
109

Reading the contents of deleted and
modified files in the virtualization based

black-box binary analysis system Drakvuf

 S.G. Kovalev <skovalev@ptsecurity.com>

Positive Technologies

8 Preobrazhenskaya Square, Moscow, 107061, Russia

Abstract. The article discusses ways to get the content of files, which are modified during the

processing in the well-known open source dynamic analysis environment Drakvuf. Drakvuf

initially implemented file saving functionality based on the use of undocumented mechanisms

for working with the system cache. The author of this article proposes a new approach to

obtaining the content of files on Microsoft Windows family systems using Drakvuf. The

proposed approach is based solely on the use of the public interface of the kernel by the

hypervisor and provides portability between different versions of the operating system. In the

conclusion of the article, the advantages and disadvantages of both approaches are presented,

and directions for further work are proposed.

Keywords: malware; dynamic analysis; injection; Drakvuf; Virtual Machine Introspection.

DOI: 10.15514/ISPRAS-2016-30(5)-7

For citation: Kovalev S.G. Reading the contents of deleted and modified files in the

virtualization based black-box binary analysis system Drakvuf. Trudy ISP RAN/Proc. ISP

RAS, vol. 30, issue 5, 2018. pp. 109-122. DOI: 10.15514/ISPRAS-2018-30(5)-7

1. Introduction

In recent years, a steady increase in the number of malicious programs has been

registered [1]. A direct consequence was the impossibility of manual analysis of this

thread, which led to the emergence of the need for scalable and automated tools for

collection and analysis of malware. Such tools include honeypots [2, 3] and

sandboxes [4, 5]. At the same time, it is worth noting that malware uses various

techniques to detect analysis tools [6], which imposes large restrictions on such

tools.

The use of virtual machine monitors provides several advantages for creating such

tools: isolation of a program of interest, the ability to quickly and easily restore a

compromised system, as well as scalability. Dynamic analysis requires the

completeness and accuracy of collected data. The use of virtual environments also

allows meeting these requirements, providing an analysis environment with

information about code execution, disk and memory usage in real time.

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

110

There are at least two approaches to the use of virtualized environments for dynamic

analysis. In the first case, the virtual machine is used as a replacement for the

physical one, which allows for scalability and a greater speed of restoring the

analysis environment; wherein, the kernel driver or injection of DLL into the

address space of a process of interest is used for the analysis. In the second case, the

virtual machine monitor is expanded with new possibilities of studying the virtual

machine state and does not require the installation of additional software in the

system of interest. This approach is called “virtual machine introspection” [7] or

VMI.

One of the important components of dynamic analysis is reading the contents of

deleted and modified files. This is due to the fact that some malicious programs

download the payload over the network and save it in a temporary file. This class of

malware was named Trojan Downloader [8]. Reading the contents of a newly

created file is necessary for further analysis. Another class of malware, called

Ransomware Trojans [9], encrypts many files on the disk. The presence of

information about a large number of newly created files with similar names or about

modified contents is a necessary condition for detecting malicious behavior.

Further, this article discusses the dynamic analysis environment Drakvuf [10, 11],

and two ways to read the contents of files. The first method was present initially and

was built on the knowledge of internal structures of the operating system kernel.

The second method was added by the author of this article and is based on the

injection of system functions. Thus, this approach relies on the stable public API of

the operating system kernel and in some cases allows reading the full contents of

files.

2. Overview of the dynamic analysis environment Drakvuf

Drakvuf is a virtualization based agentless black-box binary analysis system based

on «virtual machine introspection».

To build this environment, the following solutions were used:

 Xen virtual machine monitor [12];

 LibVMI library [13], which allows access to the low-level state of a virtual

machine;

 Rekall framework for studying the virtual memory of an operating system

of interest [14].

Further, each of the components and the way to use them together with Drakvuf are

discussed.

2.1. Xen

Xen is a bare-metal (i.e. independent of the operating system) hypervisor that

supports hardware virtualization technology. Xen allows running multiple virtual

machines, the so-called DomU. In this case, one of them is considered to be

controlling, the so-called Dom0.

Ковалёв С.Г. Получение содержимого удаляемых и изменяемых файлов в среде динамического анализа

исполняемых файлов Drakvuf. Труды ИСП РАН, том 30, вып. 5, 2018, стр. 109-122

111

Xen provides resource allocation for virtual machines, scheduling of virtual kernels,

and interrupt control. Dom0 is used to interact with the user, providing the system

with external device drivers (NIC, SATA, etc.). Dom0 typically runs the QEMU

process [15] associated with each virtual machine. QEMU provides emulation of a

virtual machine target platform (system logic set, BIOS or UEFI, external devices).

QEMU execution is supported in dedicated domains, the so-called subdomains,

which increases safety and performance.

Starting from Xen 4.5, the API for VMI is added to the hypervisor. Subsequently,

this interface is constantly being improved.

2.2. LibVMI

LibVMI is a library that provides access to the state of a virtual machine. It provides

the following capabilities (the list is not complete):

 reading and changing the contents of the virtual memory of a VM of

interest;

 setting permissions to the physical memory of a VM;

 reading and changing the values of VM processor registers;

 stopping and resuming VM operation;

 installing handlers for certain hardware events in a VM:

 changing values of control registers (CR0, CR3, CR4);

 access violations to the physical memory of a VM;

 single-step debugging of the VM execution;

 debugging interrupt (INT 3).

 LibVMI uses Xen VMI API for hidden analysis and change of the VM

state.

Fig. 1. Xen architecture

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

112

2.3. Rekall

Rekall is a virtual memory analysis framework. In the context of Drakvuf, the

feature of building an operating system profile based on debugging symbols of a

specific operating system is promising.

For example, for operating systems of the Microsoft Windows family, symbols of

the kernel and main modules are provided in the PDB format. Rekall allows

converting a PDB file to the JSON format. Such JSON file is called a profile [16]

and contains the following information:

 a brief description of the kernel for which the profile has been compiled

(family, version, build number);

 a list of constants and their offsets in the kernel;

 description of structures (names of members and their offsets within

structures).

The presence of such information allows overcoming the semantic gap between the

analysis environment and a system of interest.

2.4. Drakvuf

Drakvuf combines the ability to analyze and change the state of the VM provided by

LibVMI and the debugging information provided by Rekall with the knowledge of

the internal structure of an operating system of interest. This allows achieving the

following features:

 detection of the current process and thread at an arbitrary point in time;

 detection of the virtual address of a symbol (of constant or function) by

name;

 setting a virtual address trap;

 getting the file name according to the file handle.

 In addition, Drakvuf provides a plugin architecture and an initial set of

plugins. Plugins include the following ones:

 syscalls – allows tracking entry points to system call handlers;

 filedelete – allows reading the contents of deleted and modified files.

 In the presented work, the filedelete plugin has been significantly

improved, as will be discussed in section 5.

 It is important to note that all useful activities are performed during the

processing of exit from a VM (the so-called “VM exit”). Thus, the Drakvuf

operation scheme is as follows:

 at the very beginning of Drakvuf operation, the VM is stopped;

 traps and event handlers are configured (in plugins);

 the main loop is started:

 VM operation is resumed, and Drakvuf begins to wait for

notification of an event;

 one of the expected events occurs in the VM;

Ковалёв С.Г. Получение содержимого удаляемых и изменяемых файлов в среде динамического анализа

исполняемых файлов Drakvuf. Труды ИСП РАН, том 30, вып. 5, 2018, стр. 109-122

113

 Xen stops the VM and transfers control to Dom0, where Drakvuf

is usually running;

 Drakvuf (LibVMI) bypasses the list of handlers for events of this

type, transferring the control to each of them by rotation.

2.5. Using the Drakvuf trap mechanism to determine deleted and
changed files

To determine deleted and changed files, traps on the following system functions are

installed from ntoskrnl.exe:

 NtSetInformationFile – is used to delete a file when closing the last file

handle;

 NtWriteFile – records data to a file;

 NtClose – closes the file handle.

The NtWriteFile handler adds the following data to the list: PID of the process, file

handle, and file name. The NtClose handler for modified files removes an entry

from the list and proceeds to reading the contents of a file. The

NtSetInformationFile handler proceeds to read the contents of any deleted file.

3. Reading the contents of files by analyzing the cache manager

For a detailed presentation of the material see [17]. The following is a general

description of the approach which is necessary and sufficient for comparison.

In the beginning, the _FILE_OBJECT structure location is determined according to

the file handle. Next, using the value of a member of the SectionObjectPointer

structure, the location of the _SECTION_OBJECT_POINTERS structure is

determined, the DataSectionObject member of which points to the

_CONTROL_AREA structure. At the end of this structure, there is the first member

of a linked list, consisting of _SUBSECTION structures. Each such structure

defines a sequential memory chunk mapped to a file. Having read the contents of all

such chunks, one can compile a file (or at least part of it, see below).

In the _SUBSECTION structure, the following members are significant:

 SubsectionBase – the first member of the array of _MMPTE entries, each

of which defines the physical address of a page (in terms of VM) and some

flags;

 PtesInSubsection – the number of array members;

 StartingSector – the offset of the first page of this section in the file,

expressed in chunks of 512 bytes.

Each _MMPTE entry is a 4 KB virtual memory page descriptor (the so-called PTE,

or “page table entry”). Collectively, PTEs describe a continuous virtual memory

block that represents a portion of the file starting from the StartingSector*512

offset. However, some pages can be paged out from the RAM of the VM. This is

indicated by the zero value of the Present flag in PTE.

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

114

Thus, in order to read the cache manager contents, Drakvuf just needs to bypass the

list of PTEs for each section and to read the contents of each page for which the

Present flag is set.

3.1. Limitations of this approach

Although this approach provides reading of the cache manager content in a way that

is fast and invisible for the VM, it has several limitations:

 large files can be accessed in parts; in this case, the cache manager may

contain one or more fragments of the file, while the rest of the file even

will not be downloaded;

 the current implementation does not take into account the fact that some

pages with cleared Present flag may still contain data not downloaded to

disk;

 memory for cache manager structures is allocated from the system working

set and can be paged out to disk;

 the current implementation does not support working with memory-

mapped files [18].

The above limitations led to the beginning of work on injection of system functions

to read the contents of files.

4. Injection of system calls

Initially, the linbinjector library was added to Drakvuf, which provided an injection

of the CreateProcess system function. This allowed for the direct launch of an

application of interest in the VM, requiring only the presence of a file on the VM

disk. This approach (the so-called agent-free approach) provides greater secrecy

compared to the classical solution in which the remote control process was launched

in the VM. Since the injection of functions is an integral part of the proposed

solution, here is a general description of the approach.

The function injection implies a change in the state of the current instruction stack

and register (IP on x86 architecture), which emulates the sequence of operations

used by the compiler when calling a function (the word “call” can be further used

instead of the word “injection”).

Since operating systems of the Microsoft Windows family are considered, the rules

for calling functions in the kernel are well documented [19]. For example, let us

consider the injection of the ZwQueryVolumeInformationFile function call on a 64-

bit system.

This function takes five arguments: object handle (integer), pointer to the

IO_STATUS_BLOCK structure, pointer to the

FILE_FS_DEVICE_INFORMATION out structure (for the example), size of out

structure, structure type (integer, for FILE_FS_DEVICE_INFORMATION is 4). In

accordance with the accepted ABI, the first four arguments are transferred in RCX,

RDX, R8, R9 registers, and the last argument is transferred on the stack.

Ковалёв С.Г. Получение содержимого удаляемых и изменяемых файлов в среде динамического анализа

исполняемых файлов Drakvuf. Труды ИСП РАН, том 30, вып. 5, 2018, стр. 109-122

115

However, there are some limitations that shall be considered:

 before calling a function on the stack, space for four arguments is reserved

(the so-called “home space”);

 when transferring a pointer to a structure, the address of the structure

beginning must be aligned with a value equal to the greatest alignment of

any member of the structure;

 before calling a function, the stack shall be aligned by a multiple of 16 B.

The last two requirements were not initially taken into account, which led to a time-

consuming debugging of various fatal kernel errors (the so-called BSOD).

After all arguments of the function are prepared, the return address is set on the

stack. As a rule, it coincides with the trap address, which allows continuing

execution of the VM. In this case, the trap is not deleted, which is necessary for

processing the exit from ZwQueryVolumeInformationFile.

Lastly, the ZwQueryVolumeInformationFile address is entered to the RIP register

and the VM operation is resumed.

Since it is possible to setup new trap, after the ZwQueryVolumeInformationFile

function completes, the trap handler receives control again, which allows processing

returned data, restoring registers and the stack, and continuing operation of the VM.

Further development of this approach led to the idea of the possibility of sequential

execution of several injections, which allowed reading the contents of files without

reference to the cache manager structures.

5. New approach to reading the contents of files by injection of
system calls

The proposed approach was a direct consequence of the desire to achieve

guaranteed reading of the contents of arbitrarily large files, not limited to what is

contained in the cache manager. The kernel already provides the ZwReadFile

system function. However, one cannot simply call ZwReadFile on the handle of an

arbitrary object:

 the handle can be linked with a logical disk volume, I/O device, etc.;

 to read files, one needs to prepare a memory buffer of sufficient size;

 for files that do not fit into the buffer, several read operation calls are

required;

 reading of asynchronous files can lead to unexpected errors.

In the course of the work, the author discovered at least two more circumstances

that were not initially taken into account:

The stack size in the kernel mode is limited (16 KB for 32-bit systems and 24 KB

for 64-bit systems), so it is impossible to reliably allocate a sufficiently large

memory buffer on the stack;

in a multithreading OS, a process or a thread may switch while the contents of the

file are being read;

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

116

in LibVMI, all trap handlers registered to a virtual address are sequentially called,

so it is necessary to distinguish the beginning of the chain from its middle.

Here is the brief description of solutions for each of these limitations.

5.1. Solving the problem of determining the type of the handle

The ZwQueryVolumeInformationFile function called with the

FileFsDeviceInformation parameter returns the

FILE_FS_DEVICE_INFORMATION structure. The first member of this structure

DeviceType takes one of the values [20]. During the research, it was revealed that

regular files are of FILE_DEVICE_DISK type (i.e., 0x7).

5.2. Solving the problem of buffer preparation

In the beginning of work, the author did not take into account the fact, that the

kernel stack size is not only limited but also rather small (16 kB for 32-bit systems

and 24 kB for 64-bit systems). Thus, in the first version, the 4kB buffer was

allocated directly on the stack. However, the author has soon noticed that in some

cases OS has a fatal error when reading a file. It was suggested that the reason is a

kernel stack overflow.

In order to eliminate such an error, it was decided to allocate the buffer in a non-

paged memory area (so-called «NonPaged Pool»). This provides an additional

advantage of the possibility to allocate more memory (for example, 64 KB).

For further optimization, the allocation of new memory buffer on request was

added. All allocated memory buffers are put in the list. Initially, the list is empty.

Each new thread first accesses the list. If there is a free memory buffer in the list, it

is marked as busy and used for reading operation. If there are no free buffers in the

list, the ExAllocatePoolWithTag function is called (injected) first.

In practice, it turned out that a single memory buffer is sufficient for a VM with two

kernels.

5.3. Solving the problem of reading large files

In practice, there are often large files that do not fit in one memory buffer.

Therefore, it becomes necessary to perform the file read operation in a loop.

However, the file size is not known in advance. It would be possible to use one of

the system functions to read the file size, but this would extend the call chain and

reduce system performance. In addition, there is a need to move the carriage in the

file. Fortunately, the ZwReadFile function already has all the necessary properties to

solve this problem.

One of the ZwReadFile arguments is a pointer to the IO_STATUS_BLOCK

structure. Upon the completion of the read operation, this structure contains two

members: the operation completion code and the number of bytes read.

The second useful argument in the context of this task is the ZwReadFile argument,

which is a pointer to the LARGE_INTEGER ByteOffset structure. This argument

Ковалёв С.Г. Получение содержимого удаляемых и изменяемых файлов в среде динамического анализа

исполняемых файлов Drakvuf. Труды ИСП РАН, том 30, вып. 5, 2018, стр. 109-122

117

allows setting the offset in the file from which ZwReadFile will start reading the

contents.

Using the second member IO_STATUS_BLOCK and ByteOffset allows creating a

simple read algorithm for a large file: as long as the read operation returns

STATUS_SUCCESS and the number of bytes read is equal to the size of the

transferred memory buffer, continuing the read operation, increasing the offset by

the memory buffer size. Wherein, at the beginning it is necessary to explicitly

specify a zero offset, because in practice, at the time of calling NtClose, the carriage

was shifted to the end of the file. This resulted in a read error

STATUS_END_OF_FILE.

5.4. Solving the problem of asynchronous files

At the beginning of the research, it was noticed that ZwReadFile often returns the

STATUS_PENDING error code. This means that an attempt to read a file opened

for asynchronous access is being made [18]. The first solution was to add a call to

the WaitForSingleObject function. This call is different from others. There was the

need to keep the stack from the previous call ZwReadFile and the lack of its own

handler. The only thing that the trap handler did on WaitForSingleObject was

transferring control to the ZwReadFile handler, which again checked the error code

and read the memory buffer.

However, it soon became clear that the operation of the system became unstable.

Often there were fatal kernel errors associated with breaking the stack. Debugging

of the kernel showed that in almost all cases the stack pointer was more than 1 MB

from the base of the nuclear stack (so-called “stack underflow”). A further study of

the stack showed that the violation of the stack began with calling ZwReadFile. It

was not possible to establish the exact cause of the error, but there was a clear

dependence of the error reproducibility on the type of files read. Errors were

reproduced when accessing asynchronous files.

Thus, it was decided not to attempt to read such files. Finding out whether the file

was open for asynchronous access turned out to be trivial. The _FILE_OBJECT

structure contains the Flags member. If the FO_SYNCHRONOUS_IO flag is set,

the file has been opened for synchronous access. So it is possible to read its

contents.

This simple revision led to an increase in the reliability of the entire system.

However, the issue of reading the contents of files opened for asynchronous access

remained open. The answer to this question is partly given below.

5.5. Solving the problem of processing several traps at one
virtual address

The need to process the returned values of called functions results in at least two

handlers at one virtual address: a constant handler at NtClose and a temporary

handler for the function being called. The situation is aggravated by the fact that the

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

118

handler of each stream can be installed to the same address. Thus, it is necessary not

only to distinguish the beginning of a call chain but also to distinguish between

processes and threads. Moreover, it turned out that all handlers of traps to a given

virtual address are traversed in LibVMI. Therefore, upon completion of the read

operation, one cannot simply delete a trap. This will lead to looping attempts to read

the file.

To solve this problem, a map was added, which maps a pair of process and thread

values to a marker for completion of a read operation. When a trap on NtClose is

triggered and a decision is made to read the contents of a file, a new process thread

pair is added to the map with an empty marker. When a file read operation is

completed in any form, a marker in the map for the current process thread is filled,

and the trap is deleted. Since in LibVMI new traps are added to the top of the list,

for the current process thread a trap on NtClose is executed the last. It checks the

marker and, if it is full, the entry is deleted from the map, and the handler ends.

At the same time, the handler of each called function checks the compliance of the

current process-thread with the stored value, which eliminates the accidental

triggering of the handler.

5.6. Solution algorithm

By putting together all of the above, the following file reading algorithm is

obtained:

 Step 1. Check that the file is open for synchronous access, otherwise shut

down.

 Step 2. Check that no read operations are performed for the current

process-thread and add a marker to the map, otherwise remove the marker

from the map.

 Step 3. Call ZwQueryVolumeInformationFile and check that the regular

file is processed, otherwise fill in the marker and complete the work.

 Step 4. Allocate a memory buffer if there is a free one, otherwise call

ExAllocatePoolWithTag.

 Step 5. In the loop, call ZwReadFile as long as the error code is

STATUS_SUCCESS and the number of bytes read is equal to the size of

the memory buffer.

 Step 6. Fill in the marker for the current process thread.

If one of the steps fails by mistake, the attempt to read the file is considered failed,

and an attempt to read parts of the file from the cache manager is made. This partly

solves the problem with asynchronous files.

Thus, the proposed approach significantly expanded the existing one, allowing

reading the contents of files reliably, using the documented system functions.

Ковалёв С.Г. Получение содержимого удаляемых и изменяемых файлов в среде динамического анализа

исполняемых файлов Drakvuf. Труды ИСП РАН, том 30, вып. 5, 2018, стр. 109-122

119

6. Conclusion

The paper presents a new approach for reading the contents of deleted and modified

files during automated dynamic analysis of applications on Microsoft Windows

operating systems. This approach has a distinctive feature of using the mechanism

for injecting system functions of the operating system running in a virtual machine

from the side of the hypervisor. This technique avoids the presence of agent

applications or drivers in the virtual machine and increases secrecy, which is

extremely important in studying the malware. It uses documented system functions,

which allows achieving transferability between different versions of operating

systems of this family.

The problem of reading the contents of files opened for asynchronous access is not

fully solved, which sets the direction for further activities.

In addition, this paper provides an overview of the dynamic analysis environment

Drakvuf, its constituent parts and some principles of work. It considers the initial

approach to reading the contents of files based on reading internal structures of the

cache manager, and its limitations.

References

[1]. The Independent IT-Security Institute. Malware. Available at: https://www.av-

test.org/en/statistics/malware/, accessed 17.11.2018.

[2]. Asrigo K., Litty L., Lie D. Using VMM-Based Sensors to Monitor Honeypots.

Department of Electrical and Computer Engineering University of Toronto, 2006.

Available at: https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf, accessed

17.11.2018.

[3]. Rangian M.K., Attri U. Design and Implementation of Malware Collection System

Based on Client Honeypot. International Journal of Scientific & Engineering Research,

vol. 4, issue 3, 2013, pp. 775-780.

[4]. Cuckoo Sandbox. Available at: https://cuckoosandbox.org/, accessed 17.11.2018.

[5]. Willems C., Holz T., Freiling F. Toward Automated Dynamic Malware Analysis Using

CWSandbox. IEEE Security & Privacy, vol. 5, issue 2, 2007, pp. 32-39.

[6]. Malware Anti-Analysis Techniques and Ways to Bypass Them. Available at:

https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/,

accessed 02.05.2017.

[7]. Garfinkel T., Rosenblum M. A Virtual Machine Introspection Based Architecture for

Intrusion Detection. Computer Science Department, Stanford University, 2003.

Available at: https://suif.stanford.edu/papers/vmi-ndss03.pdf, accessed 17.11.2018.

[8]. Kaspersky Lab. Malware Classification (in Russian). Available at:

https://www.kaspersky.ru/blog/klassifikaciya-vredonosnyx-programm/2200/, accessed

17.11.2018.

[9]. Symantec Corporation. What Is Ransomware? Available at:

https://us.norton.com/internetsecurity-malware-ransomware.html, accessed 17.11.2018.

[10]. Drakvuf. Available at: https://drakvuf.com/, accessed 17.11.2018.

[11]. Lengyel T.K. Malware Collection and Analysis via Hardware Virtualization. University

of Connecticut, 2015. Available at: https://tklengyel.com/thesis.pdf, accessed

17.11.2018.

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf
https://cuckoosandbox.org/
https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/
https://suif.stanford.edu/papers/vmi-ndss03.pdf
https://www.kaspersky.ru/blog/klassifikaciya-vredonosnyx-programm/2200/
https://us.norton.com/internetsecurity-malware-ransomware.html
https://drakvuf.com/
https://tklengyel.com/thesis.pdf

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

120

[12]. Xen Project. Available at: https://xenproject.org/, accessed 17.11.2018.

[13]. LibVMI. Available at: http://libvmi.com/, accessed 17.11.2018.

[14]. Rekall Forensics. Available at: http://www.rekall-forensic.com/, accessed 17.11.2018.

[15]. QEMU. Available at: https://www.qemu.org/, accessed 17.11.2018.

[16]. Rekall Profiles. Available at: http://blog.rekall-forensic.com/2014/02/rekall-

profiles.html, accessed 17.11.2018.

[17]. Russinovich M., Solomon D., Ionescu A. Microsoft Windows Internal Design. The Main

OS Subsystems, 6th ed. (in Russian). Saint Petersburg, Piter, 2014, 672 p.

[18]. Richter J., Nazar C. Windows via C/C++. Visual C++ Programming (in Russian). Saint

Petersburg, Piter, 2009, 896 p.

[19]. Building C/C++ Programs. Available at: https://docs.microsoft.com/en-

us/cpp/build/building-c-cpp-programs?view=vs-2017, accessed 17.11.2018.

[20]. Specifying Device Types. Available at: https://docs.microsoft.com/en-us/windows-

hardware/drivers/kernel/specifying-device-types, accessed 17.11.2018.

Получение содержимого удаляемых и изменяемых
файлов в среде динамического анализа исполняемых

файлов Drakvuf

 С.Г. Ковалёв <skovalev@ptsecurity.com>

Positive Technologies

107061, Москва, Преображенская пл., д. 8

Аннотация. В статье рассматриваются способы получения содержимого файлов,

изменяемых в процессе работы известной среды динамического анализа с открытым

исходным кодом Drakvuf. В Drakvuf изначально реализована функциональность

сохранения файлов, основанная на использовании недокументированных механизмов

работы с системным кэшем. Автором данной статьи предложен новый подход

получения содержимого файлов в системах семейства Microsoft Windows с помощью

Drakvuf. Предложенный подход основан исключительно на использовании публичного

интерфейса ядра со стороны гипервизора и обеспечивает переносимость между

различными версиями операционной системы. В завершение статьи приведены

достоинства и недостатки обоих подходов, предложены направления дальнейших

работ.

Keywords: вредоносная программа; динамический анализ; инъекция; Drakvuf; Virtual

Machine Introspection.

DOI: 10.15514/ISPRAS-2018-30(5)-7

Для цитирования: Ковалёв С.Г. Получение содержимого удаляемых и изменяемых

файлов в среде динамического анализа исполняемых файлов Drakvuf. Труды ИСП

РАН, том 30, вып. 5, 2018 г., стр. 109-122 (на английском языке). DOI:

10.15514/ISPRAS-2018-30(5)-7

Список литературы

[1]. Malware. The Independent IT-Security Institute. Доступно по ссылке: https://www.av-

test.org/en/statistics/malware/.

https://xenproject.org/
http://libvmi.com/
http://www.rekall-forensic.com/
https://www.qemu.org/
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Ковалёв С.Г. Получение содержимого удаляемых и изменяемых файлов в среде динамического анализа

исполняемых файлов Drakvuf. Труды ИСП РАН, том 30, вып. 5, 2018, стр. 109-122

121

[2]. Kurniadi Asrigo, Lionel Litty, David Lie. Using VMM-Based Sensors to Monitor

Honeypots. Department of Electrical and Computer Engineering University of Toronto,

2006. Доступно по ссылке: https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf,

дата обращения 17.11.2018.

[3]. Manpreet Kaur Rangian, Upasna Attri. Design and Implementation of Malware

Collection System Based on Client Honeypot. International Journal of Scientific &

Engineering Research, 2013.

[4]. Cuckoo Sandbox. Доступно по ссылке: https://cuckoosandbox.org/, дата обращения

17.11.2018.

[5]. Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic

malware analysis using cwsandbox. Security & Privacy, IEEE, 2007.

[6]. Malware Anti-Analysis Techniques and Ways to Bypass Them. Доступно по ссылке:

https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/,

дата обращения 02.05.2017.

[7]. Tal Garfinkel, Mendel Rosenblum. A Virtual Machine Introspection Based Architecture

for Intrusion Detection. Computer Science Department, Stanford University, 2003.

Доступно по ссылке: https://suif.stanford.edu/papers/vmi-ndss03.pdf, дата обращения

17.11.2018.

[8]. Классификация вредоносных программ. Доступно по ссылке:

https://www.kaspersky.ru/blog/klassifikaciya-vredonosnyx-programm/2200/.

[9]. What is ransomware?. Доступно по ссылке: https://us.norton.com/internetsecurity-

malware-ransomware.html, дата обращения 17.11.2018.

[10]. Drakvuf. Доступно по ссылке: https://drakvuf.com/, дата обращения 17.11.2018.

[11]. Tamas Kristof Lengyel. Malware Collection and Analysis via Hardware Virtualization.

University of Connecticut, 2015. Доступно по ссылке: https://tklengyel.com/thesis.pdf,

дата обращения 17.11.2018.

[12]. Xen Project. Доступно по ссылке: https://xenproject.org/, дата обращения 17.11.2018.

[13]. LibVMI. Доступно по ссылке: http://libvmi.com/, дата обращения 17.11.2018.

[14]. Recall Forensics. Доступно по ссылке: http://www.rekall-forensic.com/, дата

обращения 17.11.2018.

[15]. QEMU. Доступно по ссылке: https://www.qemu.org/, дата обращения 17.11.2018.

[16]. Rekall Profiles. Доступно по ссылке: http://blog.rekall-forensic.com/2014/02/rekall-

profiles.html, дата обращения 17.11.2018.

[17]. М. Руссинович, Д. Соломон, А. Ионеску. Внутреннее устройство Microsoft

Windows. 6-е издание. Основные подсистемы ОС. СПб.: Питер, 2014, 672 с.

[18]. Джеффри Рихтер, Кристоф Назар. Windows via C/C++. Программирование на

языке Visual C++. СПб.: Питер, 2009, 896 с.

[19]. Building C/C++ Programs. Доступно по ссылке: https://docs.microsoft.com/en-

us/cpp/build/building-c-cpp-programs?view=vs-2017, дата обращения 17.11.2018.

[20]. Specifying Device Types. Доступно по ссылке: https://docs.microsoft.com/en-

us/windows-hardware/drivers/kernel/specifying-device-types, дата обращения

17.11.2018.

https://security.csl.toronto.edu/papers/asrigo-vee2006.pdf
https://cuckoosandbox.org/
https://resources.infosecinstitute.com/malware-anti-analysis-techniques-ways-bypass/
https://us.norton.com/internetsecurity-malware-ransomware.html
https://us.norton.com/internetsecurity-malware-ransomware.html
https://drakvuf.com/
https://tklengyel.com/thesis.pdf
https://xenproject.org/
http://libvmi.com/
http://www.rekall-forensic.com/
https://www.qemu.org/
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
http://blog.rekall-forensic.com/2014/02/rekall-profiles.html
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/building-c-cpp-programs?view=vs-2017
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/specifying-device-types

Kovalev S.G. Reading the contents of deleted and modified files in the virtualization based black-box binary analysis

system Drakvuf. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 109-122

122

