficient values for the

previous interval and the minimum possible edge weight (i.e., the coefficient of the

first interval). Indeed, consider the first point of any interval and draw an edge to it

from the previous point (located in the previous interval, respectively). Then if the

difference between adjacent intervals is greater than the minimum coefficient of the

step function, then the length of the edge from the origin to the selected point will

be greater than the length of the path through the immediately preceding point. The

formally described condition can be expressed by the formula (3).

𝑘𝑖+1 ≤ 𝑘i + 𝑘1 (3)

Since the weight of the edge in this problem is non-negative, it is possible to use the

Dijkstra algorithm to find the distances between all the functions (Кормен,

Лейзерсон, Ривест, & Штайн, 2013, стр. 595)p. 595]. Then the computational

complexity of finding the distances from the current function to all the others will

be 𝑂(𝑛2 +𝑚), where 𝑛 is the number of nodes (functions) on the call graph, and 𝑚

is the number of edges (calls). Given that clustering requires the calculation of the

distance matrix between all functions, then the total computational complexity will

be 𝑂(𝑛3 + 𝑛𝑚). Using the binary heap in Dijkstra’s algorithm can reduce the

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

82

computational complexity to 𝑂(𝑛2 log 𝑛 + 𝑛𝑚 log 𝑛). At the same time, it is

necessary to consider that 𝑚 = 𝑂(𝑛2). However, in practice, the call graphs of real

programs are strongly sparse: the density of call graphs for all checked software

modules with volumes from a few hundred to tens of thousands of functions tends

to 0. The latter is explained by the decrease in connectivity between subsystems

with increasing software scale. The calculated values of the ratio 𝑚/𝑛 (the average

number of edges per node) for the studied software modules did not exceed 4 and

tends to decrease with an increase in the module volume. Consequently, in the

analysis of the executable code, the relationship for the call graph is satisfied

𝑚 = 𝑂(𝑛) and the evaluation can be used for the computational complexity of

constructing the distance matrix 𝑂(𝑛2 log 𝑛).

In the framework of the experiments, it was found that the parameters of the step

function can be specified considering the expected sizes of the components within

fairly wide limits. Thus, the proposed method for decomposing a software module is

robust. Additionally, this conclusion is confirmed by the fact that the experiments

were conducted under the conditions of the existing limitations of modern means of

disassembling (IDA software) to restore the call graph. As a result, one can

conclude that the information about the original software architecture is stored in

the executable code and can be restored.

5. Practical implementation

Currently, interactive clustering is implemented based on the creation of a heat map

for the distance matrix. In the distance matrix, functions are sorted in ascending

order of their starting addresses. In this case, no additional computational costs are

required apart from converting the calculated matrix into a graphic image in the

BMP format. An example of such an image ("code map") is shown in Fig. 1; the

darker the point, the smaller the distance between the functions.

Interactive clustering is performed by manually selecting rectangular blocks visually

different from adjacent areas. As a result, a hierarchical structure is formed on the

"code map" consisting of a number of square blocks located on the diagonal, which

either do not intersect or are nested in another block. This structure corresponds to

the software architecture of the module under study, and the diagonal blocks

themselves corresponds directly with the components of different levels. Blocks

outside the diagonal determine the degree of interaction between the components.

Also, for additional confirmation of the decision on the correctness of the

components selection and the initial assessment of their assignment, strings and

other data, which are used in the functions from the block selected on the "code

map", are automatically displayed on request for the operator.

The following optimizations are added during implementation:

1) individual disconnected components of the call graph are excluded if the

number of nodes is less than the threshold (the recommended value is 20);

Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды

ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88

83

2) individual disconnected call graph components having a diameter (Новиков,

2009, стр. 249)p. 249] less than the threshold are excluded (the recommended

value of 3, excluding graphs with the star topology);

3) excluded functions that are called only from a single function and do not call

anything;

4) springboard functions (mediating long-distance calls) are excluded from the

distance matrix by signature, but are taken into account when constructing

routes;

5) stub functions and imported functions are excluded.

The program for calculating the distance matrix and interactive clustering is

implemented as a plug-in for the IDA disassembler. The minimum input data is the

call graph and start addresses of functions, which allows analyzing the executable

modules for unsupported IDA processors upon independent receipt of the specified

data. Information about the selected components is stored in the IDB file and is used

to display functions in the form of a tree-like list, similar to that used when

displaying projects in modern integrated software development environments.

The PC with average computing capabilities was used as a test bench: dual-core

processor with a frequency of 3.1 GHz (Core i3 2100), 8 GB RAM, SSD drive. In

the study of software modules of up to 10,000 functions, the calculation and

construction of the "code map" takes place within a minute. Such delays are

insignificant in the context of the study of the program code for the operator. The

applied step distance function is given by the formula 4:

𝑙(𝑥) =

{

0 , 𝑥 = 0
1 , 0 < 𝑥 < 100
2 , 100 ≤ 𝑥 < 400
3 , 400 ≤ 𝑥 < 800
4 , 800 ≤ 𝑥 < 1600

5 , 1600 ≤ 𝑥

 (4)

The experiments performed using the example of Nmap software version 7.10 x86

for Windows OS
1
 (Nmap.org, 2016) showed that the selected components in the

executable code correspond to specific subsystems and classes in the source code

(fig. 1). In addition, the dependence of the isolation degree of the components on

their level and on the size of the software module was confirmed, which is fully

consistent with the need to improve the quality of the software architecture while

increasing the size and complexity of the project. In turn, the high quality of the

latter is provided mainly by strengthening the cohesion of the components and

weakening the coupling between them.

It should be noted that in the process of decomposition, the specific features of the

software module (including those introduced by the compiler) are revealed, the

information on which allows simplifying and automating the study of the executable

1
 nmap.exe module disassembled in IDA Pro 7.0 environment contains 3436 functions, 3082 functions were allocated

after the use of heuristics.

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

84

code. Due to the additional analysis, functions of the main cycles, standard service

functions of working with memory and strings, error handling functions,

springboard functions, designed to link the high-level components to each other are

determined.

6. Areas for further research

For the full implementation of the approach to analyzing the executable code

considered in the article, it is necessary to develop automatic methods for restoring

the software architecture, making it possible to explore the entire existing range of

sizes of software modules. In addition, these methods should be universal both in

terms of hardware architecture and the technologies, languages, and programming

paradigms used. To achieve these properties, it is required to work out the issues of

the restoration of components interconnections and effective hierarchical clustering,

including the case of random allocation of address space.

In the near future, the proposed method for decomposing a software module will be

developed. It is planned to implement automatic clustering methods; to take into

account the relationship graph of functions based on the using data in addition to the

call graph; to perform software modules classification based on the characteristics

that affect the decomposition process (hardware architecture, programming

paradigms, code size, etc.); to optimize the parameters of the step function of the

distance for the extracted classes of modules.

It should be noted that the result is influenced by the quality of the call graph

recovery and, accordingly, the improvement of this indicator is also one of the

directions of the described approach development.

Fig. 1 – Code map of the Nmap.exe software module version 7.10 x86 for Windows OS after

contrast correction. The components corresponding to the classes and their groups in the

source code are partially labeled. Small parts are not displayed due to scale limitations

Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды

ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88

85

7. Conclusion

Knowledge of the software architecture makes it possible to significantly reduce the

requirements for consumed resources during the analysis of executable code by

limiting the field of research, rational choice of priorities, abstraction from

secondary elements, and joint analysis. As a result, the software module under study

is divided into separate components with a characteristic size of several thousand

functions, which, in fact, leads to a decrease in the dimension of the original

problem. Moreover, there is an additional way of expansion of the obtained

intermediate results of the analysis for the entire software module. To achieve the

indicated advantages, it is necessary to restore the software architecture of the

executable code.

It is proposed to carry out this process in two stages:

1) decomposition of the disassembled software module into separate components;

2) the definition of the functionality of the selected components and their

relationships. To perform the first stage, an automated method has been developed

that allows selecting components corresponding to static libraries, classes, and their

groups. This method is based on the functions clustering by the distances between

them in the address space and on the call graph. Currently, interactive heat map

clustering for the distance matrix is implemented as a plug-in for the IDA

disassembler. The conducted experiments confirmed the possibility of restoring the

software architecture only by the software module, which made it possible to

demonstrate in practice the advantages of the approach to the analysis of executable

code considered in the article.

References

[1]. Kaushan V.V., Markin Yu.V., Padaryan V.A., Tikhonov A.Yu. Methods for Finding

Errors in a Binary Code. Technical Report. ISP RAS, Moscow, 2013 (in Russian).

[2]. Quist D.A., Liebrock L.M. Visualizing Compiled Executables for Malware Analysis.

Proc. of the International Workshop on Visualization for Cyber Security (VisSec09),

2009, pp. 27-32.

[3]. Streekmann N. Clustering-Based Support for Software Architecture Restructuring.

Springer, 2012, 241 p.

[4]. Kosyakov A., Svit U. Systems Engineering. Principles and Practice. 2nd ed. Moscow:

DMK Press, 2014, 624 p. (in Russian).

[5]. McConnell S. Code Complete. Workshop. 2nd ed. Moscow: Russian edition, 2010,

896 p. (in Russian).

[6]. Microsoft Corp. ECMA-334 C# Language Specification. Ecma International. 2006.

Available at: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-

334.pdf, accessed 13.10.2017.

[7]. Ebert J., Riediger V., Winter A. Graph Technology in Reverse Engineering. The TGraph

Approach, Proc. of the 10th Workshop Sowtware Reengineering (WSR 2008), vol. 126,

2008, pp. 67-81.

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

86

[8]. Meng X., Miller B.P. Binary Code Is Not Easy. Proc. of the 25th International

Symposium on Software Testing and Analysis (ISSTA16), Saarbrucken, Germany,

2016, pp. 24-35.

[9]. Clements P., Bachmann F., Bass L. et al. Documenting Software Architectures: Views

and Beyond. 2nd ed. Addison-Wesley Professional, 2010, 517 p.

[10]. Ian G. Essential Software Architecture, 2nd ed. Springer, 2011, 242 p.

[11]. ANSI/IEEE Standard 1471-2000 Recommended Practice for Architectural Description

of Software-Intensive Systems.

[12]. Padaryan V.A., Getman A.I. et al. Methods and Software Supporting the Combined

Analysis of a Binary Code. Programming and Computer Software, vol. 40, issue 5,

2014, pp. 276–287.

[13]. Novikov F.A. Discrete Mathematics for Programmers: Textbook for Universities, 3rd

ed. Piter, 2009, 384 p. (in Russian).

[14]. Bohnet J., Dollner J. Visual Exploration of Function Call Graphs for Feature Location in

Complex Software Systems. Proc. of the 2006 ACM Symposium on Software

Visualization, 2006, pp. 95-104.

[15]. Kienle H.M., Muller H.A. Rigi – An Environment for Software Reverse Engineering,

Exploration, Visualization and Redocumentation. Science of Computer Programming,

vol. 75, issue 4, 2010, pp. 247-263.

[16]. Eagle C. IDA Pro Book, 2nd ed. No Starch Press, 2011, 672 p.

[17]. Nurmukhametov A.R., Zhabotinsky E.A., Kurmangaleev S.F., Gaisaryan S.S.,

Vishnyakov A.V. Fine-grained address space layout randomization on program load. .

Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 163-182 (in Russian). DOI:

10.15514/ISPRAS-2017-29(6)-9

[18]. Bryant R.E., O'Hallaron D.R. Computer Systems: A Programmer's Perspective. 3rd ed.

Pearson, 2016, 1084 p.

[19]. Nurmukhametov A.R., Kurmangaleev S.F., Kaushan V.V., Gaisaryan S.S. Compiler

protection techniques against software vulnerabilities exploitation. Trudy ISP

RAN/Proc. ISP RAS, vol. 26, issue 3, 2014, pp. 113-126 (in Russian). DOI:

10.15514/ISPRAS-2014-26(3)-6

[20]. Kormen T. Kh., Leyzerson Ch.I., Rivest R.L., Stein K. Algorithms: Construction and

Analysis, 3rd ed. Williams LLC, 2013, 1328 p. (in Russian).

[21]. Nmap: the Network Mapper, 2016. Available at: https://nmap.org/dist/nmap-7.10-

win32.zip, accessed 21.08.2018.

Подход к анализу исполняемого кода на основе
восстановления программной архитектуры

Д.С. Кононов <dspr2@yandex.ru>

ФГУП «18 ЦНИИ» МО РФ,

111123, Россия, г. Москва, Свободный проспект, д. 4.

Аннотация. В статье рассматриваются новый подход к получению дополнительной

информации об исследуемом программном модуле на основе предварительного

восстановления программной архитектуры в ходе анализа исполняемого кода. В

результате появляется возможность сократить требования к затрачиваемым ресурсам

за счёт ограничения области исследования, рационального выбора приоритетов,

абстрагирования от второстепенных элементов. В работе демонстрируется

https://link.springer.com/journal/11086/40/5/page/1
https://nmap.org/dist/nmap-7.10-win32.zip
https://nmap.org/dist/nmap-7.10-win32.zip

Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды

ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88

87

осуществимость восстановления программной архитектуры в рамках двухэтапного

процесса: вначале проводится выделение обособленных компонентов, а затем

определяются их назначения и взаимоотношения. Предлагается автоматизированный

метод декомпозиции программного модуля, позволяющий выделять компоненты,

соответствующие статическим библиотекам, классам и их группам. Данный метод

базируется на кластеризации функций по расстояниям между ними в адресном

пространстве и на графе вызовов. Приведено описание реализации разработанного

метода в виде плагина для дизассемблера IDA.

Ключевые слова: анализ исполняемого кода; программная архитектура;

кластеризация; граф вызовов; расстояние между функциями; программный модуль;

декомпозиция.

DOI: 10.15514/ISPRAS-2018-30(5)-4

Для цитирования: Кононов Д.С. Подход к анализу исполняемого кода на основе

восстановления программной архитектуры. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 75-88 (на английском языке).. DOI: 10.15514/ISPRAS-2018-30(5)-4

Список литературы

[1]. Каушан В.В., Маркин Ю.В., Падарян В.А., Тихонов А.Ю. Методы поиска ошибок

в бинарном коде, технический отчет, ИСП РАН, Москва, 2013.

[2]. Quist D.A., Liebrock L.M. Visualizing Compiled Executables for Malware Analysis.

Proc. of the International Workshop on Visualization for Cyber Security (VisSec09),

2009, pp. 27-32.

[3]. Streekmann N. Clustering-Based Support for Software Architecture Restructuring.

Springer, 2012, 241 p.

[4]. Косяков А., Свит У. Системная инженерия. Принципы и практика. 2-е изд.

Москва: ДМК Пресс, 2014. 624 с.

[5]. Макконнелл С. Совершенный код. Мастер-класс. 2-е изд. Москва: Издательство

«Русская редакция», 2010. 896 с.

[6]. Microsoft Corp. ECMA-334 C# Language Specification. Ecma International. 2006.

URL: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

(дата обращения: 13.Октябрь.2017).

[7]. Ebert J., Riediger V., Winter A. Graph Technology in Reverse Engineering. The TGraph

Approach, Proc. of the 10th Workshop Sowtware Reengineering (WSR 2008), vol. 126,

2008, pp. 67-81.

[8]. Meng X., Miller B.P. Binary Code Is Not Easy. Proc. of the 25th International

Symposium on Software Testing and Analysis (ISSTA16), Saarbrucken, Germany,

2016, pp. 24-35.

[9]. Clements P., Bachmann F., Bass L. et al. Documenting Software Architectures: Views

and Beyond. 2nd ed. Addison-Wesley Professional, 2010, 517 p.

[10]. Ian G. Essential Software Architecture, 2nd ed. Springer, 2011, 242 p.

[11]. ANSI/IEEE Standard 1471-2000 Recommended Practice for Architectural Description

of Software-Intensive Systems.

[12]. Падарян В.А., Гетьман А.И. и др. Методы и программные средства

поддерживающие комбинированный анализ бинарного кода. Труды ИСП РАН,

том 26, вып. 1, 2014 г., стр. 251-276. DOI: 10.15514/ISPRAS-2014-26(1)-8

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP

RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

88

[13]. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е

изд. СПб: Питер, 2009. 384 с.

[14]. Bohnet J., Dollner J. Visual Exploration of Function Call Graphs for Feature Location in

Complex Software Systems. Proc. of the 2006 ACM Symposium on Software

Visualization, 2006, pp. 95-104.

[15]. Kienle H.M., Muller H.A. Rigi – An Environment for Software Reverse Engineering,

Exploration, Visualization and Redocumentation. Science of Computer Programming,

vol. 75, issue 4, 2010, pp. 247-263.

[16]. Eagle C. IDA Pro Book, 2nd ed. No Starch Press, 2011, 672 p.

[17]. Нурмухаметов А.Р., Жаботинский Е.А., Курмангалеев Ш.Ф., Гайсарян С.С.,

Вишняков А.В. Мелкогранулярная рандомизация адресного пространства

программы при запуске. Труды ИСП РАН. том 29, вып. 6, стр. 163-182. DOI:

10.15514/ISPRAS-2017-29(6)-9

[18]. Bryant R.E., O'Hallaron D.R. Computer Systems: A Programmer's Perspective. 3rd ed.

Pearson, 2016, 1084 p.

[19]. Нурмухаметов А.Р., Курмангалеев Ш.Ф., Каушан В.В., С.С. Г. Применение

компиляторных преобразований для противодействия эксплуатации уязвимостей

программного обеспечения. Труды ИСП РАН, том 26, вып. 3, стр. 113-126. DOI:

10.15514/ISPRAS-2014-26(3)-6

[20]. Кормен Т.Х., Лейзерсон Ч.И., Ривест Р.Л., Штайн К. Алгоритмы: построение и

анализ. 3-е изд. Москва: ООО «И.Д. Вильямс», 2013. 1328 с.

[21]. Nmap.org. Nmap: the Network Mapper 2016. URL: https://nmap.org/dist/nmap-7.10-

win32.zip (дата обращения: 21.08.2018).

