
Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

85

Mining Hierarchical UML Sequence
Diagrams from Event Logs of SOA Systems

while Balancing between Abstracted and
Detailed Models

K.V. Davydova <kvdavydova@edu.hse.ru>

S.A. Shershakov<sshershakov@hse.ru>

National Research University Higher School of Economics,

PAIS Lab at the Faculty of Computer Science,

20 Myasnitskaya st., Moscow, 101000, Russia

Abstract. In this paper, we consider an approach to reverse engineering of UML sequence

diagrams from event logs of information systems with a service-oriented architecture (SOA).

UML sequence diagrams are graphical models quite suitable for representing interactions in

heterogeneous component systems; in particular, the latter include increasingly popular SOA-

based information systems. The approach deals with execution traces of SOA systems,

represented in the form of event logs. Event logs are created by almost all modern

information systems primarily for debug purposes. In contrast with conventional reverse

engineering techniques that require source code for analysis, our approach for inferring UML

sequence diagrams deals only with available logs and some heuristic knowledge. Our method

consists of several stages of building UML sequence diagrams according to different

perspectives set by the analyst. They include mapping log attributes to diagram elements,

thereby determining a level of abstraction, grouping several components of a diagram and

building hierarchical diagrams. We propose to group some of diagram components (messages

and lifelines) based on regular expressions and build hierarchical diagrams using nested

fragments. The approach is evaluated in a software prototype implemented as a Microsoft

Visio add-in. The add-in builds a UML sequence diagram from a given event log according
to a set of customizable settings.

Keywords: event logs; UML sequence diagram; reverse engineering; process mining.

DOI: 10.15514/ISPRAS-2016-28(3)-6

For citation: DavydovaK.V., ShershakovS.A. Mining Hierarchical UML Sequence

Diagrams from Event Logs of SOA systems while Balancing between Abstracted and

Detailed Models. Trudy ISP RAN / [Proc. ISP RAS], vol.28, issue 3, 2016. pp. 85-102. DOI:

10.15514/ISPRAS-2016-28(3)-6

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

86

1. Introduction

Nowadays there are a lot of information systems. They are developed by people,

which are error-prone. Systems also can have a structure which is difficult to

understand. Thus, models are necessary to understand systems and find errors.

When there is no complete model of a system, reverse engineering techniques can

be applied to extract necessary information from the system and build an

appropriate model. There are a number of tools for this purpose, they analyze source

code of the system and build a model.
There are some types of models, which are useful to analyze in software

engineering. For example, state machines are able to model a large number of

software problems. However, they have a weakness in describing an abstract model

of computation. Another example of a software model is Petri nets which can

describe processes with concurrent execution. Furthermore, there are a number of

models described by a standard of Unified Modeling Language (UML) for

visualizing design of information systems. UML 2.4.1 [1] has two groups of

diagrams, structural and behavioral ones. In particular, such kind of UML diagrams

as state class diagrams, statecharts and sequence diagrams are widely applied to

reverse engineering domain.
Almost every information system has an ability to write results of its execution to

event logs. We propose approaches to mine UML sequence diagrams (UML SD)

from these logs. Event logs of information systems with a service-oriented

architecture (SOA) are considered and UML SDs are applied to modeling

interaction between SOA information system components.
In contrast to existing reverse engineering tools, which use source code, we work

with system execution traces in the form of event logs. A technique that allows

analysis of business processes based on event logs is called process mining [2]. It

uses specialized algorithms for extracting knowledge from event logs recorded by

an information system. Moreover, process mining helps to check the conformance

of a derived model with its earlier specification. Using execution traces works even

if there is no access to the source code of an information systems. Also, not all code

versions are normally stored. Moreover, large information systems tend to be

distributed. Different components of a system are often implemented in different

programming languages. Such a problem is solved by considering event logs instead

of source code.

1.1. Motivating example

There is an event log written by a SOA-based banking information system

(Table 1). We are interested in building a model in the form of a UML sequence

diagram reflecting processes in the system. We have only some of the runs of the

process, so one of the problems is to build an as feasible model as possible. The log

contains a number of execution traces. Each trace consists of a sequence of events

ordered by Timestamp attribute. Columns represent attributes of the log and rows

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

87

represent its events. System executions are maintained by different components of

the system. They are grouped in attributes such as Domain, Service/Process and

Operation. Domains group Services and Processes, and the latter consist of

Operations [3].
Interaction between program system components can be represented at different

abstraction levels. For example, by mapping some log attributes onto structural

elements of UML SDs, such as lifelines and messages, one can get a UML SD

diagram such as on Fig. 1. Specific values of these attributes appear with head

names such as ―Domain::Service/Process‖. Similarly, values of Operation and

Payload attributes, which are mapped onto messages parameters appear with

message arrows. Timestamp attribute sets an order of calls (time goes from the top

to the bottom of a diagram).
It can also be useful to merge some messages or lifelines in order to reduce the size

of a diagram and avoid ―spaghetti-like‖ models. A regular expression suits it and an

example of their usage is depicted on Fig. 2.

Fig. 1. Mapping log attributes onto UML sequence diagram components

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

88

Fig. 2. Merge of diagram components based on a regular expression

Some interaction sometimes can be useful to represent on one diagram and other

interactions on a nested diagram. Those both diagrams use an interaction fragment

labeled ref. An example of a hierarchical diagram is on Fig. 3.

It would be good to have a tool which can do mapping of event log attributes on

UML sequence diagram elements with ability to set an abstraction level for seeing

different perspectives of the system execution. An approach approved in

VTM4Visio framework is applied, which allows building these diagrams.

1.2. Related work

Reverse engineering of UML sequence diagrams is not a new problem. There are a

number of works such as [4], [5], [6], [7] applied static approaches (getting models

from source code without execution) for solving this problem. Moreover, there are a

number of CASE tools for reverse engineering of UML sequence diagrams and

other types of UML diagrams. However, most of them use static program analysis

without execution of a program. Static program analysis usually uses source code or

object code (a result of source code compilation). Some of these tools analyze

source code, some of these tools analyze both source code and object code.

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

89

However, event logs are execution traces of source code. Thus, we do not need

access to source code.

Fig. 3. Hierarchical UML sequence diagram using nested fragments

The most popular CASE tools are Sparx Systems‘ Enterprise Architect [8], IBM

Rational Software Architect [9], Visual Paradigm [10], Altova UModel [11],

MagicDraw [12], StarUML [13], ArgoUML [14]. There are both tools for end-to-

end design and simple UML editors. The former include Sparx Systems‗ Enterprise

Architect, IBM Rational Software Architect, Visual Paradigm, Altova UModel and

MagicDraw, the latter include StarUML and ArgoUML. Beside that, the main aim

of these tools is to get models from source code. Table 2 [15] contains CASE tools

and program languages, for which models can be built. As we can see, none of these

tools is able to infer models from the most popular languages used for developing

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

90

SOA information systems. Moreover, a SOA architecture can be developed with

various programming languages. For example, some modules can be written in C#,

others can be developed in Java, they can interact with LAMP service, so a single

CASE tool cannot produce models for that system. Mining diagrams from event

logs solves this problem.

Table 1. Log fragment L1. Banking SOA-system

CaseID Domain Service/Process Operation Action Payload Timestamp

23 Account Operations GetLastOperations REQ

user=a,

today=23.07.2015,

client=Alex,

manager=Julia

17:32:15 135

23 Account CardInfo GetCardID REQ user=a 17:32:15 250

23 Account CardInfo GetCardID RES res=15674839 17:32:15 297

23 Card Operations GetOperations REQ days=30 17:32:15 378

23 Utils Calendar GetDate REQ days=30 17:32:15 409

23 Utils Calendar GetDate RES res=23.06.2015 17:32:15 478

23 Card Operations GetOperations RES
res={BP Billing

Transfer, Retail}
17:32:15 513

23 Card OperationData GetPlaceAndDate REQ
op=BP Billing

Transfer
17:32:15 589

23 Card OperationData GetPlaceAndDate RES

res=RUS

SBERBANK

ONLAIN

PLATEZH,

date=20.07.2015

17:32:15 601

23 Card OperationData GetPlaceAndDate REQ op=Retail 17:32:15 638

23 Card OperationData GetPlaceAndDate RES

res=RUS

MOSCOW OAO

MTS,

date=05.07.2015

17:32:15 735

23 Account Operations GetLastOperations RES res=succ 17:32:15 822

25 Account Operations GetLastOperations REQ

user=a,

today=23.07.2015,

client=Alex,

manager=Julia

17:40:18 345

25 Account CardInfo GetCardID REQ user=a 17:40:18 408

25 Account CardInfo GetCardID RES res=error 17:40:18 489

25 Account Operations GetLastOperations RES
res=no bounded

cards
17:40:18 523

Table 2. Programming languages of reverse engineering tools

Tools Programming languages

 PHP C++ Java Ruby Python VB C#

Sparx Systems‘ Enterprise Architect + + + - + + +

IBM Rational Software Architect - + - - - + +

Visual Paradigm + + + + + - +

Altova UModel - - + - - + +

MagicDraw - + + - - - +

StarUML - + + - - - +

ArgoUML - + + - - - +

There are some works, such as [16], [17], [18], [19], where approaches are applied

for building UML sequence diagrams from program system execution traces

(dynamic approaches). One of related works [16] analyzes one trace using a meta-

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

91

model of the trace and a UML SD. The trace includes information not only about

invocation of methods but also about loops and conditions, which makes easier

recognition of fragments such as iteration, alternatives and option. However,

program systemsloggingdoesnotusuallyincludethisinformation,so it is necessary to

change source code to apply this approach. In opposite to this approach, our

approach recognizes fragments as conditions based on traces‘ difference.
There is a dynamic approach to build a UML sequence diagram based on multiple

execution traces in [18]. The authors apply an approach to build a Labeled

Transition System (LTS) from a trace and an algorithm to merge some LTSs into

one. After that, the LTS is transformed into a UML sequence diagram. In opposite

to this approach, we propose not to use other data structures to represent traces and

merge them. We propose to map traces onto a UML sequence diagram directly

without intermediate models, which is more efficient.
In [19] the authors pay more attention to analysis of derived models. They describe

an approach briefly, without details. They mention that diagrams of one trace are

merged into one UML sequence diagram. However, there is no mathematically

strict definition of a trace or a UML sequence diagram and it is not clear how they

merge several diagrams.
The rest of the current paper is organized as follows. Section 2 gives definitions.

Section 3 introduces our approach to mining UML sequence diagrams. Section 4

discusses results of some experiments on deriving models with the help of the

developed tool. Section 5 concludes the paper and gives directions for further

research.

Fig. 4. Meta-model of a SOA system

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

92

2. Preliminaries

Definition 1. (Event log) Let E be a set of events. An event is a tuple 𝑒 =
(𝑎1, 𝑎2 , … , 𝑎𝑛), where n is a number of attributes. 𝜎 =< 𝑒1, 𝑒2 , … , 𝑒𝑘 > is an event

trace (i.e. an ordered set of events which normally belongs to one case). 𝐿𝑜𝑔 =
Ρ(𝐸) is an event log which is a multi-set of traces.
In the paper, we consider primarily event logs written by SOA information systems.

The logs have a structure according to a SOA system standard. A meta-model of

such a system is depicted on Fig. 4. The model complies with a Service Oriented

Architecture standard (Fig. 5) proposed by Object Management Group [20].
We introduce a formal definition of a UML sequence diagram as follows.

Fig. 5. Service-Oriented Architecture structure

Definition 2. (UML Sequence Diagram) A UML sequence diagram is a tuple

𝑈𝑆𝐷 = (𝐿, 𝐴, 𝑀, 𝑇, 𝑃, 𝑅𝑒𝑓, 𝛿), where:

 L is a set of lifelines, they represent objects whose interaction is shown on

the diagram. 

 A is a set of activations (emit and take messages) mapped onto lifelines.

𝐴 ⊆ (𝐿 × 𝑇 × 𝑇)

 T is time, it goes from the top of the diagram to the bottom. ∀𝑡 ∈ 𝑇,
𝜏 𝑡 = 𝑦, where 𝑦 ∈ ℤ 

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

93

 M is a set of messages (call and return) with its parameters and is ordered

by time. 𝑀 ⊆ 𝐴 ∪ 𝑅𝑒𝑓 × 𝑇 × 𝑃 × 𝐴 ∪ 𝑅𝑒𝑓 , 𝑚 ∈ 𝑀: 𝑚 =
 𝑎1, 𝑡, 𝑝, 𝑎2 , where 𝑎1 ∈ 𝐴 ∪ 𝑅𝑒𝑓, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑎2 ∈ 𝐴 ∪ 𝑅𝑒𝑓

𝑎1 = 𝑙1 , 𝑡11 , 𝑡12 , 𝑎2 = 𝑙2, 𝑡21 , 𝑡22 : 𝑡11 < 𝑡21 , 𝑡11 < 𝑡12 , 𝑡21 < 𝑡22

 P is a set of parameters of messages. 

 Ref is a set of ref fragments which group lifelines and hide their

interaction. The interaction is shown on another diagram.

 𝛿: 𝑈𝑆𝐷 = 𝑈𝑆𝐷1, 𝑈𝐻𝑆𝐷 𝐿′ ⊆ 𝐿, 𝐿1 ⊆ 𝐿
𝐴′ ⊆ 𝐴, 𝐴1 ⊆ 𝐴, 𝐴1 ∩ 𝐴′ = ∅

𝑀′ ⊆ 𝑀, 𝑀1 ⊆ 𝑀, 𝑀1 ∩ 𝑀′ = {𝑚 = (𝑎1 , 𝑡, 𝑝, 𝑎2)|𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴′}

𝑃′ ⊆ 𝑃, 𝑃1 ⊆ 𝑃, 𝑃1 ∩ 𝑃′ = {𝑝|𝑚 = 𝑎1 , 𝑡, 𝑝, 𝑎2 ,

𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴′ , 𝑝 ∈ 𝑃1 , 𝑝 ∈ 𝑃′}

𝑅𝑒𝑓 ′ ⊆ 𝑅𝑒𝑓, 𝑅𝑒𝑓1 ⊆ 𝑅𝑒𝑓, 𝑅𝑒𝑓1 ∩ 𝑅𝑒𝑓 ′ = ∅),

where:

𝑈𝑆𝐷 = (𝐿, 𝐴, 𝑀, 𝑇, 𝑃, 𝑅𝑒𝑓) – a detailed diagram.

𝑈𝑆𝐷1 = 𝐿1 , 𝐴1, 𝑀1 , 𝑇, 𝑃1 , 𝑅𝑒𝑓1 – a diagram with ref fragment.

𝑈𝐻𝑆𝐷 = (𝐿′ , 𝐴′ , 𝑀′ , 𝑇, 𝑃′ , 𝑅𝑒𝑓 ′) – a nested diagram.

3. Approach to balance between abstraction and detalization

We propose an approach to mining UML sequence diagrams from an event log with

a various degree of detalization. The approach consists of three steps derived one

from another. It is necessary to map attributes of the log onto elements of a diagram

prior to begining a mining procedure. Some mapping functions are therefore

needed. First, it is necessary to define which interaction of SOA components

(Services, Processes, Domains etc.) must be depicted on the diagram. Function α (1)

maps events of the log with their attributes onto lifelines of diagrams. It allows

choosing attributes to be represented on the diagram as lifelines.

𝐸 = 𝑒1, 𝑒2 , … , 𝑒𝑘 , 𝑘 − 𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
𝛼: 𝑈(𝐸) → 𝐿

(1)

3.1. Mapping log attributes onto UML sequence diagram
components

The first step allows getting diagrams with different abstraction levels by choosing

log attributes for mapping onto lifelines and attributes for mapping onto parameters.

To map attributes onto lifelines function α is used. Values of attributes Domain and

Service are mapped onto composite lifeline objects with head names such as

―Domain::Service/Process‖ on Figure 1. Also, function γ (2) is introduced for

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

94

mapping attributes onto message parameters. Operation and Payload attributes are

mapped onto messages parameters on Figure 1 such as ―Operation, Payload‖.

𝛾: 𝑈(𝐸) → 𝑃 (2)

The diagram depicted on Fig. 1 demonstrates interaction of services. The model

represents one of the possible configurations of abstraction for the event log in

table 1. For example, another possible configuration includes Service/Process and

Operation attributes as diagram objects. Choosing such attributes allows inferring

diagrams with different abstraction levels.

3.2. Merge of diagram components

On Figure 1 we see that the last two invocations of GetPlaceAndDate function are

almost equal except for operation parameters. The second step of our approach

performs merging some parts of a diagram. We propose to merge similar parts by

using regular expressions. A regular expression contains a common part of a

number of merged parts. The approach allows reducing the size of a model by

merging similar parts. It increases generalization of the model.The approach

involves a Cartesian square of a log with filtering. Function β (3) is used to map a

filtered Cartesian square of the log on the set {1, 0} so that the element of the square

is a pair ―event‖ - ―event from a set of next events‖. If the pair satisfies a regular

expression then it is marked as 1, otherwise as 0. We introduce η (4) to compare

elements of the square. η considers events as equal to each other if their

corresponding attributes are equal. In this case, attributes are equal if they can be

matched as a single regular expression. Functions α and γ are used in this approach

for mapping event attributes onto UML sequence diagram elements. There is also

introduced function ξ (5) which determines a family of messages that are satisfied

with pair event attributes. A message can be just a value of attributes or a regular

expression applicable to single event attributes.

𝛽: 𝐸 × 𝐸 → {0,1} (3)

𝑒𝑖 = 𝑎𝑖 ,1, 𝑎𝑖 ,2, …𝑎𝑖 ,𝑛 − 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑡𝑕 𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
 𝑒1, 𝑒2 ∈ 𝐸 × 𝐸

𝑒1 = 𝑎1,1 , 𝑎1,3, … , 𝑎1,𝑝 − 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑡𝑕 𝑝 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑝 < 𝑛

𝑒2 = 𝑎2,1 , 𝑎2,3, … , 𝑎2,𝑝 − 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑡𝑕 𝑝 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑝 < 𝑛

𝜂: 𝑒1 = 𝑒2 ⇒ 𝑎1,1 = 𝑎2,1&𝑎1,3 = 𝑎2,3& … &𝑎1,𝑝 = 𝑎2,𝑝

(4)

∀𝑚 ∈ 𝑀∃𝑒 ∈ 𝐸 × 𝐸: 𝜉 𝑒 = 𝑚 & 𝛽 𝑒 = 1,
𝑀 − 𝑠𝑒𝑡 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

(5)

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

95

If one looks at the example introduced above on Figure 2, the diagram is obtained

through applying this function and regular expressions. It is noticeable that two

invocations of operation GetPlaceAndDate are merged in one invocation with

regular expressions in message parameters. Regular expression ―.*‖ means that any

sequence of symbols can be inserted instead of this expression. It is also possible to

merge lifelines by using regular expressions. It can be useful if class A is invoked

only by class B; so, these classes can be merged into one lifeline.

3.3. Mining a hierarchical UML sequence diagram using nested
fragments

One of the ways to represent a complex model is creating a hierarchical model. The

UML standard [1] allows us to divide a complex diagram into more abstract and

detailed models interacting through gates.
In order to define a hierarchy in a UML sequence diagram we introduce a definition

of a selection criterion as follows. The definition of a hierarchical UML sequence

diagram is given in Definition 2.
Definition 3. (Selection criterion) Let k be a number of hierarchical levels and RE

be a regular expression defined in [21] with an added symbol ―.‖ as an any symbol

designation. Then, 𝑐 =< 𝑐𝑖|𝑐𝑖 ∈ 𝑅𝐸 >, ciis a selection criterion of events for i-

hierarchical level. 𝑐 = 𝑐1 ∪ 𝑐2 ∪ …∪ 𝑐𝑘and 𝑐1 ∩ 𝑐2 ∩ …∩ 𝑐𝑘 = ∅. The regular

expressions defined in [21] as selection criteria are Boolean expressions because

their abstract syntax includes Boolean operations.

The components of SOA systems described by a meta-model depicted on Figure 4

have hierarchical relationship with each other. According to the SOA model there is

a hierarchy in L1 event log because processes invoke different subprocesses or

services.
It is also possible to distinguish some technical sublevels from main level by

applying regular expressions. We propose a previously defined step with regular

expressions to group elements.
Each hierarchical level is able to be encapsulated into another level on a UML

sequence diagram. We propose to use nested fragments labeled as ref,which is

defined in [1]. It allows combining high-level and detailed views of diagrams at the

same time.
For applying the approach, a number of hierarchical levels and selection criteria,

which are defined in Definition 3, need to be specified. Function β defines whether

two events can be grouped into a single sublevel. If events match a selection

criterion then they are moved to a nested diagram. For this case, values of some

attributes must be equal or match a single regular expression. Function δ

(Definition 2) maps some part of a UML sequence diagram considered as nested on

a separate UML SD. The mapping uses interaction usewhich is shown as a

combined fragment with operator ref [1]. This fragment hides some details of a

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

96

high-level diagram moved to a nested diagram while the referred diagram allows

seeing the details.
On Figure 3, a hierarchical UML sequence diagram for event log L1 is depicted

there. There is some elements‘ interaction on the high-level diagram and some

interaction is abstracted as ref fragment and depicted on the nested one. A selection

criterion used for building the diagrams is “Operation=GetDate” which defines a

part to be abstracted.

4. Evaluation

This section discusses our evaluation of the approach presented in this paper.

4.1. VTM4Visio Framework

Microsoft Visio is a professional drawing tool for making business charts and

diagrams. It also supports some of UML diagrams. Besides, Visio has reverse

engineering of databases, but it does not support UML reverse engineering. One of

its flexible features is that it can be expanded by add-ins. It is possible to use Visio

SDK [22] for having access to a Visio object model. Thus, it is a good solution to

implement our tool for visualizing results (UML sequence diagrams) of our mining

algorithm.

Fig. 6. Class diagram of Event log object model library

VTM4Visio is an extensible framework aimed at process mining purposing. It is

implemented as an add-in for Microsoft Visio 2010. Our tool is implemented as a

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

97

plug-in, which is supported by one of the VTM4Visio components called Plugin

Manager.
This framework was chosen because it provides useful instruments for accessing

Microsoft Visio object models. It also has a convenient GUI.

4.2. Log pre-processing

It is necessary to have an event log in a definite format to apply our algorithm. A lot

of information systems write logs in their own format. Our algorithm requires the

event log to contain attributes which can be used as a case ID, timestamp and

activity attributes. It is necessary to format and validate the event log before

applying the algorithm.

4.3. Log library

Our algorithm requires an event log for mining a UML SD to be in some definite

format. That is why it is necessary to have a library for working with event logs. We

made the library and called it ―Event Log Object Model Library‖. Its UML class

diagram is depicted on Fig. 6. The structure of our library is inspired by XES format

[23]. It is not based on it but main components are taken from XES standard. We

introduce special types such as EvntsOrdering and EventAttrFilterType for CSV and

RDBMS-based event logs [24] because XML-based XES format is excessive. The

library is written in C#. It is extensible, which allows working with different event

log formats.

Fig. 7. Event log configuration

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

98

4.4. Prototype implementation

Our prototype was written in C# programming language as a plug-in for

VTM4Visio framework. The prototype allows configuring parameters for our

approaches as CaseID, Timestamp and Activity, names of lifelines and messages‘

parameters, a regular expression through some GUI forms (Fig. 7 and8). The

configuration for reading of event logs from a file is implemented as shown on

Figure 7. The configuration of the diagram is implemented as shown on Figure 8.

This GUI form allows setting different perspectives and a regular expression for

merging diagram elements and, hence, specifying hierarchy.
The processing result of the event log in Table 1 is depicted on Fig. 1, 2, 3.

Fig. 8. Diagram configuration

5. Conclusion

This paper proposes a method of reverse engineering of UML sequence diagrams

from event logs of SOA information systems. It contains three approaches to

balance high-level diagrams and low-level ones.
Our method is a dynamic analysis of software because it uses only event logs. This

is an advantage since source code is not always available. In addition, our

approaches do not use intermediate models of an event log representation. The

proposed method 1) maps log attributes onto diagram components, 2) merges

diagram elements based on regular expressions and 3) builds hierarchical UML

diagrams using a ref fragment.

Work with event logs of real-life SOA information systems shows that it is

necessary to mine diagrams not only from single- threaded event logs but also from

multi-threaded ones. Thus, it is a direction of our future work. UML sequence

diagrams do not always show parallel interactions properly. Thus, we are going to

mine hybrid diagrams as UML sequence diagrams with a ref fragment, which

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

99

abstracts parallel interactions and refers to UML activity diagramsillustrating

parallel processes.

Acknowledgement

This work is supported by the Basic Research Program at the National Research

University Higher School of Economics and the Russian Foundation for Basic

Research, project No. 15-37- 21103.

References

[1]. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1,

August 2011.

[2]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[3]. V.A. Rubin, S.A. Shershakov System runs analysis with process mining. In Modeling

and Analysis of Information Systems, pages 818–833, 2015.

[4]. A. Rountev, B.H. Connell. Object naming analysis for reverse-engineered sequence

diagrams. In Proceedings of the 27th International Conference on Software Engineering,

ICSE ‘05, pages 254–263, New York, NY, USA, 2005. ACM.

[5]. A. Rountev. Static control-flow analysis for reverse engineering of uml sequence

diagrams. In Proc. 6th Workshop on Program Analysis for Software Tools and

Engineering (PASTE‘ 05), pages 96–102. ACM Press, 2005.

[6]. P. Tonella, A. Potrich. Reverse engineering of the interaction diagrams from C++ code.

pages 159–168. IEEE Computer Society, 2003.

[7]. E. Korshunova, M. Petkovic, M. G. J. van den Brand, M.R. Mousavi. Cpp2xmi: Reverse

engineering of uml class, sequence, and activity diagrams from C++ source code. In

WCRE, pages 297–298. IEEE Computer Society, 2006.

[8]. Sparx Systems‘ Enterprise Architect. http://www. sparxsystems.com.au/products/ea/.

[9]. IBM Rational Software Architect. https://www.ibm.com/

developerworks/downloads/r/architect/.

[10]. Visual Paradigm. https://www.visual-paradigm.com/ features/.

[11]. Altova UModel. http://www.altova.com/umodel.html.

[12]. MagicDraw. http://www.nomagic.com/products/magicdraw.html.

[13]. StarUML. http://staruml.io.

[14]. ArgoUML. http://argouml.tigris.org.

[15]. H. Osman, M. R. V. Chaudron. Correctness  and completeness of CASE tools in reverse

engineering source code into UML model. The GSTF Journal on Computing (JoC), 2(1),

2012.

[16]. L. C. Briand, Y. Labiche, J. Leduc. Toward the reverse engineering of uml sequence

diagrams for distributed java software. IEEE Trans. Softw. Eng., 32(9):642–663,

September 2006.

[17]. R. Delamare, B. Baudry, Y.L. Traon. Reverse-engineering of UML 2.0 sequence

diagrams from execution traces. In Proceedings of the workshop on Object-Oriented

Reengineering at ECOOP 06, Nantes, France, July 2006.

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

100

[18]. T. Ziadi, M.A.A. da Silva, L.M. Hillah, M. Ziane. A fully dynamic approach to the

reverse engineering of UML sequence diagrams. In Isabelle Perseil, Karin Breitman, and

Roy Sterritt, editors, ICECCS, pages 107–116. IEEE Computer Society, 2011.

[19]. Y.-G. Guéhéneuc. Automated reverse-engineering of UML v2.0 dynamic models. In

Proceedings of the 6 th ECOOP Workshop on Object-Oriented Reengineering.

http://smallwiki.unibe.ch/WOOR, 2005.

[20]. OMG. The OMG and Service Oriented Architecture, 2006

[21]. S. Owens, J. Reppy, A. Turon. Regular-expression derivatives re-examined. J. Funct.

Program., 19(2):173–190, March 2009. 

[22]. Visio 2010: Software Development Kit, 2010. https://www.microsoft.com/en-

us/download/details.aspx?id=12365.

[23]. C. W. Günther and E. Verbeek. XES Standart Definition version 2.0, 2014.

[24]. S.A. Shershakov. VTMine framework as applied to process mining modeling,

International Journal of Computer and Communication Engineering vol. 4, no. 3, pp.

166-179, 2015.

Метод автоматического построения иерархических
UML-диаграмм последовательности с задаваемым
уровнем детализации на основе журналов событий

К.В. Давыдова <kvdavydova@edu.hse.ru>

C.A. Шершаков <sshershakov@hse.ru>

Национальный исследовательский университет Высшая школа экономики,

лаборатория ПОИС факультета компьютерных наук,

101000, Россия, г. Москва, ул. Мясницкая, д. 20

Аннотация. В данной статье мы предлагаем метод автоматического построения

диаграмм последовательности UML на основе журналов событий информационных

систем с сервис-ориентированной архитектурой (SOA). Диаграммы

последовательности UML — графические модели, подходящие для представления

взаимодействий в гетерогенных компонентных системах, в частности, в набирающих

сейчас популярность информационных SOA-системах. Описываемый метод

использует трассы исполнения SOA-систем, представленные в виде журналов событий.

Почти все современные информационные системы имеют возможность записывать

результаты своей работы в журналы событий, которые используются в основном для

процесса отладки. По сравнению с традиционными техниками автоматического

синтеза моделей, которые требуют не всегда имеющийся исходный код для своей

работы, наш метод для автоматического построения диаграмм последовательности

UML работает только с доступными журналами событий и некоторыми

эвристическими данными. Метод состоит из нескольких этапов построения диаграмм

последовательности UML в зависимости от разной перспективы, заданной

аналитиком.Они включают отображение атрибутов журнала событий на элементы

диаграммы с возможностью задать уровень абстракции через параметры, группировку

некоторых компонент диаграммы и построение иерархических диаграмм

последовательности. Мы предлагаем группировать некоторые компоненты (сообщения

и линии жизни) на основе регулярных выражений и строить иерархические диаграммы,

Давыдова К.В., Шершаков C.A. Метод автоматического построения иерархических UML-диаграмм

последовательности с задаваемым уровнем детализации на основе журналов событий. Труды ИСП РАН, том 28,

вып. 3, 2016. с.85-102.

101

используя вложенные фрагменты. Мы апробировали данный метод при помощи

разработанного в виде плагина Microsoft Visio прототипа. Плагин строит диаграмму

последовательности UML на основе заданного журнала событий в соответствии с
набором настраиваемых параметров.

Ключевые слова: журнал событий; диаграмма последовательности UML;
автоматическое выведение моделей; извлечение процессов.

DOI: 10.15514/ISPRAS-2016-28(3)-6

Для цитирования:Давыдова К.В., Шершаков C.A.Метод автоматического построения

иерархических UML-диаграмм последовательности с задаваемым уровнем детализации

на основе журналов событий.Труды ИСП РАН, том 28, вып. 3, 2016. стр. 85-102 (на
английском). DOI: 10.15514/ISPRAS-2016-28(3)-6

Список литературы
[1]. OMG. OMGUnifiedModelingLanguage (OMGUML), Superstructure, Version 2.4.1,

August 2011.

[2]. W. M. P. vanderAalst. Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[3]. V.A. Rubin, S.A. Shershakov System runs analysis with process mining. In Modeling

and Analysis of Information Systems, pages 818–833, 2015.

[4]. A. Rountev, B. H. Connell. Object naming analysis for reverse-engineered sequence

diagrams. In Proceedings of the 27th International Conference on Software Engineering,

ICSE ‘05, pages 254–263, New York, NY, USA, 2005. ACM.

[5]. A. Rountev. Static control-flow analysis for reverse engineering of uml sequence

diagrams. In Proc. 6th Workshop on Program Analysis for Software Tools and

Engineering (PASTE‘ 05), pages 96–102. ACM Press, 2005.

[6]. P. Tonella, A. Potrich. Reverse engineering of the interaction diagrams from C++ code.

pages 159–168. IEEE Computer Society, 2003.

[7]. E. Korshunova, M. Petkovic, M. G. J. van den Brand, M. R. Mousavi. Cpp2xmi:

Reverse engineering of uml class, sequence, and activity diagrams from C++ source

code. In WCRE, pages 297–298. IEEE Computer Society, 2006.

[8]. Sparx Systems‘ Enterprise Architect. http://www. sparxsystems.com.au/products/ea/.

[9]. IBM Rational Software Architect. https://www.ibm.com/

developerworks/downloads/r/architect/.

[10]. Visual Paradigm. https://www.visual-paradigm.com/ features/.

[11]. Altova UModel. http://www.altova.com/umodel.html.

[12]. MagicDraw. http://www.nomagic.com/products/magicdraw.html.

[13]. StarUML. http://staruml.io.

[14]. ArgoUML. http://argouml.tigris.org.

[15]. H. Osman, M. R. V. Chaudron. Correctness  and completeness of CASE tools in reverse

engineering source code into UML model. The GSTF Journal on Computing (JoC), 2(1),

2012.

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems

while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-

102.

102

[16]. L. C. Briand, Y. Labiche, J. Leduc. Toward the reverse engineering of uml sequence

diagrams for distributed java software. IEEE Trans. Softw. Eng., 32(9):642–663,

September 2006.

[17]. R. Delamare, B. Baudry, Y. L. Traon. Reverse-engineering of UML 2.0 sequence

diagrams from execution traces. In Proceedings of the workshop on Object-Oriented

Reengineering at ECOOP 06, Nantes, France, July 2006.

[18]. T. Ziadi, M. A. A. da Silva, L. M. Hillah, M. Ziane. A fully dynamic approach to the

reverse engineering of UML sequence diagrams. In Isabelle Perseil, Karin Breitman, and

Roy Sterritt, editors, ICECCS, pages 107–116. IEEE Computer Society, 2011.

[19]. Y.-G. Guéhéneuc. Automated reverse-engineering of UML v2.0 dynamic models. In

Proceedings of the 6 th ECOOP Workshop on Object-Oriented Reengineering.

http://smallwiki.unibe.ch/WOOR, 2005.

[20]. OMG. The OMG and Service Oriented Architecture, 2006

[21]. S. Owens, J. Reppy, A. Turon. Regular-expression derivatives re-examined. J. Funct.

Program., 19(2):173–190, March 2009. 

[22]. Visio 2010: Software Development Kit, 2010. https://www.microsoft.com/en-

us/download/details.aspx?id=12365.

[23]. C. W. Günther and E. Verbeek. XES Standart Definition version 2.0, 2014.

[24]. S.A. Shershakov. VTMine framework as applied to process mining modeling,

International Journal of Computer and Communication Engineering vol. 4, no. 3, pp.

166-179, 2015.

