
89

Platform for interprocedural static analysis
of binary code

H.K. Aslanyan <hayk@ispras.ru>

Institute for System Programming of the Russian Academy of Sciences,

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. This paper describes the developed platform for static analysis of binary code. The

platform is developed based on interprocedural, flow-sensitive and context-sensitive analysis

of the program. The machine-independent language REIL is used as an intermediate

representation. In this representation basic data flow analyzes are developed and implemented

- reaching definitions analysis, construction of DEF-USE and USE-DEF chains, analysis for

deletion of dead code, value analysis, taint analysis, memory analysis and etc. The

implemented approach for functions’ annotations allow propagating data between function

calls, thereby making the context-sensitive analysis. The platform provides an API for using

all implemented analyzes, which allows adding new analyzes as plugins.

Keywords: static analysis; binary code analysis; interprocedural analysis

DOI: 10.15514/ISPRAS-2018-30(5)-5

For citation: Aslanyan H.K. Plarform for interprocedural static analysis of binary code.

Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 89-100. DOI: 10.15514/ISPRAS-

2018-30(5)-5

1. Introduction

Software developers always strive to create high-quality software, meaning that it

should be reliable, safe and easy to maintain. However, with increasing size and

complexity of projects, the developed code contains more errors [1]. Fixing those

errors can be done at any phase of the software development life cycle. Ideally, all

errors are detected during the testing phase. Error detection at the later phases or

after deployment may cause many difficulties. Moreover, erroneous software may

result in money loss. However, even a very thoroughly tested software sometimes

contains errors. Currently, various code analysis tools are widely used to detect

these errors.

Static code analysis is one of the common defect detection approaches. Static

analysis examines examining a code without executing a program. Through a

complete analysis of syntax, semantics, control and data flow, static code analysis

can find errors that are difficult or impossible to find during testing, especially on

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

90

rarely executed paths. Static analysis is based on methods and approaches both from

fundamental and applied research.

There are lots of approaches for static analysis of source code [2–8]. However, static

analysis of executables is less studied, despite the fact that it has several advantages

over the source code analysis. The first advantage of the binary code analysis

compared to the source code analysis is the fact that the source code is not always

available. The second advantage is that aggressive compiler optimizations may

create defects in binary code that were non-existent in the source, and it is very hard

to prove the optimization correctness [9-10]. The third advantage is the undefined

semantics of certain language constructs that may create difficulties for a static

analyzer. For example, in C/C ++ the order in which actual function parameters are

evaluated is implementation defined, which can lead to false positive reports in the

source code analyzer.

A production quality static analysis tool should have the following features:

interprocedural analysis support, flow sensitivity, path sensitivity. In addition, a

high-quality analyzer should be able to analyze large files (binary file sizes can

reach hundreds of megabytes) in a few hours, provide high accuracy (a small

number of false positives), and it should be easy to extend for supporting new error

types.

2. Platform architecture

The proposed tool architecture was developed taking into account the following

requirements:

 target architecture independent;

 context-sensitive interprocedural analysis with flow-sensitive

intraprocedural analysis;

 scalability: analyzing tens of megabytes of executable files in a few hours;

 easy platform extension.

The first step is producing assembler code from an executable. Assembler language

instructions are created by a disassembler using the object code as input. The tool

uses the IDA Pro [2] disassembler since it supports many executable file formats for

a large number of processors, automatically restores control flow graphs and call

graphs. The disassembler also restores calling conventions. Then the resulting

assembly code is transferred to the Binnavi [3] tool, which converts it to the REIL

representation (Reverse Engineering Intermediate Language) [4]. REIL

representation is an intermediate low-level language that can be used to write

platform-independent analysis algorithms. It has only 17 instructions. Each

instruction calculates no more than one result and has no side effects (flag settings,

etc.). REIL representation is created for a virtual processor with unlimited memory

and an unlimited number of registers denoted as t0, t1, t2, etc. Target machine

registers can be also accessed in REIL. Fig. 1 shows the scheme for getting the

assembler and REIL representation.

Асланян А.К. Платформа межпроцедурного статического анализа бинарного кода. Труды ИСП РАН, том 30,

вып. 5, 2018 г., стр. 89-100

91

Fig. 1.Getting a REIL representation

3. Function summaries and interprocedural analysis

After generating a REIL representation, the call graph is made acyclic. First, the

classical Tarjan approach [5] is used to find strongly connected components (SCCs).

Second, directed cycles are identified, and an arbitrary edge is removed from each

of them. This process breaks the connectivity properties of the SCCs.

Then call graph nodes are divided into groups (fig. 2) as follows: the first group has

nodes that have no outgoing edges. The second group includes nodes whose

descendants are in the first group. Thus, each subsequent group includes the nodes

that have their successor nodes processed as belonging to the previous groups. Since

the call graph has no more directed cycles, the algorithm will be completed in a

finite number of steps, and each node will fall into a certain group.

Fig. 2. Splitting nodes of the call graph into groups

Next, call graph traversal is performed according to the node groups built.

Intraprocedural analyses are run starting from the first group’s nodes, and each next

group is only considered if the functions corresponding to all previous group’s

nodes have been analyzed. It should be noted that the analysis is performed only for

functions with available bodies, i.e. functions from dynamic libraries are not

analyzed (only summaries are available for such functions). When interprocedural

analyses are completed, so-called function summaries are saved (summaries contain

function-specific data calculated by the analyses). For example, a function returns

the value that is user-controlled (like e.g. gets function in C/C++), or a function

frees the memory pointed to by the first parameter. When analyzing a function, its

callees’ summaries are used. Obviously, in the absence of recursive calls, all called

functions’ summaries are available. In the case of recursive calls, some edges are

Binnavi

 REIL

representa

tion

IDA Pro

 Assembler

 Control flow graphs

 Call graph

Executable file

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

92

removed from the call graph and thus some called function summary may not be

available. Such cases are handled as calls of unknown functions (without a

summary). We have used the C standard library summaries from the Svace tool [6].

Also, summaries can be extended with new types of data in our platform.

Intraprocedural analyses for each function are run only once, which allows

achieving scalability w.r.t. the number of functions. Splitting call graph nodes into

groups gives the advantage of analyzing the functions within each group in parallel.

4. Intraprocedural analysis

Basic intraprocedural analyses that form the platform contents are performed using

the REIL representation. Function summaries are used when processing function

calls, and the analysis data is evaluated taking into account actual call parameters

and calling conventions. This process makes the analysis context-sensitive.

Currently, value analysis, reaching definitions analysis, DEF-USE and USE-DEF

chains construction, dead code removal, liveness analysis, taint analysis, and

dynamic memory analysis are implemented. The intraprocedural analysis

architecture makes it easy to extend the set of analyses (fig. 3) and to add plugins.

Fig. 3. Intraprocedural analysis architecture

2.1 Value analysis

Value analysis is used to track values in registers and memory cells. All registers

(target architecture registers and temporaries) and all memory cells that are used in

the program are called variables. During the analysis process all variables get values

for all program points. For values stored in memory, a memory model, which tracks

memory accesses for stack, heap, and static memory areas, was developed and

implemented.

Value analysis is implemented based on a classic iterative data flow approach [7].

For this purpose, a semilattice is defined, that is, initial values for all variables are

Basic analyzes
 Value analysis

 Reaching definitions analysis

 Development of DEF-USE and USE-

DEF chains

 Dead code removal transformation

 Analysis of active variables

 Analysis of tagged data

 Dynamic memory analysis

User interface Plugins

Асланян А.К. Платформа межпроцедурного статического анализа бинарного кода. Труды ИСП РАН, том 30,

вып. 5, 2018 г., стр. 89-100

93

specified and transfer functions are defined. All other analyses are based on the

value analysis.

4.1.1 Value types

The developed value analysis has several symbolic value types: an integer type, a

target architecture register, a temporary REIL register, a memory area, and a special

values bottom and top. The bottom value is assigned to variables that have unknown

value (the lowest element in the semilattice), and the top value is assigned to

variables that may have any value (the uppermost element in the semilattice). Fig. 4

shows the value analysis semilattice.

Fig. 4. Diagram of the value analysis semilattice

4.1.2 Memory model

A simple memory model is just a byte array. Memory stores and loads in this model

are emulated as stores or loads to the corresponding array element. However, such a

simple model has some drawbacks. It is impossible to determine concrete addresses

for certain memory areas, e.g. those that are heap allocated. Moreover, function

calls sequence may change during each subsequent program run, which will

generally result in the ambiguity of memory values.

For proper analysis, the tool must separate different memory areas. To address the

challenge, the following memory model is proposed. Memory is addressed as

follows: *(reg + constants_array) + constant, where reg is a

register, constants_array is an array of constant values, and constant is a

constant value. constants_array and constant play the role of offset, and

constants_array provides the ability to model multidimensional array

elements and structure fiels. reg has a basic symbolic value. It is important to note

that all formula elements are not necessarily needed to model the given cell.

 Stack memory model. Since it is impossible to determine the precise

value of the function stack top statically, the model refers to local variables

by the offset from the stack top of the current function. Therefore, the

symbol stack for the initial address of the analyzed function’s stack is

used, and all local variables are modeled relative to this address. For

example, in the x86 architecture, after the instruction mov eax, esp+4

the value of eax will be stack+4, and after the instruction mov ebx,

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

94

[esp+8] the value of ebx will be *(stack+{8}).

constants_array provides the ability to model values of structure

fields. For example, if the value of the a->b->c expression in C code is

in ebx, then after processing all REIL instructions the value of

constants_array for ebx will be {offset b in structure
a, offset c in structure b}.

 Heap memory model. To model heap memory accesses, the heap symbol

is used and the instruction address of the memory allocation function call is

put into constants_array. For example, after processing the malloc

call with the address equal to 0xFFFFFFFF (on the x86 architecture with

the cdecl calling convention), eax will be *(heap+{0xFFFFFFFF}).

 Static memory model. Static and global variables are modeled directly

with their address with or without an offset. After compilation, all static

variables’ addresses are known, and the variable address is put in

constants_array, and its offset is put to constant.

4.1.3 Value analysis implementation

The value analysis algorithm is based on the iterative data flow approach [7]. The

semilattice, transfer functions and initial values are defined. The top/bottom

semilattice elements are denoted as top/bottom, respectively. Bottom is the

initial value for all variables except stack top and function arguments.

Transfer functions are defined for REIL instructions as follows. Let us define the

register value ti as Val(ti). For example, for the instruction add t1, t2,

t3 (it adds the value t1 to t2 and stores in t3) the transfer function is defined as

follows: all variables’ values remain unchanged except for t3, and Val(t3) will

be defined as follows:

 top, if Val(t1)=top or Val(t2)=top;

 bottom, if Val(t1)=bottom or Val(t2)=bottom;

 Val(t1)+Val(t2), if Val(t1) and Val(t2) are integer constants;

 *(reg+constants_array)+(constant+v), if Val(t1)=*(reg

+ constants_array)+constant and Val (t2) is an integer

constant that is equal to v;

 *(reg+constants_array)+(constant+v), if Val(t2)=*(reg

+ constants_array)+constant and Val (t1) is an integer

constant that is equal to v;

 *(reg)+v, if Val(t1) is a register that equals to reg, and Val (t2)

is an integer constant that is equal to v;

 *(reg)+v, if Val(t2) is a register that equals to reg and Val (t1)

is an integer constant that is equal to v;

 top, if none of the above applies.

Асланян А.К. Платформа межпроцедурного статического анализа бинарного кода. Труды ИСП РАН, том 30,

вып. 5, 2018 г., стр. 89-100

95

Similarly, transfer functions for other 17 REIL instructions are defined. The

iterative algorithm converges as we limit the number of calculated values for each

variable, so the algorithm stops when no values are changed or the above limit is

reached.

4.2 Data flow analyses implementation

Based on the value analysis, other classical data flow analyses are implemented

(reaching definitions analysis, dead code removal, liveness analysis, taint analysis,

and dynamic memory analysis). The above analyses are also performed using the

iterative data flow algorithm [7]. Semilattices and transfer functions are similarly

defined, and initial values are assigned to variables. DEF-USE and USE-DEF chain

construction is based on reaching definitions. The platform provides an API for

working with all existing analyses, which allows implementing new analyses as

plugins.

5. Related work

Balakrishnan and Reps describe in [8] an approach for analyzing value intervals. It

is implemented in the CodeSurfer/x86 tool, which can be used to analyze

executables for the x86 architecture. The tool uses the IDA Pro disassembler to

restore the program assembly code, its control flow graphs and the call graph. The

tool implements a memory model, based on which the interprocedural, context-

sensitive value interval analysis is performed.

In [9] [10] [11], platforms for analyzing x86 executables are developed and

implemented. These works implement an intermediate language and a disassembler,

also adapting value interval analysis of [8] values for their intermediate

representation. In [10], tainted data analysis is developed in addition to the above.

The paper [12] presents the BAP tool for analyzing executable files built for the x86

and ARM architectures. Both dead code removal and DEF/USE chain construction

are implemented, but the analyses do not take into account memory data

dependencies, which significantly lowers their quality.

The platform described in our work has two main functional advantages: it does not

depend on target architecture and uses the function summary approach, which

allows achieving linear scalability w.r.t. the number of analyzed functions.

6. Experimental results

All algorithms described in the paper were implemented and tested on real and

artificial examples. Table 1 shows running times of all the described analyses for

lepton, php and clam projects. Tests were run on a machine with a Core i5

processor, 4 cores and 16 GB RAM.

As can be seen from the table, php has a larger size compared to clam, but the

analysis time of this project is shorter. Such results can be explained by the fact that

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

96

functions in the clam project are much larger on average than php functions.

Therefore, parallel function analysis in php is much more efficient.

Table 1. Experimental results

Executable file Architecture Size
The time of all

analyses

lepton x86 5 MB 19 min 21sec

php x64 29 MB 3 h 12min

clam x86 18 MB 4 h 20min

7. Conclusion and further work

In this work, we have presented a platform for binary code analysis that is target

independent and supports a variety of classical data flow analyses. The application

of the developed platform using the implemented APIs can be found in [20-24].

These projects, in particular, used reaching definitions analysis and USE-DEF/DEF-

USE chains for building program dependency graphs.

In the future, we plan to add analyzers for finding critical errors in binary code. In

addition, as the REIL representation does not support floating point numbers, the

described analyses currently work only with integer types, and we plan to add such

support, which will increase the analyzers’ accuracy.

References

[1]. S. C. Misra and V. C. Bhavsar. Relationships between selected software measures and

latent bug-density: Guidelines for improving quality. In Proc. of the International

Conference on Computational Science and its Applications, ICCSA, Monreal, Canada,

2003.

[2]. V. P. Ivannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M. Zhurikhin and

A. I. Avetisyan. Static analyzer Svace for finding defects in a source program code.

Programming and Computer Software, vol. 40, no. 5, 2014, pp. 265-275.

[3]. Coverity scan. Synopsys, https://scan.coverity.com/.

[4]. Klocwork static code analysis. RogueWave software,

https://www.roguewave.com/products-services/klocwork/static-code-analysis.

[5]. Fortify Static Code Analyzer. Micro Focus, https://software.microfocus.com/ru-

ru/products/static-code-analysis-sast/overview.

[6]. IBM AppScan. IBM, https://www.ibm.com/us-en/marketplace/ibm-appscan-source.

[7]. V. K. Koshelev, V. N. Ignatiev, A. I. Borzilov and A. A. Belevantsev. SharpChecker:

Static analysis tool for C# programs. Programming and Computer Software, vol. 43, no.

4, 2017, pp. 268–276.

[8]. A. A. Belevantsev. Multilevel static analysis for improving program quality.

Programming and Computer Software, 2017, pp. 321–336.

[9]. G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You eXecute.

ACM Transactions on Programming Languages and Systems, vol. 32, no. 6, 2010, pp. 1-

84.

Асланян А.К. Платформа межпроцедурного статического анализа бинарного кода. Труды ИСП РАН, том 30,

вып. 5, 2018 г., стр. 89-100

97

[10]. H. J. Boehm. Threads cannot be implemented as a library. In Proc. of the 2005 ACM

SIGPLAN conference on Programming Language Design and Implementation, 2005,

pp. 261-268.

[11]. IDA Pro disassembler. Hex-Rays, https://www.hex-rays.com/products/ida.

[12]. Binnavi. Zynamics, https://www.zynamics.com/binnavi.html.

[13]. REIL - The Reverse Engineering Intermediate Language. Zynamics,

https://www.zynamics.com/binnavi/manual/html/reil_language.htm.

[14]. R. E. Tarjan. Depth-first search and linear graph algorithms. In Proc. of the 12th Annual

Symposium on Switching and Automata Theory, 1971, pp. 114 - 121

[15]. V. Aho, R. Sethi and J. D. Ullman. A formal approach to code optimization. In

Proceedings of a Symposium on Compiler Optimization, 1970, pp. 86-100.

[16]. J. Kinder. Static analysis of x86 executables. Ph.D. Thesis, Technische Universitat

Darmstadt, 2010.

[17]. S. Cheng, J. Yang, J. Wang, J. Wang and F. Jiang. LoongChecker: Practical Summary-

Based Semi-simulation to Detect Vulnerability in Binary Code. In Proc. of the 10th

International Conference on Trust, Security and Privacy in Computing and

Communications, Changsha, 2011, pp. 150-159.

[18]. D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,

P. Poosankam and P. Saxena. BitBlaze: A New Approach to Computer Security via

Binary Analysis. In Proc. of the 4th International Conference on Information Systems

Security, 2008, pp. 1-25.

[19]. D. Brumley , I. Jager , T. Avgerinos and E. J. Schwartz. BAP: A Binary Analysis

Platform. Lecture Notes in Computer Science, vol. 6806, 2011, pp. 463-469.

[20]. H. K. Aslanyan. Effective and Accurate Binary Clone Detection. Mathematical

Problems of Computer Science, vol. 48, 2017, pp. 64-73.

[21]. G. S. Keropyan, V. G. Vardanyan, H. K. Aslanyan, S. F. Kurmangaleev and S. S.

Gaissaryan. Multiplatform Use-After-Free and Double-Free Detection in Binaries.

Mathematical Problems of Computer Science, vol. 48, 2017, pp. 50-56.

[22]. H. Aslanyan, A. Avetisyan, M. Arutunian, G. Keropyan, S. Kurmangaleev and V.

Vardanyan. Scalable Framework for Accurate Binary Code Comparison. In Proc. of the

2017 Ivannikov ISPRAS Open Conference, Moscow, 2017, pp. 34-38.

[23]. H. Aslanyan, S. Asryan, J. Hakobyan, V. Vardanyan, S. Sargsyan and S. Kurmangaleev.

Multiplatform Static Analysis Framework for Programs Defects Detection. In CSIT

Conference 2017, Yerevan, Armenia, 2017.

[24]. H.K. Aslanyan, S.F. Kurmangaleev, V.G. Vardanyan, M.S. Arutunian, S.S.Sargsyan.

Platform-independent and scalable tool for binary code clone detection. Trudy ISP

RAN/Proc. ISP RAS, vol. 1, issue 2, 2016. pp. 215-226 (in Russian). DOI:

10.15514/ISPRAS-2016-28(5)-13.

Платформа межпроцедурного статического анализа
бинарного кода

А.К. Асланян <hayk@ispras.ru>

Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25.

Аннотация. В рамках данной статьи описывается разработанная платформа для

статического анализа бинарного кода. Платформа разработанa на основе

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

98

межпроцедурного, потоко-чувствительного и контекстно-чувствительного анализа

программы. В качестве промежуточного представления используется машинно-

независимый язык REIL. На этом представлении разработаны и реализованы основные

анализы потока данных - анализ достигающих определений, построение DEF-USE и

USE-DEF цепочек, трансформация для удаления мертвого кода, анализ значений,

анализ помеченных данных, анализа памяти и т.д. Реализованный подход аннотации

функций позволяет распространять данные между вызовами функций, тем самым

сделав анализ чувствительным к контексту. Платформа предоставляет программный

интерфейс для работы со всеми реализованным анализами, что позволяет добавлять

новые анализы в качестве плагинов.

Ключевые слова: статический анализ, анализ бинарного кода, межпроцедурный

анализ

DOI: 10.15514/ISPRAS-2018-30(5)-5

Для цитирования: Асланян А.К. Платформа межпроцедурного статического анализа

бинарного кода. Труды ИСП РАН, том 30, вып. 5, 2018 г., стр. 89-100 (на английском

языке). DOI: 10.15514/ISPRAS-2018-30(5)-5

Список литературы

[1]. S. C. Misra and V. C. Bhavsar. Relationships between selected software measures and

latent bug-density: Guidelines for improving quality. In Proc. of the International

Conference on Computational Science and its Applications, ICCSA, Monreal, Canada,

2003.

[2]. V. P. Ivannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M. Zhurikhin and

A. I. Avetisyan. Static analyzer Svace for finding defects in a source program code.

Programming and Computer Software, vol. 40, no. 5, 2014, pp. 265-275.

[3]. Coverity scan. Synopsys, https://scan.coverity.com/.

[4]. Klocwork static code analysis. RogueWave software,

https://www.roguewave.com/products-services/klocwork/static-code-analysis.

[5]. Fortify Static Code Analyzer. Micro Focus, https://software.microfocus.com/ru-

ru/products/static-code-analysis-sast/overview.

[6]. IBM AppScan. IBM, https://www.ibm.com/us-en/marketplace/ibm-appscan-source.

[7]. V. K. Koshelev, V. N. Ignatiev, A. I. Borzilov and A. A. Belevantsev. SharpChecker:

Static analysis tool for C# programs. Programming and Computer Software, vol. 43, no.

4, 2017, pp. 268–276.

[8]. A. A. Belevantsev. Multilevel static analysis for improving program quality.

Programming and Computer Software, 2017, pp. 321–336.

[9]. G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You eXecute.

ACM Transactions on Programming Languages and Systems, vol. 32, no. 6, 2010, pp. 1-

84.

[10]. H. J. Boehm. Threads cannot be implemented as a library. In Proc. of the 2005 ACM

SIGPLAN conference on Programming Language Design and Implementation, 2005,

pp. 261-268.

[11]. IDA Pro disassembler. Hex-Rays, https://www.hex-rays.com/products/ida.

[12]. Binnavi. Zynamics, https://www.zynamics.com/binnavi.html.

Асланян А.К. Платформа межпроцедурного статического анализа бинарного кода. Труды ИСП РАН, том 30,

вып. 5, 2018 г., стр. 89-100

99

[13]. REIL - The Reverse Engineering Intermediate Language. Zynamics,

https://www.zynamics.com/binnavi/manual/html/reil_language.htm.

[14]. R. E. Tarjan. Depth-first search and linear graph algorithms. In Proc. of the 12th Annual

Symposium on Switching and Automata Theory, 1971, pp. 114 - 121

[15]. V. Aho, R. Sethi and J. D. Ullman. A formal approach to code optimization. In

Proceedings of a Symposium on Compiler Optimization, 1970, pp. 86-100.

[16]. J. Kinder. Static analysis of x86 executables. Ph.D. Thesis, Technische Universitat

Darmstadt, 2010.

[17]. S. Cheng, J. Yang, J. Wang, J. Wang and F. Jiang. LoongChecker: Practical Summary-

Based Semi-simulation to Detect Vulnerability in Binary Code. In Proc. of the 10th

International Conference on Trust, Security and Privacy in Computing and

Communications, Changsha, 2011, pp. 150-159.

[18]. D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,

P. Poosankam and P. Saxena. BitBlaze: A New Approach to Computer Security via

Binary Analysis. In Proc. of the 4th International Conference on Information Systems

Security, 2008, pp. 1-25.

[19]. D. Brumley , I. Jager , T. Avgerinos and E. J. Schwartz. BAP: A Binary Analysis

Platform. Lecture Notes in Computer Science, vol. 6806, 2011, pp. 463-469.

[20]. H. K. Aslanyan. Effective and Accurate Binary Clone Detection. Mathematical

Problems of Computer Science, vol. 48, 2017, pp. 64-73.

[21]. G. S. Keropyan, V. G. Vardanyan, H. K. Aslanyan, S. F. Kurmangaleev and S. S.

Gaissaryan. Multiplatform Use-After-Free and Double-Free Detection in Binaries.

Mathematical Problems of Computer Science, vol. 48, 2017, pp. 50-56.

[22]. H. Aslanyan, A. Avetisyan, M. Arutunian, G. Keropyan, S. Kurmangaleev and V.

Vardanyan. Scalable Framework for Accurate Binary Code Comparison. In Proc. of the

2017 Ivannikov ISPRAS Open Conference, Moscow, 2017, pp. 34-38.

[23]. H. Aslanyan, S. Asryan, J. Hakobyan, V. Vardanyan, S. Sargsyan and S. Kurmangaleev.

Multiplatform Static Analysis Framework for Programs Defects Detection. In CSIT

Conference 2017, Yerevan, Armenia, 2017.

[24]. А. Асланян, Ш. Курмангалеев, В. Варданян, М. Арутюнян и С. Саргсян,

«Платформенно-независимый и масштабируемый инструмент поиска клонов

бинарного кода,» Труды ИСП РАН, т. 28, № 5, pp. 215-226, 2016. DOI:

10.15514/ISPRAS-2016-28(5)-13.

Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue

5, 2018. pp. 89-100

100

