Methodology and Tools for Development
and Verification of formal fUML Models of
Requirements and Architecture for Complex
Software and Hardware Systems

A.V. Samonov <a.samonov@mail.ru>
G.N. Samonova <g.samonova@mail.ru>
Mozhaiskiy Military Space Academy,
13, Zhdanovskaya St., Saint Petersburg, 197088, Russia

Abstract. The article presents models and algorithms to support end-to-end quality control of
complex software and hardware systems through the implementation of the software-
controlled process of development and verification of formal models of requirements and
architecture of such systems, Firstly, we give the analysis of scientific publications and the
normative-methodical base in the field of development and application in practice of the
model-based approach is given. We establish that least provided by model, algorithmic and
software solutions are issues related to the development of a complete and correct set of
requirements, as well as the formalization and verification of technical projects of software
and hardware systems. To solve the existing problems, we propose to develop a special
unified environment for the development, modeling and testing formal models of
requirements and architecture of complex software and hardware systems. These models
provide an optimal set of interconnected fUML diagrams presented in ALF notation and
verified in the fUML virtual machine and using SMT/SAT solvers.

Keywords: activity diagrams; class diagrams; design and implementation; life cycle of
automated systems; model of requirements; model of architecture; software and hardware
systems; verification and validation

DOI: 10.15514/1SPRAS-2016-30(5)-8

For citation: Samonov A.V., Samonova G.N. Methodology and Tools for Development and
Verification of formal fUML models of Requirements and Architecture for Complex
Software and Hardware Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp.
123-146. DOI: 10.15514/ISPRAS-2018-30(5)-8

1. Introduction

Now, when the confrontation in the political, economic and military fields is
growing, one of the most important activities of the state is to ensure the safe
operation of critical information infrastructure (CIl). According to the Federal Law
of the Russian Federation [1], Cll objects are automated control systems (ACS) for

123

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

production and technological processes of the critical objects of the Russian
Federation and information and telecommunication networks providing them, IT
systems and communication networks for solving public administration tasks,
ensuring defense capability, security and law enforcement. Disruption of the
functioning of CII objects can lead to disastrous consequences in the field of
defense capability, economy, health care and security of the nation.

Automation means complexes, which form the basis of the CIl objects, are complex
software and hardware systems (CSHS); their foundation of reliable and safe
functioning is laid in the process of their design, development, and verification. The
main factors and conditions for achieving the required quality indicators of CSHS
are:

1) implementation of a quality management system defined by modern
normative-methodical documents (NMD) in the field of system and
software engineering at companies developing CSHS;

2) highly qualified designers, developers, and testers of CSHS;

3) use of modern technologies, methods and tools for design, development,
and testing of CSHS.

The most important issues relate to the implementation of the third direction, which
is being developed in system and software engineering [2] and model-based
methodology [3]. The need to improve the technology and development tools of
CSHS is due to distressing statistics on the implementation of IT projects both in
Russia and abroad. Thus, according to the research of The Standish Group, the
analysis of the results of work on the creation of information systems showed that in
the United States (over the past 15 years), only 20% of the projects were completed
on time and according to the original budget. At the same time, 30% of the projects
failed; 50% faced various problems: the total budget exceeded the initial one by 2
times on average; the terms increased by 1.5 times; less than 75% of the required
functionality was implemented [4]. The development process of CSHS consists of
three main stages: justification of requirements, design, and implementation, each of
which, according to the methodology of the model-based approach, includes a
verification procedure of the corresponding artifact. As the analysis showed, issues
related to the automation of the processes of generating and verifying computer
code created at the implementation stage have been solved quite successfully. At the
same time, the stages of requirements formation and system architecture design
require the participation of specialists in the field of system engineering and
information technology and end users.

As the analysis showed, the main limiting factors in achieving qualitative
improvements in solving these tasks are:

e absence of a rigorous mathematical model describing the processes of
implementation and application of methods and tools of model-based
systems engineering in the main stages of the life cycle of CSHS in a
uniform model-language environment;

124

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

e objective complexity of the task of creating a formal presentation of system
requirements based on their original informal representation;

e availability of a wide range of languages and tools proposed for building
models of the analysis, architecture, and implementation of a system in the
absence of clear and specific rules and recommendations for their application;

e lack adequate tools for automated construction and execution of test
scenarios for the verification of requirements and architecture.
The second section provides a brief overview of scientific and technical
publications, in which the described issues are considered and solved. The third and
fourth sections of the article present the models and algorithms for building a formal
specifications requirements. The fifth section describes the models and algorithms
for developing and verification the architecture of CSHS. The sixth section presents
the methodology for constructing test scenarios to verify models of requirements,
architecture, and implementation of CSHS using the SAT/SMT solvers.

2. Overview of the Current Normative-methodical Base and
Scientific Publications in the Field of Development and
Verification of CSHS

The exceptional relevance of the problems described above has led to the great
attention and efforts taken by international and national organizations, scientific and
professional communities, development teams and individual researchers to solve
them. In the authors’ opinion, the most important ones are methodical documents
and specifications developed under the auspices of the OMG (Object Management
Group) organization that cooperates with about 800 research organizations (DISA,
INCOSE, NIST, etc.) and industrial companies (AT & T, IBM, Oracle, Microsoft,
Cisco Systems, NASA, etc.). In Russia, active research in this area is carried out by
such organizations as ISP RAS, the Faculty of Computational Mathematics and
Cybernetics of Lomonosov Moscow State University, Saint Petersburg State
University, Novosibirsk State Technical University, Military Space Academy
named after A. F. Mozhaisky, etc.

Currently, more than 230 methodical documents and specifications have been
published on the OMG website. Considering the issues described above, the most
important specifications are: MOF (Meta Object Facility), UML (Unified Modeling
Language), XMI (XML Metadata Interchange), SysML (System Modeling
Language), OCL (Object Constraint Language), UTP (UML Testing Profile), ALF
(Action Language for Foundational UML), FUML (Semantics of a Foundational
Subset for Executable UML Models), ReqlF (Requirements Interchange Format).
These documents are the scientific and methodical base for their application, further
improvement, and development. A brief analysis of the most important scientific
publications and papers starts with monographs and practical guidelines in the field
of industrial development of CSHS.

125

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

The fundamental paper written by Dragan Milicev, the Serbian scientist and MBSE
expert, Professor of University of Belgrade [5], outlines the principles and methods
of applying modern information technologies based on the object-oriented paradigm
and model-based approach for the industrial development of CSHS. This is
especially valuable in the context of the problems considered in this article. Also,
the paper provides recommendations and examples of using the fundamental UML
(FUML) language, which is used to create and verify executable formal UML models.

In the monograph [6], the techniques and methods of applying the constructs and
mechanisms of the SysML language are described in a summary and illustrated
form containing practical examples, the idea and principles of this language are
explained. This monograph is written by the group of active developers of many
OMG methodical documents and specifications, and those who apply this
knowledge in practice at such companies as Lockheed Martin and Raytheon
Company: S. Friedenthal, A. Moore, R. Steiner. Useful information on applying the
SysML language mechanisms for designing CSHS is presented in the monograph by
Lenny Delligatti [7] (Lockheed Martin Corporation).

From among all publications of Russian organizations and researchers, it is worth to
mention the papers by the ISP RAS team dealing with both theoretical and practical
aspects of these problems. The theoretical foundations of the design and verification
of CSHS based on a category-theoretic approach to metaprogramming are described
in publications written by S. Kovalev, the leading ISP RAS researcher [8] [9]. They
present the ways to apply category theory to solve the problem of representing
heterogeneous software engineering technologies in a common format that would be
convenient for their integration and coordination in the software system design life
cycle. Particular attention is paid to such modern technologies as model checking
development and aspect-oriented programming, for which universal category-
theoretic semantic models are built.

One of the modern means to describe the architecture of software and hardware
systems is Architecture Analysis & Design Language (AADL) [10]. On the basis of
this language, the system for supporting the design and verification of MASIW
onboard aircraft systems developed by ISP RAS together with GosNIIAS as part of
the state program for the development of Integrated Modular Avionics (IMA) is
being actively used. When developing MASIW, the following libraries and tools
were used: Eclipse Modeling Framework, Graphical Editing Framework, Eclipse
Team Providing, SVN Team Provider, GIT Team Provider. As noted in the article
[11], the MASIW tools allow solving the following tasks:

e creation, editing, and management of models of hardware-software
complexes (HSCs) using the AADL language;

e analysis of models for the sufficiency of hardware resources and interface
consistency, the evaluation of the characteristics of projected data networks
built in accordance with the AFDX standard (Avionics Full-Duplex
Switched Ethernet);

126

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

e distribution of functional applications over computation modules, taking
into account the limitations of the hardware platform resources and the
requirements for the reliability and security of HSCs;

e generation of computer code and configuration data for VxWorks653 RT
OS and termination units of the AFDX network.

An example of using the special extension of the AADL language — Error Model
Annex (EMA) and the MASIW tool for modeling and analyzing the security of the
designed HSCs is presented in [12]. The model is created using EMA, in which a
finite-state machine (FSM) is developed for each component of HSCs. The states of
FSM are normal states and emergencies, including dangerous and failure situations
of this component. The effect of system component failures on other components is
described by specifying the logical conditions for the propagation of errors between
different types of components in different states, taking into account the
probabilities of their occurrence. The following algorithms are used for risk
analysis: Fault Tree Analysis, Failure Mode and Effects Analysis, Markov Analysis.
The implementation of the approach described in this article helps to identify and
eliminate the security-critical defects in design solutions at the design stage.
The ISP RAS team has developed the technology called UniTESK (Unified TEsting
Specification based toolkit) for testing software interfaces. This is a unified set of
testing tools based on specifications. UniTESK is unified due to the fact that the
general testing methodology and general architecture can be used to test modules
using almost all programming languages. Currently, there are the UniTESK
implementations for C (CTESK), C ++ (C ++ TESK), Java (JavaTESK and
Summer), Python (PyTESK). The UniTESK technology has two main differences
from common testing tools [13]:

e UnIiTESK helps to describe the specifications of a software contract of
modules in the form of pre- and post-conditions using the extensions of
programming languages (in case of C ++ TESK, no extension is required);

e instead of manual development of test cases, UniTESK allows describing a
generalized scenario — a compact description of test logic that allows the
test sequence generator to call each specified interface in all its uses
automatically and to verify the correctness of the result for compliance
with a specified post-condition.

The next group of publications consists of papers devoted to the solution of
particular problems of developing and verifying CSHS. The thesis written by A.V.
Markov, the employee of Novosibirsk State Technical University, is devoted to the
issues of automation of design and software analysis processes using the UML
language and Petri nets [14]. The paper describes the software design methodology
using UML sequence diagrams in the .xmi format and presents the method for their
automatic convert to the .cpn format used to describe Petri nets. The result of using
this method is hierarchical Petri nets being analyzed for verifying the software

127

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

project, which is represented in the form of UML diagrams. The following solutions
presented in this paper are the most valuable in practice:

o algorithm of transforming UML diagrams to Petri network;

e algorithm and rules of implementing inversion in Petri nets to check the
reachability of the selected network state;

e algorithms and software for constructing and analyzing Petri nets to
identify and eliminate defects in the developed software.

The review of modern methods for automatic test generation presented in [15] is
quite useful. The paper describes the following methods:

e structural testing using symbolic execution;

e model-based testing;

e combinatorial testing;

e random testing;

e search-based testing.
The article [16] presents the automated method for making UML sequence diagrams
using the description of UML use case diagrams and class diagrams. To implement
this method, it is necessary to use the ATL language and metamodels of use case
diagrams, class diagrams and sequence diagrams developed by the authors of the
article, as well as the rules for obtaining the third diagram from the first and second
ones. The result of this transformation is a sequence diagram in the XMI format,
which is then converted to the XSLT format to display a sequence diagram in a
graphical editor for viewing, analysis, and making changes. The disadvantage of the
proposed algorithm is the lack of automatic correction of the original models if any
new changes are made to a sequence diagram. This is due to the fact that the
transformations using the ATL language are unidirectional — they work with read-
only source models and create write-only target models.
In the work [17], experts at Shanghai University have described the approach to
verify large-scale web projects by developing and analyzing the executable model
of the corresponding software. To build this executable model, the authors have
developed the method that uses live sequence charts (LSCs) as input data. A UML
model using LSCs diagrams is transformed into a symbolic finite-state machine.
Test scenarios are created by traversing a finite-state machine with the Depth-first
Search method (DFS).
The paper [18] describes the method of automatic generation of computer code
based on the project (architectural model) of a program presented in the ALF
language. Of particular interest is the conceptual scheme of the mechanism for
generating computer code from the project description in the ALF format using the
rules in the extended Backus-Naur (EBNF) notation). The authors point out the
following advantages of the tool to transform the model of the architecture of the
ATL language: the ability to describe both declarative and imperative language
constructs, the presence of means to combine modules that allow creating and

128

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

reusing sets of transformation rules. The result is a Java code that corresponds to the
Modisco Java metamodel.

The article [19] describes two methods for implementing automatic testing of real-
time loaded systems using scenarios. In the first, the system is modeled as the
network of timed automata (TA). In the second, it is modeled as a set of live
sequence charts (LSCs) and requirements in the form of a separate LSC diagram to
analyze. The authors of the article have developed temporal extensions for a subset
of the core of the LSC language and defined its semantics based on tracing. The
analyzed LSC diagram is transformed to its behavioral equivalent in the notation of
the TA diagram. The correctness verification of a model is carried out by modeling
the TA diagram in real time using Computational Tree Logic (CTL) followed by the
comparison of the obtained result with the standard. Both methods are implemented
with the tools of UPPAAL.

The paper [20] describes the method for generating unit cases based on the
architecture of a model presented in the form of UML activity diagrams. The tests
are created with the SMT/SAT solvers, which analyze the control flow graph of a
program presented in A Modeling Language for Mathematical Programming
(AMPL). This paper proposes test coverage criteria based on control flow analysis.
Particular attention is paid to mixed integer nonlinear programming, as well as to
the construction of logical formulas for OCL (Object Constraint Language)
constraints.

One of the serious disadvantages of modern approaches is the lack of ability to take
into account the composition and structure of designed systems, as well as to
establish and synchronize the relations between system requirements and design
elements. To eliminate these disadvantages, the paper [21] proposes to make a
system design based on SysML behavioral diagrams. To verify automatically the
project created in this way, it is proposed to use the following methods:

o transformation of SysML activity diagrams to modular Petri nets presented
in PNML (Petri Net Markup Language);

e mathematics and such tools as CPN Tools and SPIN for analyzing Petri
nets;

e algorithm for verifying the time requirements in SysML activity diagrams,
which are pre-converted to formulas of Linear Temporal Logic (LTL)
using Active Temporal Requirement Language (AcTRL) developed by the
authors.

To create tools for the dynamic verification and validation of project behavioral
models, it is proposed to use Executable Domain-specific Modeling Languages
(XDSMLs) in [22]. Means based on them make it possible to monitor the states of
analyzed models (transitions, events, variable values) during their execution. The
new generative approach based on a multidimensional and domain-specific trace
metamodel is proposed. This method helps to construct and manage execution
traces for models corresponding to a specified xXDSML. According to the authors of

129

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

this paper, this method has higher performance compared to the standard UML
metamodel due to the ability to exclude redundant data from processing (for
example, analyzed traces) using the mechanisms of the corresponding xDSML.

To conclude the analysis of publications and the solutions presented in them, the
following ideas can be summarized:

e main efforts of researchers are aimed at developing methods and tools for
the automated generation and verification of software implementations of
CSHS [13] [214] [15] [17] [18] [20]; fewer efforts are aimed at automating
the development and verification of design solutions [11] [19] [20] [22];
there are practically no solutions for the automated formation and
verification of a set of requirements;

e mathematics and analysis of Petri nets, SMT/SAT solvers, such modeling
languages as AADL, UML, fUML, SysML and domain-specific languages
(XDSMLs) developed on their basis are used as the basic mathematical
models and tools for automatic verification based on these models.

In this regard, the main purpose of research and papers, the results of which are
presented in this article, was to develop a model, algorithmic and methodical
support of the processes of building and verifying formal models of requirements
and the architecture of CSHS used in state CIl objects.

For create unified conceptual, language and instrumental environment for the
development and verification of analysis models and the architecture, it is proposed
to use:

e UML, OCL, fUML and ALF modeling languages;

e VM fUML, SPIN (Promela), Rodin (Event-B), SMT-Lib, Z3, CVC-4, Alt-
ERGO;

e environment, libraries and software products implemented within the
Eclipse project: Eclipse Modeling Framework, Graphical Editing
Framework, Papyrus, Moka.

The choice of these models, languages and tools is conditioned by the following
circumstances. First, their development is actively supported by leading
development enterprises and consumer organizations of CSHS. The second is that
both the technologies and means based on them are open and available for study,
application, and improvement.

3. Models and Algorithms of Formal Description of the
Requirements for a System Based on the Original Informal
Representation

To solve the problem of building a formal description of the requirements for
automated systems and software, you must perform the following operations and
procedures:

130

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

1.

First, additional content control elements are developed and installed in a
text editor (MS Word or Writer). These elements are XML schemas
(tz_as.xsd, tz_sw.xsd.) based on a universal Requiment Interchage Format
(ReglF). XML schemas describe the composition and structure of
requirements for automated systems and software defined in the relevant
normative-methodical documents.

Then in the environment of a text editor in accordance with the established
in the previous step xml schemas (tz_as.xsd and tz_sw.xsd) structured text
documents are developed containing requirements to the system.

The next step is the automatic generation of the first version of the formal
model of the set of requirements. to implement this procedure, use the
metamodel shown in the Fig. 1. This metamodel is a conceptual and logical
union of a use case diagram and a class diagram.

Block B UseCase

name : EString

O name : EString B Actor : 'y .
- iption : EString || name: EString

1 Class

1 Oname : EString -
0.1 extension ; /0
1

1 . +
ownedAttribute |, O- BlExtension

5 AlternativeFlow B gasicFlow
| | — BasicFlow _} B Attribute
name : EString

0..1 . ctype : EString
0 I::Isgompuslls : Eboolear tereot
g - caisUnique : Eboolear tereolypRly 1
| — Conditon | B FlowofEvents Colower : Elnt

Texpression:Estring || YD F——————— | | oupper :Elnt | Bstereotype
| 1
1 0.1 ' . | memberEnd
L | 0..* | ownedOperation
1 B Step navigableOwnedEnd 0.1
= order : EInt | E TR EOperalIon
1 | name : EString
| = name : EString
1.
0.1 E Action > L |
> 8 = ption : EString | R, J
0.1

type 0.* parameter
? ? =] Sentense L

- = noun: EString | B type E Parameter
= LoopStatement B conditionalStatement = verb:EString Sname : EString = name : EString
1 [| = _ object: EString - = __dir: EString

Fig.1. Comprehensive model of the use case diagram and class diagram

To develop this metamodel, the official specifications of these diagrams on the
OMG website and the models proposed in publications [16] [22] [23] were used. In
addition to the explicit establishment of relationships between diagram elements of
these diagrams, the proposed model includes the new class — “Sentence” and
excludes two classes — “Subject” and “Agent”. The program implementing the
generation procedure uses the xmi representation of this metamodel and developed
before structured text documents containing requirements to the system.

Each i-th use case is a functional requirement and is described as follows:

uc; = (nameug,actor,, function,block;),

131

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

where nameuc; — use case name uc; ;

actor, — user or external system that initiates uc;;

function; — system function that implements uc;;

block; — system component that implements function (input, operation,result),
where inputinput — input data;

operationoperation — algorithm that implements function ;

result result — result of the implementation of functior .

function; = (basicflow, alterflow) ,

where

basicflow — algorithm that implements the main flow of the function;

altersflow — algorithms that implements alternative flows of the function.

The class construction is developed for each functional block (module) and
information object. Its attributes, operations (methods), restrictions and semantics
are specified. The sets of interacting classes are combined into class diagrams —
d_class. Formally, a class diagram can be described as follows:

d_class = (Classes, Relations),

where Classes = { class;} i = 1, ..., I — diagram classes;

Relations — class relationships;

class = (nameclass, attributes, operations),

Relations = {Rgs, Rin, Rag, Raes Rsp, Rye} — relations between classes of the
following six types;

R.s —associations;

Ri, —inheritances;

Rag —aggregations;

Rqe — dependences;

Rsp —specializations;

R, —realizations.

The next step in building a requirements model is to develop non-functional
requirements specifications for each system function:

d_regs= (rlfi , rzfi , r3fi , r4fi)

where rlf' — requirements for the efficiency of execution of T ;

r2fi rgi — performance requirements (for example, the amount of data stored,

processed and transmitted, the number of users, the number and size of requests per
unit of time, etc.);

132

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

r;i rgi —requirements for reliability (availability rate, uptime, recovery time, etc.);

r4fi — security requirements.

The model built in this way is preliminary, and it is used as input data for the
algorithm for building a model formal requirements in the fUML language which
described in the next section.

4. Algorithm for Building a Formal Model Requirements

The scheme of the algorithm that implements the second stage of the procedure of
building a formal requirements model using the fUML language is shown in Fig. 2.
Use case diagrams (UCDs) — d_uc, class diagram (CDs) — d_class and requirements
diagrams (RDs) — d_reqs are used as initial data. The analyst and future system user
develop an interaction overview diagram (IOD) — d_io for each UCD (d_uc). In this
diagram, the functions implemented by the system are described from the user's
point of view in more detail using activity diagrams, sequence diagrams, and
statechart diagrams. Formally, an interaction overview diagram can be represented
as follows: d_io, = (actork,ioi“,block j), where iof =
(ioft = (a £, b;) iof ™, io/'*) describes the algorithm for implementing the
function by the j-th block (class) of the designed software, which includes the
description of main (io/"™) and alternative (io,"®) flows.

l

Alternate flows describe the operation of programs in case of abnormal situations,
such as erroneous user actions, unexpected influences from the external
environment, etc. The main and alternative flows can have subordinate flows, which
are described in 10D using frames with “ref”. The subordinate IOD flows show the
work of a program from the user's point of view and can be represented with activity
diagrams, sequence diagrams or statechart diagrams depending on the features of
the functioning of CSHS and ways of the interaction with the user and environment.
To describe the procedure and possibility of realization of those or other threads are
used pre - and post- condition.

the model of requirements constructed in this way should be subjected to validation
and verification procedures. The validation procedure is to assess the completeness
and correctness of the set of requirements. It is carried out both by software tools
and by the informal expertise of specialists in a particular subject area. Such
properties of a model as consistency, systematicity, non-redundancy, security,
liveliness, absence of deadlocks, impossible operations, looping are checked during
verification. The verification of the requirements model is carried out through its
execution and testing in the fUML virtual machine environment and analysis using
SAT/SMT solvers.

133

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

?

Obtaining and analyzing Use Case diagrams
uc; (actory, function;, block;)

jagrams
l‘ s ¢ _—/

v

Use Cases dlagrams and Class
@ A1 (Data collection
~d and analysis)

¢

[Developing Interaction Overview diagram d_io (actory, io; block) \

—

Qeery from DB next d_uc;

‘Adding a new entry
d_iojen

_ o

v

Class diagrams refinement
d_class(classes, relations)
while read (class bx) {create class(bx attributesk, functionsy),
write class(bx attributesy, functionsy) }

v
)

“~a| private data_info: Type1

Class | | Functlon H Class

=D
Preparation)
|

\
N

Function
fi

\.

Interaction Overview diagram

d_io A0

|Class Collecton [, | [Class
a 8Analyse Decion a
Funfcltion .

1 Function

Class diagrams
d_class (class, relations)

class collection_data

public receive_data(source, format, data_info)
%ubhc analyse_data(data_| info, data roc) }
lic receive data(souroe “Tormat, da _info)

Fig.2. Construction algorithm of the technical project model

The description of these methods and tools is provided in sections 5 and 6.

5. Algorithm for Building a formal model of architecture of CSHS
The architecture development of CSHS is implemented in accordance with the

algorithm shown in Fig. 3

134

CamonoB A.B., Camonosa I'.H. Metoauka u cpenctsa pazpabotku u Bepudukarmu popmansusix FUML mopereit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,

crp. 123-146

The initial data are the interaction overview diagram — d_io, diagrams of quality
requirements for the implementation of functions — d_reqs, class diagrams — d_class
and the requirements for development technologies and operating environment.

?

=(Query from DB of : d_class, d_io)

no

Case:
Cef,act (1), ref_seq (2), ref_sm (3D

S={sm}, 20e
sm = {entry, do_inter,
val_var, exit }

/ d_seq 2\
Create_class {boundary,
control, entity}

Create Lifeline, = classn

Create {[condition]
[constraint] messagex}

Create {[condition]
[constraint] do actiony}

(__Addinganewentryto DB)

v
CConverting d_seq to d_act; d_sm to d_acD<—

Refinement d_class

v
®

{control_nodey }
{object_node,}

{pre-conditiony}

{post-conditiony}

T={ty), 20e
t, = {event, guard_cond,
t_action}

def (So, Stin)

Fig.3. Algorithm of the architecture model development

In each interaction overview diagram (d_io) searches for a reference to activity
diagrams (ref_act), sequence diagrams (ref_seq) and statechart diagram (ref_sm). If
such references are found, the architect is asked to build or modify the
corresponding diagrams. Activity diagrams are described using control nodes
(control_node: decision node, merge node, fork node, join node, interaction,
interaction use); object nodes (object_node); pre-conditions and post-conditions.

When constructing sequence diagrams, the additional boundary, control, and entity
classes are first created, which perform the functions of intermediate (boundary)
classes, control, and information objects, respectively. Then the lifelines are defined
corresponding to classes that exchange messages. Messages are defined by the

135

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

conditions and limitations of their transmission and reception, and the actions that
are performed (do action). When developing state diagrams, the S ={sm} states and
T = {tn}transitions between them are defined. Each sm state consists of a
description of the attributes - val_var, as well as the actions performed: entry — at
the entrance, do_inter — internal, exit — at the exit.

The tn transitions include descriptions of the event initiating this transition — event,
the pre- and post- implementation conditions — guard_cond and actions that must be
performed before the actions of a new state — t_action).

The constructed diagrams are added to the database. To obtain a consistent and
bound set of CSHS technical project (architecture) diagrams, class diagrams
(d_class) and requirements diagrams (d_regs) are refined by establishing relations
with new activity, sequences and statechart diagrams that were developed or
modified. Fig. 4 shows the diagram illustrating the relationships between class and
activity diagrams. Each d_act; has a relationship with a specific class by describing
the algorithm for implementing the corresponding class method.

_behavioredClassifier ownedBehayj MultolcityElement

i ultiplicityElemen

Classifier | 0.1 gl . Class behavior _ownedParameter prypgaemen{
BehavioredClassifier | behavioredClassifier classifierBehavi 0.1 1 parameter

0.1 o.r method

ownedParameter| *

specification 0.1

Feature
BehaviorFeature

class = (nameclass, attributies, methods) °‘"“‘3d°pe"“i°“?

method = operation(inp, act, out) gperation

*

act(inp, act, out) ‘—0 1

Fig. 4. Relationships and dependencies between the main components of the technical project
model: class and activity

To implement the architecture model verification procedure in the virtual machine
environment, fUML sequence diagrams (d_seq) and statechart diagrams (d_sm) are
transformed to activity diagrams (d_act), which are then described in the language
ALF (Action Language for Foundational UML).

Fig. 5 presents the diagram illustrating the verification procedure of the formal
fUML model of the CSHS architecture in a virtual machine environment consisting
of three components: ExecutionFactory, Executor and Locus.

ExecutionFactory is used to create instances of the visitor semantic classes
corresponding to the executable elements of the fUML model. The Executor class is
a top-level abstraction for the executable fUML model and provides three
operations:

e evaluate — evaluate a value specification, returning the specified value

136

CamonoB A.B., Camonosa I'.H. Metoauka u cpenctsa pazpabotku u Bepudukarmu popmansusix FUML mopereit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

e execute — synchronously execute a behavior, given values for its input
parameters and returning values for its output behaviors;

e start — asynchronously start the execution of a stand-alone or classifier
behavior, returning a reference to the instance of the executing behavior or
of the behaviored classifier.

Each execution is performed on a specific VM (Locus), which is the abstraction of a
physical or virtual computer capable of executing and verifying f{UML models.

Formal model of archi ire O Formal verification Tools and
ﬁ —_ Techniques
& 3 Promela
ALF
Class | I - A o
— attribute : Type || class Class { HE I | ’ i Rodin o
private attribute1 : Type; L
+ operation1(Type) : void public operation1(in param1: Type) { -
— operation2() : Type param1.op(); I 2
> 1 e}
activity private operation2(): Type { SPIN
return type; o X
! (CreateObjoc ; 1 3
reateObjec . }
action
init result: CPN Tools Q

classifiie

Next tasks
for fUML Virtual
Machine

§ Execution execution = this.locus.false | [1] + getTi p() :long

execution execute (); TraceEvent

parameter
values

> execute
> next step
> resume

- activityExecutionlD : int
| Locus |0—| ExecutionFactory | ctivityExecution!D - in
+ gefactivityExecutionlD() : int

|
|
|
i E
: - - - ! -
| Virtual machine for fUML (ALF) model execution I Events Analysis o
— =] . | parent
fUML (AL Event
Sl | [e | [e T
public ParameterValueList | - timestamp : long
%ﬁn execute (Behavior behavior |

Fig.5. Scheme of executable fUML-model verification

The following basic requirements are imposed on the software architecture of
CSHS:

e completeness of the implementation of functional requirements defined in
the interaction overview diagrams — d_io;

e completeness and correctness of the implementation of non-functional
requirements defined in requirements diagrams — d_reqs;

e coherence and consistency of all model diagrams;
e lack of redundancy.

Testing the architecture model in the fUML virtual machine environment also makes
it possible to detect defects that can lead to security and liveliness violations, the
occurrence of deadlocks, impracticable operations, and loops. In addition, it is

137

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

advisable to use SAT/SMT solvers to verify the architecture model. The description
of their application is presented in the next section of the article.

6. Methods for Constructing Test Scenarios to Verify Models of
Requirements, Architecture and Implementation of CSHS using
SAT/SMT solvers

The main stages of the process of constructing test scenarios to verify models of
requirements, architecture, and implementation of CSHS are presented in Fig. 6:

— building a control flow graph (CFG);

— description of CFG in language ALF;

— generation of test scenarios (TSs) for verification of a set of requirements and
technical project (architecture);

— generation of TSs for implementation verification;

— adding test scenarios to database (DB).

| input: FUML diagram I
~

)\
(fef 1.)4. Building a control flow graph based on UML diagrams (CFG))

ref2_12. Transformation CFG to ALF (Action Language for Foundational UML) notation)

A

ref3.1 3 Generation of TSs for the analysis model and architecture model veriﬁcation)

refd). Generation of TSs for the implementation model veriﬁcation)

C 5.Adding TSs to DB)

®

Fig.6. Generalized algorithm of test scenarios development for verification of requirement,
architecture and implementation models

With the help of this algorithm, the requirements model and the architecture model
can be verified. The original format for representing these models is .xmi. Based on
these descriptions, the corresponding verifiable CFG model is built, in which both
functional and non-functional requirements for the system being developed are
taken into account. To represent non-functional requirements, Object Constraint

138

CamonoB A.B., Camonosa I'.H. Metoauka u cpenctsa pazpabotku u Bepudukarmu popmansusix FUML mopereit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

Language (OCL) is used. A SMT/SAT solver checks CFG for defects and, if they
are found, creates counterexamples. Using them, the developer determines the
causes of defects and makes the necessary corrections to the analyzed artifact. To
implement this approach, it is proposed to use the ALT-ERGO, CVC4 and Z3
solvers, integrated into the Frama-C framework [24] [25].

ﬂ'eﬂ input: - refh
FUML diagram aaEere I N o t

-
Transform OCL-variables into ALF variabl
Get FULM diagram /I (ransform variables into variables)
(Check the accuracy of the source data) // (Transform local Post- conditions into Alf constraints)
- /
C Execute OCL parsing / Transform the guard conditions (Guards)
/ in the ALF- restrictions

cgalf: 7z

J\[CFeinatr [é Y
/ ﬁ' cgalf: I\ refh
~

flow graph (CFG) of abstract test set
(atcg : abstract test case graph)

)
[Transform FUML diagram to the oonlrol]

Add integrity constraints

I |/ |CFGinALF

/
/
K /i (Breadth-first) (Depth-first)
/ search search
method method
ﬂeﬂ)_ —y < R\
= 8
tests: Develop Develop Except the first
Unit Test Mode! I SM?’?g A7 [7] testcaseto | test case for[] unenforceable
| verify the analysis way
SONER architecture models (€
Create a test case to model (tests) (paths)
verify the unit tests A J J
implementation - Construct a
model (unit-test) \ | [tests: counter example
il ‘/ \ | |Unit Test Mode! with the SMT/
unil_ tests: i SATsolver
J ; S
_ Lhatiyeas \bsiract Test Case J

Fig. 7. Detailed algorithm of test scenarios development for verification models of
requirement, architecture and implementation

Concluding the presentation of the developed models and algorithms, let us present
a generalized scheme for the implementation of software-controlled process of
development and verification of formal models of requirements and architecture of
CSHS, which provides end-to-end quality control of all artifacts of the life cycle of
CSHS (Fig. 8).

139

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

controls

. Develop
structured
requirements
in text editor
environment
according the
xml scheme

1.3. Generate
use case diagram,

2. Develop the forma
requirements model:
d_uc, d_io, d_class,
d_regs

4.3. Develop tests
for verification of the
requirements model

C Verify the requirements modeD

block(class
diag(;ram) 4.3. Develop the
Corgplregnensw test case for the
K go lgss duce requirements
/ G reg model verification

.1. Develop:
d_io (ak, ioi, bj),
ref_act, ref_seq,
ref_sm

2.2. Refine :
d_class(classes,
relations)

)

4.4, Develop tests for
verification of the
comprehensive Software

and Software: d_act, d_seq,
d_sm, d_class, d_reqs ad Alﬁ?cmhﬁ;ﬁu?g Gl

__l+

(\/en‘fy the Architecture (project) model)

3. Develop the Architecture
model of Automated Systems

Formal Requirements model:
d_io + d_class + d_regs

.1. Develop and
complete
d_act, d_seq,
d_sm

3.2. Complete

d_class™=(class,
relations)

3. Complete
d_regs*=
1, 12, 13, 14, ...

-

~N

i O i

4.5. Develop tests to verify the
implementation

C)

——

7 Y

The Architecture model:
d_act, d_seq, d_sm,

d_class, d_reqs

Requirements
of the -
(1 ~ > Automated ~ Requirements and

; Systems and N Architecture

1.1. Develop Software N

xml-scheme 7~ 1. Constract preliminary formal model of

olimrsetgllljﬁemgist' & requirements: comprehensive d_uc and =~

editor content d_class model 4

4.1. Constuct a
control flow
graph (CFG)

4.2. Transform
the CFG
fo ALF notation

4.4. Develop the
test case for the
architecture

model verification

4.5. Develop the
test case for the
implementation

verification

Fig.8. Stages of implementation of software-controlled of the process of development and

140

verification of software and hardware systems

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

The main stages of the implementation of this approach are:

1.

4,

Construction of a preliminary formal model of requirements for CSHS in
the form of a set of interrelated use case diagrams, class diagrams, and
requirements diagrams.

Development of a formal requirements model in the form of a set of
interrelated use case diagrams, overview interaction diagrams, class
diagrams, and requirements diagrams.

Development and verification of the formal model of the architecture of
CSHS through testing in the fUML virtual machine environment and
analysis using SAT/SMT solvers — ALT-ERGO, CVC4 and Z3.
Development and verification of the software implementation.

7. Conclusion

One of the most important directions of improving the development processes and
achieving the required quality indicators of complex software and hardware systems
is the creation and implementation in practice of their industrial development of
model-based technologies for justifying requirements, design, and implementation
followed by the procedures of their formal verification and semi-formal validation.
Currently, the most problematic issues are related to the verification of requirements
and the CSHS architecture. To solve these problems, it is proposed to implement the
approach described in this article. The distinctive features of this approach are:

formation and use of a single model-language and information-software
environment for the development and verification of formal models of
requirements, architecture and software implementation based on the
necessary and sufficient set of interrelated fUML diagrams and the model
of internal and inter-model relations developed for them;

implementation of the software-controlled development process of CSHS
in accordance with the developed algorithm that performs sequential-
iterative operations of generating and transforming formal models of
requirements and architecture presented in fUML, XMI, ALF, and that also
performs their verification in the fUML virtual machine environment and
SMT/SAT solvers.

To implement the proposed approach, the following models, algorithms, and
methods were developed:

algorithm of a formal description of the requirements for the developed
system based on the initial informal representation;

fUML diagram models that are necessary and sufficient to develop
complete, correct and consistent formal models of requirements and
architecture;

models, algorithms and guidelines for the development of formal models
requirements and the architecture in languages fUML, XMI and ALF;

141

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

o verification algorithms for models of requirements and the architecture of
CSHS in the environment of fUML virtual machine;

o verification of the formal model of the architecture and program
implementation through the analysis using the SAT/SMT solvers.

Currently, work is underway to create a set of software tools to ensure the
implementation of this approach. The development tools, libraries, and applications
implemented in the Eclipse project (EMF, GMP, RCP, Papyrus, Moka, Titan) are
used as a development environment and prototypes. The implementation of this
software package in the relevant technological processes at companies will ensure
the most complete accounting and correct implementation of requirements for
functional and operational characteristics, environment and conditions for the use of
CSHS. It will also significantly reduce the cost of finding and eliminating the most
critical and resource-intensive defects made at the stages of the formation of
requirements and design of their architecture.

References

[1]. Federal law "On security of critical information infrastructure of the Russian
Federation". 12.07.2017 (in Russian)

[2]. Systems Engineering and Software Engineering,
https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.
(accessed 25.07.2018).

[3]. Laura. Introduction To Model-Based System Engineering (MBSE) and
SysML.https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-
incose-30-july-2015.pdf. (accessed 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-
papers/chaos-report.pdf. (accessed 25.08.2018).

[5]. Dragan Milicev. Model-Driven Development with Executable UML. John Wiley &
Sons, 2009, 720 p.

[6]. Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

[7]. Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Addison-Wesley Professional, 2013, 304 p.

[8]. Kovalev S.P. Theoretical and categorical approach to metaprogramming. M., IPU
Russian Academy of Sciences, 2014, 112 p. (in Russian)

[9]. Kovalev S.P. Category-Theoretic Approach to Software Systems Design. Journal of
Mathematical Sciences, vol. 214, issue 6, 2016, pp. 814-853.

[10]. Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
2012, 480 p.

[11]. D.V., Buzdalov, S.V. Zelenov, E.V. Kornykhin, A.K. Petrenko, V.A. Fear, AA.
Ognenko, A.V. Khoroshilov. Design tools for integrated modular avionics systems.
Trudy ISP RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230. DOI:
10.15514/ISPRAS-2014-26(1)-6 (in Russian)

142

https://link.springer.com/journal/10958/214/6/page/1

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

[12].
[13].
[14].
[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

S.V. Zelenov, S.A. Zelenova, Modeling of hardware and software systems and analyze
their security. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 257-282. DOI:
10.15514/ISPRAS-2017-29(5)-13 (in Russian)
http://www.ispras.ru/technologies/unitesk (accessed 17.10.2018) (in Russian)

Markov, A.V., automation of design and analysis software using UML and Petri nets.
PhD Thesis, NSTU, Novosibirsk, 2015 (in Russian).

Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case
Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.
Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with
Model Transformation Technology. In Proc. of the International MultiConference of
Engineers and Computer Scientists, IMECS 2014, vol |

Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web
Software based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science (ICIS).

Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with
ALF. The Second International Conference on Advances and Trends in Software
Engineering, vol |, IARIA, 2016. pp .10-15.

Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems
using Uppaal. Formal Methods in System Design, vol. 37, Issue 2-3, 2010, pp 200-264
Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using
the AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of
Technology (TUHH), 2014.

Messaoud Rahim, Malika Boukala-loualalen, Ahmed Hammad. Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity Diagrams.
PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-
248.

Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and
efficient execution trace management for executable domain-specific modeling
languages. Software & Systems Modeling, 2017,
https://link.springer.com/article/10.1007/s10270-017-0598-5 (accessed 20.07.2018)

D. Savic, S. Vlgjic, S. Lazarevic. Use Case specification using the SilabReq domain
specific language. Computing and Informatics, vol. 34, 2015, 877-910.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using
Conflict-Driven Learning. In Proc.b of 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,
USA, 16 p.

Efremov D. V., Mandrykin M. U. Formal verification of Linux kernel library functions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 49-76. DOI:
10.15514/ISPRAS-2017-29(6)-3 (in Russian)

143

https://dl.acm.org/author_page.cfm?id=81100232024&coll=DL&dl=ACM&trk=0
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://link.springer.com/journal/10703/37/2/page/1
file://///elena-laptop/share/Сборник_30_5/Редактированное/Software%20&%20Systems%20Modeling

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

MeToauka n cpeactBa pa3paboTku u Bepudmkaumm
dopmanbHbix fUML moaenen Tpe6oBaHU U apXUTEKTYPbI
CNOXHbIX NPOrpaMMHO-TEXHUYECKUX CUCTEM

A.B.Camonog <a.samonov@mail.ru>
I'"H.Camonosa <g.samonova@mail.ru>
Boenno-xocmuueckas akademus umenu A.@. Moocatickoeo,
197088, Poccus, Canxm-Ilemepbype, yn. JKoanosckas, 0.13

AnHoTtammsi. B crartee mpencraBieHBl MOJAENH M aITOPUTMBI OOECIICUEHUS CKBO3HOTO
KOHTPOJISI KauyecTBa CIOXHBIX MHporpammHo-TexHuueckux cucreM (CIITC) mocpenctBom
peann3anuy HPOTPAMMHO-YIPABISIEMOTO IIpolecca pa3pabOTKH M BepHUpUKAIUU
dopmanbHBIX Mozenelt TpeboBanuit u apxurekTypbl CIITC. [lam aHanmm3 Hay4YHBIX
myOnuKanuii 1 HOPMAaTHBHO-METOIUYECKON 0a3bl B 00JacTH pa3paboTKu U NPUMEHEHUS Ha
NPaKTUKE MOJAENHHO-OPHEHTUPOBAHHOTO IOAXOAa. YCTaHOBJIEHO, 4YTO HauMeHee
00eCIeYeHHBIMI ~ MOJICTIbHBIMH, ~QITOPUTMHUYECKHMHM U TIPOTPaMMHBIMH PEIICHUSIMU
SIBJIAIOTCSL BOIIPOCHI, CBSI3aHHBIE C pa3pabOTKOM ITOJIHOTO M KOPPEKTHOTo Habopa TpeGoBaHuiA,
a Takke ¢ Gpopmanuzanuei U Bepudukanuei Texamdeckux npoektoB CIITC. IpennoxeHst
CIOCOOBI pEIIeHUSI CYIIECTBYIOIIMX MPOOJeM IOCPEACTBOM (OPMUPOBAHUS EOMHOM
MOJICJIFHO-SI3BIKOBOM M MH(POPMAIIMOHHO-IIPOTPAMMHOM cpebl pa3paOOTKH U BepUPUKALIUT
(dopmanpHbIX Mozened TpeOoBaHmid u apxutekTypsl CIITC, mocTpoeHHBIX Ha OCHOBE
onTHMaIbHOTO Habopa B3amMmocBszaHHbIX fUML nmarpamm, MpencTaBIeHHBIX B HOTAIMH
s3pika ALF u Bepudummmpyemsix B cpene BupTyansHoit mMammubel fUML n ¢ momouipio
SAT/SMT pemiarerneii.

KmioueBble cioBa: BepuduKanus W Baluaalus; JUAarpaMMbl aKTUBHOCTH; AHArpaMMBbI
KJIACCOB; >KU3HEHHBIH LUK aBTOMAaTU3UPOBAHHBIX CHUCTEM; MOJEIH apXUTEKTyphl; MOAEIH
TpeOoBaHMiA; IPOEKTHPOBAHUE M PEATH3aLHsl; IIPOTPAMMHO-TEXHHIECKHE CUCTEMEL.

DOI: 10.15514/ISPRAS-2018-30(5)-8

Jas uutupoBanusi: Camonos A.B., CamonoBa ['.H. Meroauka u cpeactBa pa3paboTKu U
Bepudukarmu ¢popmanbHeix fUML Monenmeit TpeGoBaHMH ¥ apXHUTEKTYPHI CIOKHBIX
nporpammHo-TexHudeckux cucreM. Tpyast UCII PAH, Tom 30, Bein. 5, 2018 r., ctp. 123-146
(na anrmmiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(5)-8

Cnucok nutepaTtypbl

[1]. ®enepanbubit 3akoH «O 0€30HACHOCTH KPUTHUYECKOH HMH(OpPMAIMOHHOI
nHpacTpykTyphl Poccuiickoit @enepammm». 12.07.2017 r.

[2]. Systems Engineering and Software Engineering
https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.
(mata obpamenus 25.07.2018).

[3]. Laura E. Hart. Introduction to Model-Based System Engineering (MBSE) and SysML
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-
july-2015.pdf. (nata obpamuienns 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-
papers/chaos-report.pdf. (nata obpamierns 25.08.2018).

144

CamonoB A.B., Camonosa I'.H. Meroika u cpezicta paspaborku u Bepudukaniu popmainsusix FUML moneneit
TpeGOBaHHI M apXUTEKTYPHI CIIOKHBIX IPOTPAMMHO-TEXHUUECKHX cucTeM. Tpyoet UCIT PAH, Tom 30, Beim. 5, 2018 1.,
crp. 123-146

[5].
[6].
[71.
[8].
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

Dragan Milicev. Model-Driven Development with Ex ecutable UML. John Wiley &
Sons, 2009, 720 p.

Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Addison-Wesley Professional, 2013, 304 p.

Kosanés C.I1. TeopeTnko-KaTeropHbBIA MOAXOA K MeTanmporpammupoBanuio. M., UITY
PAH, 2014, 112 ctp.

Kosanes C. II. TeopeTHKO-KaTeropHbBI MOAXOA K MPOEKTHPOBAHMIO MPOTPAMMHBIX
cuctem. OyHIaMeHTa bHas W MPUKIAAHAs. Maremaruka, ToMm 19, Bem. 3, 2014, ctp.
111-170.

Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
2012, 480 p.

J.B. By3nanos, C.B. 3enenos, E.B. Kopusixun, A.K. Ilerperko, A.B. Ctpax, A.A.
Vruenko, A.B. XopommunoB. MHCTpyMeHTalIbHBIE CPEACTBA NMPOEKTUPOBAHUS CUCTEM
HUHTErpUpoBaHHON MonynbHOU aBuoHHMKU. Tpyner UCIT PAH, Ttom 26, Bem. 1, 2014,
ctp. 201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

3enenos C.B., 3enenoBa C.A. MozenupoBaHue MPOrpaMMHO-aNapaTHBIX CHCTEM U
aHamm3 ux OezomacHoctu. Tpynst UCIT PAH, tom 29, Beim. 5, 2017 t., ctp. 257-282.
DOI: 10.15514/ISPRAS-2017-29(5)-13

http://www.ispras.ru/technologies/unitesk (zara o6pamenus 17.10.2018)

MapkoB A.B. ABroMaTu3amus NpPOSKTHPOBAHMS U aHAIW3a [POrPaMMHOI0
obecrieueHnss ¢ wucnonb3oBanneM s3bika UML u cereit Ilerpu. Kama. muc.,
Hosocubupck, HI'TY, 2015.

Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case
Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.
Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with
Model Transformation Technology. In Proc. of the International MultiConference of
Engineers and Computer Scientists, IMECS 2014, vol I,

Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web
Software based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science (ICIS).

Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with
ALF. The Second International Conference on Advances and Trends in Software
Engineering, vol |, IARIA, 2016. pp .10-15.

Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems
using Uppaal. Formal Methods in System Design, vol. 37, Issue 2-3, 2010, pp 200-264
Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using
the AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of
Technology (TUHH), 2014.

Messaoud Rahim, Malika Boukala-loualalen, Ahmed Hammad. Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity Diagrams.
PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-
248.

Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and
efficient execution trace management for executable domain-specific modeling
languages. Software & Systems Modeling, 2017,

145

https://dl.acm.org/author_page.cfm?id=81100232024&coll=DL&dl=ACM&trk=0
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://link.springer.com/journal/10703/37/2/page/1
file:///F:/Temp/_ISP/_done/2018/v30/v5/orig/Software%20&%20Systems%20Modeling

Samonov A.V., Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

[23].

[24].

[25].

146

https://link.springer.com/article/10.1007/s10270-017-0598-5 (nara obpauieHus
20.07.2018)

D. Savic, S. Vlajic, S. Lazarevic. Use Case specification using the SilabReq domain
specific language. Computing and Informatics, vol. 34, 2015, 877-910.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using
Conflict-Driven Learning. In Proc. of 39%th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,
USA, 16 p.

Edpemos [I.B, Mauapeikua M.Y. ®opmanbHast BepuduKaius On0IMoTedHbIx GyHKIui
sapa Linux. Tpymet MCII PAH, tom 29, Bem. 6, 2017 r., crtp. 49-76. DOI:
10.15514/ISPRAS-2017-29(6)-3

