
123

Methodology and Tools for Development
and Verification of formal fUML Models of

Requirements and Architecture for Complex
Software and Hardware Systems

A.V. Samonov <a.samonov@mail.ru>

G.N. Samonova <g.samonova@mail.ru>

Mozhaiskiy Military Space Academy,

13, Zhdanovskaya St., Saint Petersburg, 197088, Russia

Abstract. The article presents models and algorithms to support end-to-end quality control of

complex software and hardware systems through the implementation of the software-

controlled process of development and verification of formal models of requirements and

architecture of such systems, Firstly, we give the analysis of scientific publications and the

normative-methodical base in the field of development and application in practice of the

model-based approach is given. We establish that least provided by model, algorithmic and

software solutions are issues related to the development of a complete and correct set of

requirements, as well as the formalization and verification of technical projects of software

and hardware systems. To solve the existing problems, we propose to develop a special

unified environment for the development, modeling and testing formal models of

requirements and architecture of complex software and hardware systems. These models

provide an optimal set of interconnected fUML diagrams presented in ALF notation and

verified in the fUML virtual machine and using SMT/SAT solvers.

Keywords: activity diagrams; class diagrams; design and implementation; life cycle of

automated systems; model of requirements; model of architecture; software and hardware

systems; verification and validation

DOI: 10.15514/ISPRAS-2016-30(5)-8

For citation: Samonov A.V., Samonova G.N. Methodology and Tools for Development and

Verification of formal fUML models of Requirements and Architecture for Complex

Software and Hardware Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp.

123-146. DOI: 10.15514/ISPRAS-2018-30(5)-8

1. Introduction

Now, when the confrontation in the political, economic and military fields is

growing, one of the most important activities of the state is to ensure the safe

operation of critical information infrastructure (CII). According to the Federal Law

of the Russian Federation [1], CII objects are automated control systems (ACS) for

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

124

production and technological processes of the critical objects of the Russian

Federation and information and telecommunication networks providing them, IT

systems and communication networks for solving public administration tasks,

ensuring defense capability, security and law enforcement. Disruption of the

functioning of CII objects can lead to disastrous consequences in the field of

defense capability, economy, health care and security of the nation.

Automation means complexes, which form the basis of the CII objects, are complex

software and hardware systems (CSHS); their foundation of reliable and safe

functioning is laid in the process of their design, development, and verification. The

main factors and conditions for achieving the required quality indicators of CSHS

are:

1) implementation of a quality management system defined by modern

normative-methodical documents (NMD) in the field of system and

software engineering at companies developing CSHS;

2) highly qualified designers, developers, and testers of CSHS;

3) use of modern technologies, methods and tools for design, development,

and testing of CSHS.

The most important issues relate to the implementation of the third direction, which

is being developed in system and software engineering [2] and model-based

methodology [3]. The need to improve the technology and development tools of

CSHS is due to distressing statistics on the implementation of IT projects both in

Russia and abroad. Thus, according to the research of The Standish Group, the

analysis of the results of work on the creation of information systems showed that in

the United States (over the past 15 years), only 20% of the projects were completed

on time and according to the original budget. At the same time, 30% of the projects

failed; 50% faced various problems: the total budget exceeded the initial one by 2

times on average; the terms increased by 1.5 times; less than 75% of the required

functionality was implemented [4]. The development process of CSHS consists of

three main stages: justification of requirements, design, and implementation, each of

which, according to the methodology of the model-based approach, includes a

verification procedure of the corresponding artifact. As the analysis showed, issues

related to the automation of the processes of generating and verifying computer

code created at the implementation stage have been solved quite successfully. At the

same time, the stages of requirements formation and system architecture design

require the participation of specialists in the field of system engineering and

information technology and end users.

As the analysis showed, the main limiting factors in achieving qualitative

improvements in solving these tasks are:

 absence of a rigorous mathematical model describing the processes of

implementation and application of methods and tools of model-based

systems engineering in the main stages of the life cycle of CSHS in a

uniform model-language environment;

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

125

 objective complexity of the task of creating a formal presentation of system

requirements based on their original informal representation;

 availability of a wide range of languages and tools proposed for building

models of the analysis, architecture, and implementation of a system in the

absence of clear and specific rules and recommendations for their application;

 lack adequate tools for automated construction and execution of test

scenarios for the verification of requirements and architecture.

The second section provides a brief overview of scientific and technical

publications, in which the described issues are considered and solved. The third and

fourth sections of the article present the models and algorithms for building a formal

specifications requirements. The fifth section describes the models and algorithms

for developing and verification the architecture of CSHS. The sixth section presents

the methodology for constructing test scenarios to verify models of requirements,

architecture, and implementation of CSHS using the SAT/SMT solvers.

2. Overview of the Current Normative-methodical Base and
Scientific Publications in the Field of Development and
Verification of CSHS

The exceptional relevance of the problems described above has led to the great

attention and efforts taken by international and national organizations, scientific and

professional communities, development teams and individual researchers to solve

them. In the authors’ opinion, the most important ones are methodical documents

and specifications developed under the auspices of the OMG (Object Management

Group) organization that cooperates with about 800 research organizations (DISA,

INCOSE, NIST, etc.) and industrial companies (AT & T, IBM, Oracle, Microsoft,

Cisco Systems, NASA, etc.). In Russia, active research in this area is carried out by

such organizations as ISP RAS, the Faculty of Computational Mathematics and

Cybernetics of Lomonosov Moscow State University, Saint Petersburg State

University, Novosibirsk State Technical University, Military Space Academy

named after A. F. Mozhaisky, etc.

Currently, more than 230 methodical documents and specifications have been

published on the OMG website. Considering the issues described above, the most

important specifications are: MOF (Meta Object Facility), UML (Unified Modeling

Language), XMI (XML Metadata Interchange), SysML (System Modeling

Language), OCL (Object Constraint Language), UTP (UML Testing Profile), ALF

(Action Language for Foundational UML), FUML (Semantics of a Foundational

Subset for Executable UML Models), ReqIF (Requirements Interchange Format).

These documents are the scientific and methodical base for their application, further

improvement, and development. A brief analysis of the most important scientific

publications and papers starts with monographs and practical guidelines in the field

of industrial development of CSHS.

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

126

The fundamental paper written by Dragan Milicev, the Serbian scientist and MBSE

expert, Professor of University of Belgrade [5], outlines the principles and methods

of applying modern information technologies based on the object-oriented paradigm

and model-based approach for the industrial development of CSHS. This is

especially valuable in the context of the problems considered in this article. Also,

the paper provides recommendations and examples of using the fundamental UML

(fUML) language, which is used to create and verify executable formal UML models.

In the monograph [6], the techniques and methods of applying the constructs and

mechanisms of the SysML language are described in a summary and illustrated

form containing practical examples, the idea and principles of this language are

explained. This monograph is written by the group of active developers of many

OMG methodical documents and specifications, and those who apply this

knowledge in practice at such companies as Lockheed Martin and Raytheon

Company: S. Friedenthal, A. Moore, R. Steiner. Useful information on applying the

SysML language mechanisms for designing CSHS is presented in the monograph by

Lenny Delligatti [7] (Lockheed Martin Corporation).

From among all publications of Russian organizations and researchers, it is worth to

mention the papers by the ISP RAS team dealing with both theoretical and practical

aspects of these problems. The theoretical foundations of the design and verification

of CSHS based on a category-theoretic approach to metaprogramming are described

in publications written by S. Kovalev, the leading ISP RAS researcher [8] [9]. They

present the ways to apply category theory to solve the problem of representing

heterogeneous software engineering technologies in a common format that would be

convenient for their integration and coordination in the software system design life

cycle. Particular attention is paid to such modern technologies as model checking

development and aspect-oriented programming, for which universal category-

theoretic semantic models are built.

One of the modern means to describe the architecture of software and hardware

systems is Architecture Analysis & Design Language (AADL) [10]. On the basis of

this language, the system for supporting the design and verification of MASIW

onboard aircraft systems developed by ISP RAS together with GosNIIAS as part of

the state program for the development of Integrated Modular Avionics (IMA) is

being actively used. When developing MASIW, the following libraries and tools

were used: Eclipse Modeling Framework, Graphical Editing Framework, Eclipse

Team Providing, SVN Team Provider, GIT Team Provider. As noted in the article

[11], the MASIW tools allow solving the following tasks:

 creation, editing, and management of models of hardware-software

complexes (HSCs) using the AADL language;

 analysis of models for the sufficiency of hardware resources and interface

consistency, the evaluation of the characteristics of projected data networks

built in accordance with the AFDX standard (Avionics Full-Duplex

Switched Ethernet);

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

127

 distribution of functional applications over computation modules, taking

into account the limitations of the hardware platform resources and the

requirements for the reliability and security of HSCs;

 generation of computer code and configuration data for VxWorks653 RT

OS and termination units of the AFDX network.

An example of using the special extension of the AADL language – Error Model

Annex (EMA) and the MASIW tool for modeling and analyzing the security of the

designed HSCs is presented in [12]. The model is created using EMA, in which a

finite-state machine (FSM) is developed for each component of HSCs. The states of

FSM are normal states and emergencies, including dangerous and failure situations

of this component. The effect of system component failures on other components is

described by specifying the logical conditions for the propagation of errors between

different types of components in different states, taking into account the

probabilities of their occurrence. The following algorithms are used for risk

analysis: Fault Tree Analysis, Failure Mode and Effects Analysis, Markov Analysis.

The implementation of the approach described in this article helps to identify and

eliminate the security-critical defects in design solutions at the design stage.

The ISP RAS team has developed the technology called UniTESK (Unified TEsting

Specification based toolkit) for testing software interfaces. This is a unified set of

testing tools based on specifications. UniTESK is unified due to the fact that the

general testing methodology and general architecture can be used to test modules

using almost all programming languages. Currently, there are the UniTESK

implementations for C (CTESK), C ++ (C ++ TESK), Java (JavaTESK and

Summer), Python (PyTESK). The UniTESK technology has two main differences

from common testing tools [13]:

 UniTESK helps to describe the specifications of a software contract of

modules in the form of pre- and post-conditions using the extensions of

programming languages (in case of C ++ TESK, no extension is required);

 instead of manual development of test cases, UniTESK allows describing a

generalized scenario – a compact description of test logic that allows the

test sequence generator to call each specified interface in all its uses

automatically and to verify the correctness of the result for compliance

with a specified post-condition.

The next group of publications consists of papers devoted to the solution of

particular problems of developing and verifying CSHS. The thesis written by A.V.

Markov, the employee of Novosibirsk State Technical University, is devoted to the

issues of automation of design and software analysis processes using the UML

language and Petri nets [14]. The paper describes the software design methodology

using UML sequence diagrams in the .xmi format and presents the method for their

automatic convert to the .cpn format used to describe Petri nets. The result of using

this method is hierarchical Petri nets being analyzed for verifying the software

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

128

project, which is represented in the form of UML diagrams. The following solutions

presented in this paper are the most valuable in practice:

 algorithm of transforming UML diagrams to Petri network;

 algorithm and rules of implementing inversion in Petri nets to check the

reachability of the selected network state;

 algorithms and software for constructing and analyzing Petri nets to

identify and eliminate defects in the developed software.

The review of modern methods for automatic test generation presented in [15] is

quite useful. The paper describes the following methods:

 structural testing using symbolic execution;

 model-based testing;

 combinatorial testing;

 random testing;

 search-based testing.

The article [16] presents the automated method for making UML sequence diagrams

using the description of UML use case diagrams and class diagrams. To implement

this method, it is necessary to use the ATL language and metamodels of use case

diagrams, class diagrams and sequence diagrams developed by the authors of the

article, as well as the rules for obtaining the third diagram from the first and second

ones. The result of this transformation is a sequence diagram in the XMI format,

which is then converted to the XSLT format to display a sequence diagram in a

graphical editor for viewing, analysis, and making changes. The disadvantage of the

proposed algorithm is the lack of automatic correction of the original models if any

new changes are made to a sequence diagram. This is due to the fact that the

transformations using the ATL language are unidirectional  they work with read-

only source models and create write-only target models.

In the work [17], experts at Shanghai University have described the approach to

verify large-scale web projects by developing and analyzing the executable model

of the corresponding software. To build this executable model, the authors have

developed the method that uses live sequence charts (LSCs) as input data. A UML

model using LSCs diagrams is transformed into a symbolic finite-state machine.

Test scenarios are created by traversing a finite-state machine with the Depth-first

Search method (DFS).

The paper [18] describes the method of automatic generation of computer code

based on the project (architectural model) of a program presented in the ALF

language. Of particular interest is the conceptual scheme of the mechanism for

generating computer code from the project description in the ALF format using the

rules in the extended Backus-Naur (EBNF) notation). The authors point out the

following advantages of the tool to transform the model of the architecture of the

ATL language: the ability to describe both declarative and imperative language

constructs, the presence of means to combine modules that allow creating and

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

129

reusing sets of transformation rules. The result is a Java code that corresponds to the

Modisco Java metamodel.

The article [19] describes two methods for implementing automatic testing of real-

time loaded systems using scenarios. In the first, the system is modeled as the

network of timed automata (TA). In the second, it is modeled as a set of live

sequence charts (LSCs) and requirements in the form of a separate LSC diagram to

analyze. The authors of the article have developed temporal extensions for a subset

of the core of the LSC language and defined its semantics based on tracing. The

analyzed LSC diagram is transformed to its behavioral equivalent in the notation of

the TA diagram. The correctness verification of a model is carried out by modeling

the TA diagram in real time using Computational Tree Logic (CTL) followed by the

comparison of the obtained result with the standard. Both methods are implemented

with the tools of UPPAAL.

The paper [20] describes the method for generating unit cases based on the

architecture of a model presented in the form of UML activity diagrams. The tests

are created with the SMT/SAT solvers, which analyze the control flow graph of a

program presented in A Modeling Language for Mathematical Programming

(AMPL). This paper proposes test coverage criteria based on control flow analysis.

Particular attention is paid to mixed integer nonlinear programming, as well as to

the construction of logical formulas for OCL (Object Constraint Language)

constraints.

One of the serious disadvantages of modern approaches is the lack of ability to take

into account the composition and structure of designed systems, as well as to

establish and synchronize the relations between system requirements and design

elements. To eliminate these disadvantages, the paper [21] proposes to make a

system design based on SysML behavioral diagrams. To verify automatically the

project created in this way, it is proposed to use the following methods:

 transformation of SysML activity diagrams to modular Petri nets presented

in PNML (Petri Net Markup Language);

 mathematics and such tools as CPN Tools and SPIN for analyzing Petri

nets;

 algorithm for verifying the time requirements in SysML activity diagrams,

which are pre-converted to formulas of Linear Temporal Logic (LTL)

using Active Temporal Requirement Language (AcTRL) developed by the

authors.

To create tools for the dynamic verification and validation of project behavioral

models, it is proposed to use Executable Domain-specific Modeling Languages

(xDSMLs) in [22]. Means based on them make it possible to monitor the states of

analyzed models (transitions, events, variable values) during their execution. The

new generative approach based on a multidimensional and domain-specific trace

metamodel is proposed. This method helps to construct and manage execution

traces for models corresponding to a specified xDSML. According to the authors of

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

130

this paper, this method has higher performance compared to the standard UML

metamodel due to the ability to exclude redundant data from processing (for

example, analyzed traces) using the mechanisms of the corresponding xDSML.

To conclude the analysis of publications and the solutions presented in them, the

following ideas can be summarized:

 main efforts of researchers are aimed at developing methods and tools for

the automated generation and verification of software implementations of

CSHS [13] [14] [15] [17] [18] [20]; fewer efforts are aimed at automating

the development and verification of design solutions [11] [19] [20] [22];

there are practically no solutions for the automated formation and

verification of a set of requirements;

 mathematics and analysis of Petri nets, SMT/SAT solvers, such modeling

languages as AADL, UML, fUML, SysML and domain-specific languages

(xDSMLs) developed on their basis are used as the basic mathematical

models and tools for automatic verification based on these models.

In this regard, the main purpose of research and papers, the results of which are

presented in this article, was to develop a model, algorithmic and methodical

support of the processes of building and verifying formal models of requirements

and the architecture of CSHS used in state CII objects.

For create unified conceptual, language and instrumental environment for the

development and verification of analysis models and the architecture, it is proposed

to use:

 UML, OCL, fUML and ALF modeling languages;

 VM fUML, SPIN (Promela), Rodin (Event-B), SMT-Lib, Z3, CVC-4, Alt-

ERGO;

 environment, libraries and software products implemented within the

Eclipse project: Eclipse Modeling Framework, Graphical Editing

Framework, Papyrus, Moka.

The choice of these models, languages and tools is conditioned by the following

circumstances. First, their development is actively supported by leading

development enterprises and consumer organizations of CSHS. The second is that

both the technologies and means based on them are open and available for study,

application, and improvement.

3. Models and Algorithms of Formal Description of the
Requirements for a System Based on the Original Informal
Representation

To solve the problem of building a formal description of the requirements for

automated systems and software, you must perform the following operations and

procedures:

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

131

1. First, additional content control elements are developed and installed in a

text editor (MS Word or Writer). These elements are XML schemas

(tz_as.xsd, tz_sw.xsd.) based on a universal Requiment Interchage Format

(ReqIF). XML schemas describe the composition and structure of

requirements for automated systems and software defined in the relevant

normative-methodical documents.

2. Then in the environment of a text editor in accordance with the established

in the previous step xml schemas (tz_as.xsd and tz_sw.xsd) structured text

documents are developed containing requirements to the system.

3. The next step is the automatic generation of the first version of the formal

model of the set of requirements. to implement this procedure, use the

metamodel shown in the Fig. 1. This metamodel is a conceptual and logical

union of a use case diagram and a class diagram.

Fig.1. Comprehensive model of the use case diagram and class diagram

To develop this metamodel, the official specifications of these diagrams on the

OMG website and the models proposed in publications [16] [22] [23] were used. In

addition to the explicit establishment of relationships between diagram elements of

these diagrams, the proposed model includes the new class  “Sentence” and

excludes two classes  “Subject” and “Agent”. The program implementing the

generation procedure uses the xmi representation of this metamodel and developed

before structured text documents containing requirements to the system.

Each i-th use case is a functional requirement and is described as follows:

),,,(jikii blockfunctionactornameucuc  ,

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

132

where nameuci – use case name iuc ;

kactor – user or external system that initiates uci;

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 – system function that implements iuc ;

jblock – system component that implements  resultoperation,input,functioni ,

where input input – input data;

operationoperation – algorithm that implements ifunction ;

result result – result of the implementation of ifunction .

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 = (𝑏𝑎𝑠𝑖𝑐𝑓𝑙𝑜𝑤, 𝑎𝑙𝑡𝑒𝑟𝑓𝑙𝑜𝑤) ,

where

𝑏𝑎𝑠𝑖𝑐𝑓𝑙𝑜𝑤 – algorithm that implements the main flow of the function;

𝑎𝑙𝑡𝑒𝑟𝑠𝑓𝑙𝑜𝑤 – algorithms that implements alternative flows of the function.

The class construction is developed for each functional block (module) and

information object. Its attributes, operations (methods), restrictions and semantics

are specified. The sets of interacting classes are combined into class diagrams 

d_class. Formally, a class diagram can be described as follows:

𝑑_𝑐𝑙𝑎𝑠𝑠 = (𝐶𝑙𝑎𝑠𝑠𝑒𝑠, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠),

where 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 = { 𝑐𝑙𝑎𝑠𝑠𝑖} 𝑖 = 1, … , 𝐼 – diagram classes;

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠  class relationships;

𝑐𝑙𝑎𝑠𝑠 = (𝑛𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠),

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = {𝑅𝑎𝑠, 𝑅𝑖𝑛, 𝑅𝑎𝑔, 𝑅𝑑𝑒 , 𝑅𝑠𝑝, 𝑅𝑟𝑒}  relations between classes of the

following six types;

Ras  associations;

Rin  inheritances;

Rag  aggregations;

Rde  dependences;

Rsp  specializations;

Rre  realizations.

The next step in building a requirements model is to develop non-functional

requirements specifications for each system function:

 ...,,,_ 4321
iiii ffff

rrrrreqsd  ,

where ifr
1

 – requirements for the efficiency of execution of i
f ;

 ifr2 r2
fi – performance requirements (for example, the amount of data stored,

processed and transmitted, the number of users, the number and size of requests per

unit of time, etc.);

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

133

 ifr
3

r3
fi – requirements for reliability (availability rate, uptime, recovery time, etc.);

ifr4 – security requirements.

The model built in this way is preliminary, and it is used as input data for the

algorithm for building a model formal requirements in the fUML language which

described in the next section.

4. Algorithm for Building a Formal Model Requirements

The scheme of the algorithm that implements the second stage of the procedure of

building a formal requirements model using the fUML language is shown in Fig. 2.

Use case diagrams (UCDs) – d_uc, class diagram (CDs) – d_class and requirements

diagrams (RDs) – d_reqs are used as initial data. The analyst and future system user

develop an interaction overview diagram (IOD)  d_io for each UCD (d_uc). In this

diagram, the functions implemented by the system are described from the user's

point of view in more detail using activity diagrams, sequence diagrams, and

statechart diagrams. Formally, an interaction overview diagram can be represented

as follows:  jfi

iki blockioactoriod ,,_  , where fi
iio

(ioi
fi = (ak, fi, bj) 𝑖𝑜𝑖

𝑓𝑖𝑚
, 𝑖𝑜𝑖

𝑓𝑖𝑎
) describes the algorithm for implementing the

function by the j-th block (class) of the designed software, which includes the

description of main (𝑖𝑜𝑖
𝑓𝑖𝑚

) and alternative (fia
iio) flows.

Alternate flows describe the operation of programs in case of abnormal situations,

such as erroneous user actions, unexpected influences from the external

environment, etc. The main and alternative flows can have subordinate flows, which

are described in IOD using frames with “ref”. The subordinate IOD flows show the

work of a program from the user's point of view and can be represented with activity

diagrams, sequence diagrams or statechart diagrams depending on the features of

the functioning of CSHS and ways of the interaction with the user and environment.

To describe the procedure and possibility of realization of those or other threads are

used pre - and post- condition.

the model of requirements constructed in this way should be subjected to validation

and verification procedures. The validation procedure is to assess the completeness

and correctness of the set of requirements. It is carried out both by software tools

and by the informal expertise of specialists in a particular subject area. Such

properties of a model as consistency, systematicity, non-redundancy, security,

liveliness, absence of deadlocks, impossible operations, looping are checked during

verification. The verification of the requirements model is carried out through its

execution and testing in the fUML virtual machine environment and analysis using

SAT/SMT solvers.

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

134

Fig.2. Construction algorithm of the technical project model

The description of these methods and tools is provided in sections 5 and 6.

5. Algorithm for Building a formal model of architecture of CSHS

The architecture development of CSHS is implemented in accordance with the

algorithm shown in Fig. 3

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

135

The initial data are the interaction overview diagram  d_io, diagrams of quality

requirements for the implementation of functions  d_reqs, class diagrams  d_class

and the requirements for development technologies and operating environment.

Fig.3. Algorithm of the architecture model development

In each interaction overview diagram (d_io) searches for a reference to activity

diagrams (ref_act), sequence diagrams (ref_seq) and statechart diagram (ref_sm). If

such references are found, the architect is asked to build or modify the

corresponding diagrams. Activity diagrams are described using control nodes

(control_node: decision node, merge node, fork node, join node, interaction,

interaction use); object nodes (object_node); pre-conditions and post-conditions.

When constructing sequence diagrams, the additional boundary, control, and entity

classes are first created, which perform the functions of intermediate (boundary)

classes, control, and information objects, respectively. Then the lifelines are defined

corresponding to classes that exchange messages. Messages are defined by the

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

136

conditions and limitations of their transmission and reception, and the actions that

are performed (do action). When developing state diagrams, the S ={𝑠𝑚} states and

T = {𝑡𝑛} transitions between them are defined. Each 𝑠𝑚 state consists of a

description of the attributes - val_var, as well as the actions performed: entry  at

the entrance, do_inter  internal, exit  at the exit.

The 𝑡𝑛 transitions include descriptions of the event initiating this transition  event,

the pre- and post- implementation conditions  guard_cond and actions that must be

performed before the actions of a new state  t_action).

The constructed diagrams are added to the database. To obtain a consistent and

bound set of CSHS technical project (architecture) diagrams, class diagrams

(d_class) and requirements diagrams (d_regs) are refined by establishing relations

with new activity, sequences and statechart diagrams that were developed or

modified. Fig. 4 shows the diagram illustrating the relationships between class and

activity diagrams. Each d_acti has a relationship with a specific class by describing

the algorithm for implementing the corresponding class method.

Fig. 4. Relationships and dependencies between the main components of the technical project

model: class and activity

To implement the architecture model verification procedure in the virtual machine

environment, fUML sequence diagrams (d_seq) and statechart diagrams (d_sm) are

transformed to activity diagrams (d_act), which are then described in the language

ALF (Action Language for Foundational UML).

Fig. 5 presents the diagram illustrating the verification procedure of the formal

fUML model of the CSHS architecture in a virtual machine environment consisting

of three components: ExecutionFactory, Executor and Locus.

ExecutionFactory is used to create instances of the visitor semantic classes

corresponding to the executable elements of the fUML model. The Executor class is

a top-level abstraction for the executable fUML model and provides three

operations:

 evaluate – evaluate a value specification, returning the specified value

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

137

 execute – synchronously execute a behavior, given values for its input

parameters and returning values for its output behaviors;

 start – asynchronously start the execution of a stand-alone or classifier

behavior, returning a reference to the instance of the executing behavior or

of the behaviored classifier.

Each execution is performed on a specific VM (Locus), which is the abstraction of a

physical or virtual computer capable of executing and verifying fUML models.

Fig.5. Scheme of executable fUML-model verification

The following basic requirements are imposed on the software architecture of

CSHS:

 completeness of the implementation of functional requirements defined in

the interaction overview diagrams – d_io;

 completeness and correctness of the implementation of non-functional

requirements defined in requirements diagrams – d_reqs;

 coherence and consistency of all model diagrams;

 lack of redundancy.

Testing the architecture model in the fUML virtual machine environment also makes

it possible to detect defects that can lead to security and liveliness violations, the

occurrence of deadlocks, impracticable operations, and loops. In addition, it is

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

138

advisable to use SAT/SMT solvers to verify the architecture model. The description

of their application is presented in the next section of the article.

6. Methods for Constructing Test Scenarios to Verify Models of
Requirements, Architecture and Implementation of CSHS using
SAT/SMT solvers

The main stages of the process of constructing test scenarios to verify models of

requirements, architecture, and implementation of CSHS are presented in Fig. 6:

– building a control flow graph (CFG);

– description of CFG in language ALF;

– generation of test scenarios (TSs) for verification of a set of requirements and

technical project (architecture);

– generation of TSs for implementation verification;

– adding test scenarios to database (DB).

Fig.6. Generalized algorithm of test scenarios development for verification of requirement,

architecture and implementation models

With the help of this algorithm, the requirements model and the architecture model

can be verified. The original format for representing these models is .xmi. Based on

these descriptions, the corresponding verifiable CFG model is built, in which both

functional and non-functional requirements for the system being developed are

taken into account. To represent non-functional requirements, Object Constraint

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

139

Language (OCL) is used. A SMT/SAT solver checks CFG for defects and, if they

are found, creates counterexamples. Using them, the developer determines the

causes of defects and makes the necessary corrections to the analyzed artifact. To

implement this approach, it is proposed to use the ALT-ERGO, CVC4 and Z3

solvers, integrated into the Frama-C framework [24] [25].

Fig. 7. Detailed algorithm of test scenarios development for verification models of

requirement, architecture and implementation

Concluding the presentation of the developed models and algorithms, let us present

a generalized scheme for the implementation of software-controlled process of

development and verification of formal models of requirements and architecture of

CSHS, which provides end-to-end quality control of all artifacts of the life cycle of

CSHS (Fig. 8).

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

140

Fig.8. Stages of implementation of software-controlled of the process of development and

verification of software and hardware systems

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

141

The main stages of the implementation of this approach are:

1. Construction of a preliminary formal model of requirements for CSHS in

the form of a set of interrelated use case diagrams, class diagrams, and

requirements diagrams.

2. Development of a formal requirements model in the form of a set of

interrelated use case diagrams, overview interaction diagrams, class

diagrams, and requirements diagrams.

3. Development and verification of the formal model of the architecture of

CSHS through testing in the fUML virtual machine environment and

analysis using SAT/SMT solvers  ALT-ERGO, CVC4 and Z3.

4. Development and verification of the software implementation.

7. Conclusion

One of the most important directions of improving the development processes and

achieving the required quality indicators of complex software and hardware systems

is the creation and implementation in practice of their industrial development of

model-based technologies for justifying requirements, design, and implementation

followed by the procedures of their formal verification and semi-formal validation.

Currently, the most problematic issues are related to the verification of requirements

and the CSHS architecture. To solve these problems, it is proposed to implement the

approach described in this article. The distinctive features of this approach are:

 formation and use of a single model-language and information-software

environment for the development and verification of formal models of

requirements, architecture and software implementation based on the

necessary and sufficient set of interrelated fUML diagrams and the model

of internal and inter-model relations developed for them;

 implementation of the software-controlled development process of CSHS

in accordance with the developed algorithm that performs sequential-

iterative operations of generating and transforming formal models of

requirements and architecture presented in fUML, XMI, ALF, and that also

performs their verification in the fUML virtual machine environment and

SMT/SAT solvers.

To implement the proposed approach, the following models, algorithms, and

methods were developed:

 algorithm of a formal description of the requirements for the developed

system based on the initial informal representation;

 fUML diagram models that are necessary and sufficient to develop

complete, correct and consistent formal models of requirements and

architecture;

 models, algorithms and guidelines for the development of formal models

requirements and the architecture in languages fUML, XMI and ALF;

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

142

 verification algorithms for models of requirements and the architecture of

CSHS in the environment of fUML virtual machine;

 verification of the formal model of the architecture and program

implementation through the analysis using the SAT/SMT solvers.

Currently, work is underway to create a set of software tools to ensure the

implementation of this approach. The development tools, libraries, and applications

implemented in the Eclipse project (EMF, GMP, RCP, Papyrus, Moka, Titan) are

used as a development environment and prototypes. The implementation of this

software package in the relevant technological processes at companies will ensure

the most complete accounting and correct implementation of requirements for

functional and operational characteristics, environment and conditions for the use of

CSHS. It will also significantly reduce the cost of finding and eliminating the most

critical and resource-intensive defects made at the stages of the formation of

requirements and design of their architecture.

References

[1]. Federal law "On security of critical information infrastructure of the Russian

Federation". 12.07.2017 (in Russian)

[2]. Systems Engineering and Software Engineering,

https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.

(accessed 25.07.2018).

[3]. Laura. Introduction To Model-Based System Engineering (MBSE) and

SysML.https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-

incose-30-july-2015.pdf. (accessed 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-

papers/chaos-report.pdf. (accessed 25.08.2018).

[5]. Dragan Milicev. Model-Driven Development with Executable UML. John Wiley &

Sons, 2009, 720 p.

[6]. Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The

Systems Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

[7]. Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.

Addison-Wesley Professional, 2013, 304 p.

[8]. Kovalev S.P. Theoretical and categorical approach to metaprogramming. M., IPU

Russian Academy of Sciences, 2014, 112 p. (in Russian)

[9]. Kovalev S.P. Category-Theoretic Approach to Software Systems Design. Journal of

Mathematical Sciences, vol. 214, issue 6, 2016, pp. 814–853.

[10]. Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction

to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,

2012, 480 p.

[11]. D.V., Buzdalov, S.V. Zelenov, E.V. Kornykhin, A.K. Petrenko, V.A. Fear, A.A.

Ognenko, A.V. Khoroshilov. Design tools for integrated modular avionics systems.

Trudy ISP RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230. DOI:

10.15514/ISPRAS-2014-26(1)-6 (in Russian)

https://link.springer.com/journal/10958/214/6/page/1

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

143

[12]. S.V. Zelenov, S.A. Zelenova, Modeling of hardware and software systems and analyze

their security. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 257-282. DOI:

10.15514/ISPRAS-2017-29(5)-13 (in Russian)

[13]. http://www.ispras.ru/technologies/unitesk (accessed 17.10.2018) (in Russian)

[14]. Markov, A.V., automation of design and analysis software using UML and Petri nets.

PhD Thesis, NSTU, Novosibirsk, 2015 (in Russian).

[15]. Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case

Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.

[16]. Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with

Model Transformation Technology. In Proc. of the International MultiConference of

Engineers and Computer Scientists, IMECS 2014, vol I

[17]. Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web

Software based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th

International Conference on Computer and Information Science (ICIS).

[18]. Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with

ALF. The Second International Conference on Advances and Trends in Software

Engineering, vol I, IARIA, 2016. pp .10-15.

[19]. Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems

using Uppaal. Formal Methods in System Design, vol. 37, Issue 2–3, 2010, pp 200–264

[20]. Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using

the AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of

Technology (TUHH), 2014.

[21]. Messaoud Rahim, Malika Boukala-Ioualalen, Ahmed Hammad. Petri Nets Based

Approach for Modular Verification of SysML Requirements on Activity Diagrams.

PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-

248.

[22]. Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and

efficient execution trace management for executable domain-specific modeling

languages. Software & Systems Modeling, 2017,

https://link.springer.com/article/10.1007/s10270-017-0598-5 (accessed 20.07.2018)

[23]. D. Savic, S. Vlajic, S. Lazarevic. Use Case specification using the SilabReq domain

specific language. Computing and Informatics, vol. 34, 2015, 877–910.

[24]. Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using

Conflict-Driven Learning. In Proc.b of 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,

USA, 16 p.

[25]. Efremov D. V., Mandrykin M. U. Formal verification of Linux kernel library functions.

Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 49-76. DOI:

10.15514/ISPRAS-2017-29(6)-3 (in Russian)

https://dl.acm.org/author_page.cfm?id=81100232024&coll=DL&dl=ACM&trk=0
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://link.springer.com/journal/10703/37/2/page/1
file://///elena-laptop/share/Сборник_30_5/Редактированное/Software%20&%20Systems%20Modeling

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

144

Методика и средства разработки и верификации
формальных fUML моделей требований и архитектуры

сложных программно-технических систем

А.В.Самонов <a.samonov@mail.ru>

Г.Н.Самонова <g.samonova@mail.ru>

Военно-космическая академия имени А.Ф. Можайского,

197088, Россия, Санкт-Петербург, ул. Ждановская, д.13

Аннотация. В статье представлены модели и алгоритмы обеспечения сквозного

контроля качества сложных программно-технических систем (СПТС) посредством

реализации программно-управляемого процесса разработки и верификации

формальных моделей требований и архитектуры СПТС. Дан анализ научных

публикаций и нормативно-методической базы в области разработки и применения на

практике модельно-ориентированного подхода. Установлено, что наименее

обеспеченными модельными, алгоритмическими и программными решениями

являются вопросы, связанные с разработкой полного и корректного набора требований,

а также с формализацией и верификацией технических проектов СПТС. Предложены

способы решения существующих проблем посредством формирования единой

модельно-языковой и информационно-программной среды разработки и верификации

формальных моделей требований и архитектуры СПТС, построенных на основе

оптимального набора взаимосвязанных fUML диаграмм, представленных в нотации

языка ALF и верифицируемых в среде виртуальной машины fUML и с помощью

SAT/SMT решателей.

Ключевые слова: верификация и валидация; диаграммы активности; диаграммы

классов; жизненный цикл автоматизированных систем; модели архитектуры; модели

требований; проектирование и реализация; программно-технические системы.

DOI: 10.15514/ISPRAS-2018-30(5)-8

Для цитирования: Самонов А.В., Самонова Г.Н. Методика и средства разработки и

верификации формальных fUML моделей требований и архитектуры сложных

программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г., стр. 123-146

(на английском языке). DOI: 10.15514/ISPRAS-2018-30(5)-8

Список литературы

[1]. Федеральный закон «О безопасности критической информационной

инфраструктуры Российской Федерации». 12.07.2017 г.

[2]. Systems Engineering and Software Engineering

https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.

(дата обращения 25.07.2018).

[3]. Laura E. Hart. Introduction to Model-Based System Engineering (MBSE) and SysML

https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-

july-2015.pdf. (дата обращения 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-

papers/chaos-report.pdf. (дата обращения 25.08.2018).

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей

требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,

стр. 123-146

145

[5]. Dragan Milicev. Model-Driven Development with Ex ecutable UML. John Wiley &

Sons, 2009, 720 p.

[6]. Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The

Systems Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

[7]. Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.

Addison-Wesley Professional, 2013, 304 p.

[8]. Ковалёв С.П. Теоретико-категорный подход к метапрограммированию. М., ИПУ

РАН, 2014, 112 стр.

[9]. Ковалeв С. П. Теоретико-категорный подход к проектированию программных

систем. Фундаментальная и прикладная. математика, том 19, вып. 3, 2014, стр.

111–170.

[10]. Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction

to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,

2012, 480 p.

[11]. Д.В. Буздалов, С.В. Зеленов, Е.В. Корныхин, А.К. Петренко, А.В. Страх, А.А.

Угненко, А.В. Хорошилов. Инструментальные средства проектирования систем

интегрированной модульной авионики. Труды ИСП РАН, том 26, вып. 1, 2014,

стр. 201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

[12]. Зеленов С.В., Зеленова С.А. Моделирование программно-аппаратных систем и

анализ их безопасности. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 257-282.

DOI: 10.15514/ISPRAS-2017-29(5)-13

[13]. http://www.ispras.ru/technologies/unitesk (дата обращения 17.10.2018)

[14]. Марков А.В. Автоматизация проектирования и анализа программного

обеспечения с использованием языка UML и сетей Петри. Канд. дис.,

Новосибирск, НГТУ, 2015.

[15]. Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case

Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.

[16]. Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with

Model Transformation Technology. In Proc. of the International MultiConference of

Engineers and Computer Scientists, IMECS 2014, vol I,

[17]. Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web

Software based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th

International Conference on Computer and Information Science (ICIS).

[18]. Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with

ALF. The Second International Conference on Advances and Trends in Software

Engineering, vol I, IARIA, 2016. pp .10-15.

[19]. Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems

using Uppaal. Formal Methods in System Design, vol. 37, Issue 2–3, 2010, pp 200–264

[20]. Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using

the AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of

Technology (TUHH), 2014.

[21]. Messaoud Rahim, Malika Boukala-Ioualalen, Ahmed Hammad. Petri Nets Based

Approach for Modular Verification of SysML Requirements on Activity Diagrams.

PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-

248.

[22]. Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and

efficient execution trace management for executable domain-specific modeling

languages. Software & Systems Modeling, 2017,

https://dl.acm.org/author_page.cfm?id=81100232024&coll=DL&dl=ACM&trk=0
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7537873
https://link.springer.com/journal/10703/37/2/page/1
file:///F:/Temp/_ISP/_done/2018/v30/v5/orig/Software%20&%20Systems%20Modeling

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of

Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,

issue 5, 2018, pp. 123-146

146

https://link.springer.com/article/10.1007/s10270-017-0598-5 (дата обращения

20.07.2018)

[23]. D. Savic, S. Vlajic, S. Lazarevic. Use Case specification using the SilabReq domain

specific language. Computing and Informatics, vol. 34, 2015, 877–910.

[24]. Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using

Conflict-Driven Learning. In Proc. of 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,

USA, 16 p.

[25]. Ефремов Д.В, Мандрыкин М.У. Формальная верификация библиотечных функций

ядра Linux. Труды ИСП РАН, том 29, вып. 6, 2017 г., стр. 49-76. DOI:

10.15514/ISPRAS-2017-29(6)-3

