Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

Mining Hierarchical UML Sequence
Diagrams from Event Logs of SOA Systems
while Balancing between Abstracted and
Detailed Models

K.V. Davydova <kvdavydova@edu.hse.ru>
S.A. Shershakov<sshershakov@hse.ru>
National Research University Higher School of Economics,
PAIS Lab at the Faculty of Computer Science,
20 Myasnitskaya st., Moscow, 101000, Russia

Abstract. In this paper, we consider an approach to reverse engineering of UML sequence
diagrams from event logs of information systems with a service-oriented architecture (SOA).
UML sequence diagrams are graphical models quite suitable for representing interactions in
heterogeneous component systems; in particular, the latter include increasingly popular SOA-
based information systems. The approach deals with execution traces of SOA systems,
represented in the form of event logs. Event logs are created by almost all modern
information systems primarily for debug purposes. In contrast with conventional reverse
engineering techniques that require source code for analysis, our approach for inferring UML
sequence diagrams deals only with available logs and some heuristic knowledge. Our method
consists of several stages of building UML sequence diagrams according to different
perspectives set by the analyst. They include mapping log attributes to diagram elements,
thereby determining a level of abstraction, grouping several components of a diagram and
building hierarchical diagrams. We propose to group some of diagram components (messages
and lifelines) based on regular expressions and build hierarchical diagrams using nested
fragments. The approach is evaluated in a software prototype implemented as a Microsoft
Visio add-in. The add-in builds a UML sequence diagram from a given event log according
to a set of customizable settings.

Keywords: event logs; UML sequence diagram; reverse engineering; process mining.

DOI: 10.15514/ISPRAS-2016-28(3)-6

For citation: DavydovaK.V., ShershakovS.A. Mining Hierarchical UML Sequence
Diagrams from Event Logs of SOA systems while Balancing between Abstracted and
Detailed Models. Trudy ISP RAN / [Proc. ISP RAS], vol.28, issue 3, 2016. pp. 85-102. DOI:
10.15514/ISPRAS-2016-28(3)-6

85

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

1. Introduction

Nowadays there are a lot of information systems. They are developed by people,
which are error-prone. Systems also can have a structure which is difficult to
understand. Thus, models are necessary to understand systems and find errors.
When there is no complete model of a system, reverse engineering techniques can
be applied to extract necessary information from the system and build an
appropriate model. There are a number of tools for this purpose, they analyze source
code of the system and build a model.

There are some types of models, which are useful to analyze in software
engineering. For example, state machines are able to model a large number of
software problems. However, they have a weakness in describing an abstract model
of computation. Another example of a software model is Petri nets which can
describe processes with concurrent execution. Furthermore, there are a number of
models described by a standard of Unified Modeling Language (UML) for
visualizing design of information systems. UML 2.4.1 [1] has two groups of
diagrams, structural and behavioral ones. In particular, such kind of UML diagrams
as state class diagrams, statecharts and sequence diagrams are widely applied to
reverse engineering domain.

Almost every information system has an ability to write results of its execution to
event logs. We propose approaches to mine UML sequence diagrams (UML SD)
from these logs. Event logs of information systems with a service-oriented
architecture (SOA) are considered and UML SDs are applied to modeling
interaction between SOA information system components.

In contrast to existing reverse engineering tools, which use source code, we work
with system execution traces in the form of event logs. A technique that allows
analysis of business processes based on event logs is called process mining [2]. It
uses specialized algorithms for extracting knowledge from event logs recorded by
an information system. Moreover, process mining helps to check the conformance
of a derived model with its earlier specification. Using execution traces works even
if there is no access to the source code of an information systems. Also, not all code
versions are normally stored. Moreover, large information systems tend to be
distributed. Different components of a system are often implemented in different
programming languages. Such a problem is solved by considering event logs instead
of source code.

1.1. Motivating example

There is an event log written by a SOA-based banking information system
(Table 1). We are interested in building a model in the form of a UML sequence
diagram reflecting processes in the system. We have only some of the runs of the
process, so one of the problems is to build an as feasible model as possible. The log
contains a number of execution traces. Each trace consists of a sequence of events
ordered by Timestamp attribute. Columns represent attributes of the log and rows

86

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

represent its events. System executions are maintained by different components of
the system. They are grouped in attributes such as Domain, Service/Process and
Operation. Domains group Services and Processes, and the latter consist of
Operations [3].

Interaction between program system components can be represented at different
abstraction levels. For example, by mapping some log attributes onto structural
elements of UML SDs, such as lifelines and messages, one can get a UML SD
diagram such as on Fig. 1. Specific values of these attributes appear with head
names such as “Domain::Service/Process”. Similarly, values of Operation and
Payload attributes, which are mapped onto messages parameters appear with
message arrows. Timestamp attribute sets an order of calls (time goes from the top
to the bottom of a diagram).

It can also be useful to merge some messages or lifelines in order to reduce the size
of a diagram and avoid “spaghetti-like” models. A regular expression suits it and an
example of their usage is depicted on Fig. 2.

Accountz:Operations Account:Cardinfa

Card:;Operati ‘ | utilszCalendar

)
GetlastOperations, user=a, today=23.07.2015, client=Alex, manager=Julia

alt
GetCardID, user=a

[coun>=0]

res=no bounded cards

i
oo |
GetOperatipns, days=30 |
1 i
i || Getpate, days=30
1 |
i |
i
| } [
I ‘ res=23.06.2015 | |
i L]
| | ——
res={BP Billing Transfer, Retail} L, T
1 I
e e |
i i
I
| GetPlaceAndDate, op=BP Billing Transfer
1 l}
T T
I
i i
s=RUS SBERBANK DNLAIN PLATEZH, date=20.07.2015,
fmm e e rriirivly i et -
1 GetPlaceAndDate, op=Retail
[} I
T T
1 i
I
i |
| res=RUS MOSCOW DA MTS, date=05.07.2015
) i |
e L
res=suce i i
) i |
o | |
I
i i
T i |
I 1 |
I
i i i

Fig. 1. Mapping log attributes onto UML sequence diagram components

87

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

Account::Operations ceount::Cardinfo Card::Operations Utils::Calendar Card::OperationData

T T T
|

|
GetLastOperations, user=a, today=23.07.2015, client=Alex, manager=Julia |

)

GetCardID, user=a

[coun>=0]

res=error

e e e
res=no bounded cards

GetCardID, user=a

res=15674839 U
[

T
I
I
GetOperatipns, days=30
|
T
|
|
|
|
|
|
|
|

3

res=(BP Billing Transfer, Retail}
- e

1 GetPlaceAndDate, op=.*

L
I
?
res=.*, date=.* '
e e

res=succ

Fig. 2. Merge of diagram components based on a regular expression

Some interaction sometimes can be useful to represent on one diagram and other
interactions on a nested diagram. Those both diagrams use an interaction fragment
labeled ref. An example of a hierarchical diagram is on Fig. 3.

It would be good to have a tool which can do mapping of event log attributes on
UML sequence diagram elements with ability to set an abstraction level for seeing
different perspectives of the system execution. An approach approved in
VTM4Visio framework is applied, which allows building these diagrams.

1.2. Related work

Reverse engineering of UML sequence diagrams is not a new problem. There are a
number of works such as [4], [5], [6], [7] applied static approaches (getting models
from source code without execution) for solving this problem. Moreover, there are a
number of CASE tools for reverse engineering of UML sequence diagrams and
other types of UML diagrams. However, most of them use static program analysis
without execution of a program. Static program analysis usually uses source code or
object code (a result of source code compilation). Some of these tools analyze
source code, some of these tools analyze both source code and object code.

88

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,

BoII. 3, 2016. ¢.85-102.

However, event logs are execution traces of source code. Thus, we do not need

access to source code.

Account::Operations

Account::Cardinfo | Card::Operations Card::0; tionDat.

T
|
|]
GetlastQperations, user=a, today=23.07.2015, client=Alex, manager=lulia |]
N | i
|]
alt ,‘ ! '
/ GetCardID, user=a | i
|]
[coun>=0] i i i i
| |] |
| i i i
res=error | | ! !
I i i i
ittty | |
res=no bounded cards |] 1
<« I] |
,,,,,,,,,,,,,, R gy Sy Sy Sy Sy S Ry gy Uy Sy RIS RSy SR SR SREN [Py RS R RIS ISR
I 1 1
[else] GetCardiD, user=a | i i
I 1 1
i |
1 1
] |
res=15674839 ! | |
b . i] |
- T 1
; =y !
GetOperations,|days=30 |
| i
res=(BP Billing Trarjsfer, Retail} |
| i
R R !
| |
| " i
| GetPlaceAndDate, op=BP Billing Transfer | |
| \ i |
T i T
| |]
| | 1
res=RUS SBERBANK ONLAIN PLATEZH, date=20. U?.ZD]S:
— -1 \ i
~ [— L R T
| GetPlaceAndDate, op=Retail] |
. 1 I
]
|]
i]
res=RUS MOSCOW OAQ MTS, date=05.07.2015 |
S S it
res=suce []
4 1 I
-~ I 1 1
| |]
sd T

Card::Operations ‘

Utils::Calendar

D GetOperations, days=30
Gate

GetDate, days=30

res=23.06.2015

u res=(6P Billng Transfer, Retall}| |~

Fig. 3. Hierarchical UML sequence diagram using nested fragments

The most popular CASE tools are Sparx Systems’ Enterprise Architect [8], IBM

Rational Software Architect

[9], Visual Paradigm [10], Altova UModel [11],

MagicDraw [12], StarUML [13], ArgoUML [14]. There are both tools for end-to-
end design and simple UML editors. The former include Sparx Systems* Enterprise
Architect, IBM Rational Software Architect, Visual Paradigm, Altova UModel and
MagicDraw, the latter include StarUML and ArgoUML. Beside that, the main aim
of these tools is to get models from source code. Table 2 [15] contains CASE tools
and program languages, for which models can be built. As we can see, none of these
tools is able to infer models from the most popular languages used for developing

89

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

SOA information systems. Moreover, a SOA architecture can be developed with
various programming languages. For example, some modules can be written in C#,
others can be developed in Java, they can interact with LAMP service, so a single
CASE tool cannot produce models for that system. Mining diagrams from event
logs solves this problem.

Table 1. Log fragment L1. Banking SOA-system

CaselD Domain Service/Process Operation Action Payload Timestamp
user=a,
23 Account Operations GetLastOperations REQ to_dayf23.07.2015, 17:32:15 135
client=Alex,
manager=Julia
23 Account | CardInfo GetCardID REQ user=a 17:32:15 250
23 Account [CardInfo GetCardID RES res=15674839 17:32:15 297
23 Card Operations GetOperations REQ days=30 17:32:15 378
23 Utils Calendar GetDate REQ days=30 17:32:15 409
23 Utils Calendar GetDate RES res=23.06.2015 17:32:15 478
: . res={BP Billing ne.
23 Card Operations GetOperations RES Transfer, Retail} 17:32:15 513
23 Card OperationData GetPlaceAndDate REQ op=BP Billing 17:32:15 589
Transfer
res=RUS
SBERBANK
23 Card OperationData GetPlaceAndDate RES ONLAIN 17:32:15 601
PLATEZH,
date=20.07.2015
23 Card OperationData GetPlaceAndDate REQ op=Retail 17:32:15 638
res=RUS
23 Card OperationData GetPlaceAndDate RES m_(?SSCOW OAO 17:32:15 735
date=05.07.2015
23 Account | Operations GetLastOperations RES res=succ 17:32:15 822
user=a,
25 Account | Operations GetLastOperations REQ todayf23.07.2015, 17:40:18 345
client=Alex,
manager=Julia
25 Account | CardInfo GetCardID REQ user=a 17:40:18 408
25 Account | CardlInfo GetCardID RES res=error 17:40:18 489
25 Account | Operations GetLastOperations RES 2?;820 bounded 17:40:18 523

Table 2. Programming languages of reverse engineering tools

Tools Programming languages
PHP C++ Java Ruby Python VB C#

Sparx Systems’ Enterprise Architect — + + + - + + +
IBM Rational Software Architect - + - - R + +
Visual Paradigm + + + + + - +
Altova UModel - - + - - + +
MagicDraw - + + - R +
StarUML - + + - - R +
ArgoUML - + + - +

There are some works, such as [16], [17], [18], [19], where approaches are applied
for building UML sequence diagrams from program system execution traces
(dynamic approaches). One of related works [16] analyzes one trace using a meta-

90

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

model of the trace and a UML SD. The trace includes information not only about
invocation of methods but also about loops and conditions, which makes easier
recognition of fragments such as iteration, alternatives and option. However,
program systemsloggingdoesnotusuallyincludethisinformation,so it is necessary to
change source code to apply this approach. In opposite to this approach, our
approach recognizes fragments as conditions based on traces’ difference.

There is a dynamic approach to build a UML sequence diagram based on multiple
execution traces in [18]. The authors apply an approach to build a Labeled
Transition System (LTS) from a trace and an algorithm to merge some LTSs into
one. After that, the LTS is transformed into a UML sequence diagram. In opposite
to this approach, we propose not to use other data structures to represent traces and
merge them. We propose to map traces onto a UML sequence diagram directly
without intermediate models, which is more efficient.

In [19] the authors pay more attention to analysis of derived models. They describe
an approach briefly, without details. They mention that diagrams of one trace are
merged into one UML sequence diagram. However, there is no mathematically
strict definition of a trace or a UML sequence diagram and it is not clear how they
merge several diagrams.

The rest of the current paper is organized as follows. Section 2 gives definitions.
Section 3 introduces our approach to mining UML sequence diagrams. Section 4
discusses results of some experiments on deriving models with the help of the
developed tool. Section5 concludes the paper and gives directions for further
research.

Domain <<interface>> Caller

<<interface>> Callable 4}‘ ProcessGroups

|
|
|
|
*
|
|
1

Service | | Process

— |

Fig. 4. Meta-model of a SOA system

*

91

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

2. Preliminaries

Definition 1. (Event log) Let E be a set of events. An event is a tuple e =
(a1, ay, ..., ay), where n is a number of attributes. ¢ =< ey, e,, ..., e, > is an event
trace (i.e. an ordered set of events which normally belongs to one case). Log =
P(E) is an event log which is a multi-set of traces.

In the paper, we consider primarily event logs written by SOA information systems.
The logs have a structure according to a SOA system standard. A meta-model of
such a system is depicted on Fig. 4. The model complies with a Service Oriented
Avrchitecture standard (Fig. 5) proposed by Object Management Group [20].

We introduce a formal definition of a UML sequence diagram as follows.

BPMN
) UML
Business BPDM
Processes
SVBR
task dsfﬁmfronT - - ! \
task impl l l f Interface%s deflnec\by enterprls* come&{ , \ l
OoDM UML
Business
Services
Interfacles defided l:fyel}(erprisesemanticban}!\(equirememy RAS
Components J2EE UML Profile
CORBAUML Profile
F :: |/ AT
Operational .%‘ ﬁ% g I ‘ I ||
Resources — i I]nl — CWM
Servers
Waifames = ol G | kom

Fig. 5. Service-Oriented Architecture structure

Definition 2. (UML Sequence Diagram) A UML sequence diagram is a tuple
Usp = (L,A,M, T, P,Ref, &), where:

e L isaset of lifelines, they represent objects whose interaction is shown on
the diagram.

e Ais a set of activations (emit and take messages) mapped onto lifelines.
AC(LXTXT)

e T is time, it goes from the top of the diagram to the bottom. vVt € T,
(t) =y, wherey € Z

92

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

e M is a set of messages (call and return) with its parameters and is ordered
by time. M S ((AURef) XT xP X (AU Ref)),me M:m =
(ay,t,p,ay),wherea; € AURef,t €T,p € P,a, € AU Ref

a; = (I, t1g, tr2), ay = (I, ta1, ta2) b1y < by, tyq < typ, b1 <ty

® Pisaset of parameters of messages.

e Ref is a set of ref fragments which group lifelines and hide their
interaction. The interaction is shown on another diagram.

o §:Usp = (Uspy, UysplL S L, Ly S L
ACAA CSAANA =0
M SMM SMMNM ={m=(a,t,p,a,)|a, €A, a, €A}

P P,P,cP,P NP ={plm=(a,t,p a),

a, €A, a, €A,p € P,p € P}

Ref’ € Ref,Ref, S Ref,Ref, N Ref =),

where:

Usp = (L,A,M, T, P,Ref) — a detailed diagram.

Uspr = (L1, Ay, My, T, Py, Ref;) — a diagram with ref fragment.
Uysp = (L,A',M',T,P',Ref") — a nested diagram.

3. Approach to balance between abstraction and detalization

We propose an approach to mining UML sequence diagrams from an event log with
a various degree of detalization. The approach consists of three steps derived one
from another. It is necessary to map attributes of the log onto elements of a diagram
prior to begining a mining procedure. Some mapping functions are therefore
needed. First, it is necessary to define which interaction of SOA components
(Services, Processes, Domains etc.) must be depicted on the diagram. Function a (1)
maps events of the log with their attributes onto lifelines of diagrams. It allows
choosing attributes to be represented on the diagram as lifelines.

E = (eq, €y, ...,€,), k — anumber of events (1)
a:U(E) - L

3.1. Mapping log attributes onto UML sequence diagram
components

The first step allows getting diagrams with different abstraction levels by choosing
log attributes for mapping onto lifelines and attributes for mapping onto parameters.
To map attributes onto lifelines function a is used. Values of attributes Domain and
Service are mapped onto composite lifeline objects with head names such as
“Domain::Service/Process” on Figure 1. Also, function y (2) is introduced for

93

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

mapping attributes onto message parameters. Operation and Payload attributes are
mapped onto messages parameters on Figure 1 such as “Operation, Payload”.

y:U(E) > P)

The diagram depicted on Fig. 1 demonstrates interaction of services. The model
represents one of the possible configurations of abstraction for the event log in
table 1. For example, another possible configuration includes Service/Process and
Operation attributes as diagram objects. Choosing such attributes allows inferring
diagrams with different abstraction levels.

3.2. Merge of diagram components

On Figure 1 we see that the last two invocations of GetPlaceAndDate function are
almost equal except for operation parameters. The second step of our approach
performs merging some parts of a diagram. We propose to merge similar parts by
using regular expressions. A regular expression contains a common part of a
number of merged parts. The approach allows reducing the size of a model by
merging similar parts. It increases generalization of the model.The approach
involves a Cartesian square of a log with filtering. Function B (3) is used to map a
filtered Cartesian square of the log on the set {1, 0} so that the element of the square
is a pair “event” - “event from a set of next events”. If the pair satisfies a regular
expression then it is marked as 1, otherwise as 0. We introduce n (4) to compare
elements of the square. n considers events as equal to each other if their
corresponding attributes are equal. In this case, attributes are equal if they can be
matched as a single regular expression. Functions o and y are used in this approach
for mapping event attributes onto UML sequence diagram elements. There is also
introduced function & (5) which determines a family of messages that are satisfied
with pair event attributes. A message can be just a value of attributes or a regular
expression applicable to single event attributes.

B:E XE - {0,1} 3)
e = (a,-,l, ;2 e ai,n) — an event with n attributes

(e1,62) EEXE
e = (am, 13, oees al‘p) — an event with p sample attributes,p <n 4
= (azyl, a3 won) az‘p) — an event with p sample attributes,p <n

77: éi = é} = al‘l = az‘l&als = a2‘3& ...&al'p = azlp
Vm e MIEEE XE:E() =m&p(E) =1,
M — set of messages

N3}

(®)

94

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

If one looks at the example introduced above on Figure 2, the diagram is obtained
through applying this function and regular expressions. It is noticeable that two
invocations of operation GetPlaceAndDate are merged in one invocation with
regular expressions in message parameters. Regular expression “.*” means that any
sequence of symbols can be inserted instead of this expression. It is also possible to
merge lifelines by using regular expressions. It can be useful if class A is invoked
only by class B; so, these classes can be merged into one lifeline.

3.3. Mining a hierarchical UML sequence diagram using nested
fragments

One of the ways to represent a complex model is creating a hierarchical model. The
UML standard [1] allows us to divide a complex diagram into more abstract and
detailed models interacting through gates.

In order to define a hierarchy in a UML sequence diagram we introduce a definition
of a selection criterion as follows. The definition of a hierarchical UML sequence
diagram is given in Definition 2.

Definition 3. (Selection criterion) Let k be a number of hierarchical levels and RE
be a regular expression defined in [21] with an added symbol “.”” as an any symbol
designation. Then, ¢ =< ¢;|c; € RE >, cjis a selection criterion of events for i-
hierarchical level. c=c;Uc,U..Ucand ¢;Nc; N...nc, =@. The regular
expressions defined in [21] as selection criteria are Boolean expressions because
their abstract syntax includes Boolean operations.

The components of SOA systems described by a meta-model depicted on Figure 4
have hierarchical relationship with each other. According to the SOA model there is
a hierarchy in L1 event log because processes invoke different subprocesses or
services.

It is also possible to distinguish some technical sublevels from main level by
applying regular expressions. We propose a previously defined step with regular
expressions to group elements.

Each hierarchical level is able to be encapsulated into another level on a UML
sequence diagram. We propose to use nested fragments labeled as ref,which is
defined in [1]. It allows combining high-level and detailed views of diagrams at the
same time.

For applying the approach, a number of hierarchical levels and selection criteria,
which are defined in Definition 3, need to be specified. Function (3 defines whether
two events can be grouped into a single sublevel. If events match a selection
criterion then they are moved to a nested diagram. For this case, values of some
attributes must be equal or match a single regular expression. Function &
(Definition 2) maps some part of a UML sequence diagram considered as nested on
a separate UML SD. The mapping uses interaction usewhich is shown as a
combined fragment with operator ref [1]. This fragment hides some details of a

95

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

high-level diagram moved to a nested diagram while the referred diagram allows
seeing the details.

On Figure 3, a hierarchical UML sequence diagram for event log L1 is depicted
there. There is some elements’ interaction on the high-level diagram and some
interaction is abstracted as ref fragment and depicted on the nested one. A selection
criterion used for building the diagrams is “Operation=GetDate” which defines a
part to be abstracted.

4. Evaluation
This section discusses our evaluation of the approach presented in this paper.

4.1. VTM4Visio Framework

Microsoft Visio is a professional drawing tool for making business charts and
diagrams. It also supports some of UML diagrams. Besides, Visio has reverse
engineering of databases, but it does not support UML reverse engineering. One of
its flexible features is that it can be expanded by add-ins. It is possible to use Visio
SDK [22] for having access to a Visio object model. Thus, it is a good solution to
implement our tool for visualizing results (UML sequence diagrams) of our mining
algorithm.

sinterfaces

|Attribute
0.1

winterfaces 0.~

1
1
1
= T-#lAtribute >
1 1

«interfaces | l «interfaces |

— - Attributes::String

1

Attributes::
Timestamp

ITrace —- Attributes:int

+ ;

1 1
sinterfaces «interfaces — — — {Attributes::Boolean
IMraces. h IEvents
1

< T-»IEvent >

|

|
[S—
|

|

|

|
[a—
|

|

|

|
fa—
|

|
:~——— Attributes::Double
|

|

L

zenumerstions
< T>ITrace > EventsOrdering

winterfaces

Collections::IEnumerable

zenumerstions
EventAttrFilterType

Al
[winterfaces InListOnly
c wist <] NotinListOnly

Fig. 6. Class diagram of Event log object model library

VTM4Visio is an extensible framework aimed at process mining purposing. It is
implemented as an add-in for Microsoft Visio 2010. Our tool is implemented as a
96

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

plug-in, which is supported by one of the VTM4Visio components called Plugin
Manager.

This framework was chosen because it provides useful instruments for accessing
Microsoft Visio object models. It also has a convenient GUI.

4.2. Log pre-processing

It is necessary to have an event log in a definite format to apply our algorithm. A lot
of information systems write logs in their own format. Our algorithm requires the
event log to contain attributes which can be used as a case ID, timestamp and
activity attributes. It is necessary to format and validate the event log before
applying the algorithm.

4.3. Log library

Our algorithm requires an event log for mining a UML SD to be in some definite
format. That is why it is necessary to have a library for working with event logs. We
made the library and called it “Event Log Object Model Library”. Its UML class
diagram is depicted on Fig. 6. The structure of our library is inspired by XES format
[23]. It is not based on it but main components are taken from XES standard. We
introduce special types such as EvntsOrdering and EventAttrFilterType for CSV and
RDBMS-based event logs [24] because XML-based XES format is excessive. The
library is written in C#. It is extensible, which allows working with different event
log formats.

g UML SD Mapper - O

Select a file with a log

\\psfiHome\Desktop\GetlLastOperations.csv

Select attributes

CaselD: CaselD v
Activity: CaselD v
Timestamp: CaselD v

QK

Fig. 7. Event log configuration

97

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

4.4. Prototype implementation

Our prototype was written in C# programming language as a plug-in for
VTM4Visio framework. The prototype allows configuring parameters for our
approaches as CaselD, Timestamp and Activity, names of lifelines and messages’
parameters, a regular expression through some GUI forms (Fig. 7 and8). The
configuration for reading of event logs from a file is implemented as shown on
Figure 7. The configuration of the diagram is implemented as shown on Figure 8.
This GUI form allows setting different perspectives and a regular expression for
merging diagram elements and, hence, specifying hierarchy.

The processing result of the event log in Table 1 is depicted on Fig. 1, 2, 3.

g UML SD Mapper = =
Message parameters
Lifeline attributes All aftributes: attributes:
Domain Action Operation
Service Payload
< >
> <
[] Do not use "alt" block Hierarchical model
Expression: oK

Fig. 8. Diagram configuration

5. Conclusion

This paper proposes a method of reverse engineering of UML sequence diagrams
from event logs of SOA information systems. It contains three approaches to
balance high-level diagrams and low-level ones.

Our method is a dynamic analysis of software because it uses only event logs. This
is an advantage since source code is not always available. In addition, our
approaches do not use intermediate models of an event log representation. The
proposed method 1) maps log attributes onto diagram components, 2) merges
diagram elements based on regular expressions and 3) builds hierarchical UML
diagrams using a ref fragment.

Work with event logs of real-life SOA information systems shows that it is
necessary to mine diagrams not only from single- threaded event logs but also from
multi-threaded ones. Thus, it is a direction of our future work. UML sequence
diagrams do not always show parallel interactions properly. Thus, we are going to
mine hybrid diagrams as UML sequence diagrams with a ref fragment, which

98

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

abstracts parallel interactions and refers to UML activity diagramsillustrating
parallel processes.

Acknowledgement

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics and the Russian Foundation for Basic
Research, project No. 15-37- 21103.

References

[1].
(2].
31.
[4].

[5].

[6].
[7].

[8].
[9].

[10].
[11].
[12].
[13].
[14].
[15].

[16].

[17].

OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1,
August 2011.

W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

V.A. Rubin, S.A. Shershakov System runs analysis with process mining. In Modeling
and Analysis of Information Systems, pages 818-833, 2015.

A. Rountev, B.H. Connell. Object naming analysis for reverse-engineered sequence
diagrams. In Proceedings of the 27th International Conference on Software Engineering,
ICSE °05, pages 254-263, New York, NY, USA, 2005. ACM.

A. Rountev. Static control-flow analysis for reverse engineering of uml sequence
diagrams. In Proc. 6th Workshop on Program Analysis for Software Tools and
Engineering (PASTE’ 05), pages 96-102. ACM Press, 2005.

P. Tonella, A. Potrich. Reverse engineering of the interaction diagrams from C++ code.
pages 159-168. IEEE Computer Society, 2003.

E. Korshunova, M. Petkovic, M. G. J. van den Brand, M.R. Mousavi. Cpp2xmi: Reverse
engineering of uml class, sequence, and activity diagrams from C++ source code. In
WCRE, pages 297-298. IEEE Computer Society, 2006.

Sparx Systems’ Enterprise Architect. http://www. sparxsystems.com.au/products/ea/.
IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

Visual Paradigm. https://www.visual-paradigm.com/ features/.

Altova UModel. http://www.altova.com/umodel.html.

MagicDraw. http://www.nomagic.com/products/magicdraw.html.

StarUML. http://staruml.io.

ArgoUML. http://argouml.tigris.org.

H. Osman, M. R. V. Chaudron. Correctness and completeness of CASE tools in reverse
engineering source code into UML model. The GSTF Journal on Computing (JoC), 2(1),
2012.

L. C. Briand, Y. Labiche, J. Leduc. Toward the reverse engineering of uml sequence
diagrams for distributed java software. IEEE Trans. Softw. Eng., 32(9):642-663,
September 2006.

R. Delamare, B. Baudry, Y.L. Traon. Reverse-engineering of UML 2.0 sequence
diagrams from execution traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

99

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

[18]. T. Ziadi, M.A.A. da Silva, L.M. Hillah, M. Ziane. A fully dynamic approach to the
reverse engineering of UML sequence diagrams. In Isabelle Perseil, Karin Breitman, and
Roy Sterritt, editors, ICECCS, pages 107-116. IEEE Computer Society, 2011.

[19]. Y.-G. Guéhéneuc. Automated reverse-engineering of UML v2.0 dynamic models. In
Proceedings of the 6 th ECOOP Workshop on Object-Oriented Reengineering.
http://smallwiki.unibe.ch/WOOR, 2005.

[20]. OMG. The OMG and Service Oriented Architecture, 2006

[21]. S. Owens, J. Reppy, A. Turon. Regular-expression derivatives re-examined. J. Funct.
Program., 19(2):173-190, March 2009.

[22]. Visio 2010: Software Development Kit, 2010. https://www.microsoft.com/en-
us/download/details.aspx?id=12365.

[23]. C. W. Gunther and E. Verbeek. XES Standart Definition version 2.0, 2014.

[24]. S.A. Shershakov. VTMine framework as applied to process mining modeling,
International Journal of Computer and Communication Engineering vol. 4, no. 3, pp.
166-179, 2015.

MeToa aBTOMaTM4€CKOro NOCTPOEHUSA nepapxmvecknx
UML-anarpamm nocrieqoBaTenbHOCTU C 3afaBaeMbIM
YPOBHEM AeTanusaumum Ha OCHOBE XXYpPHarnoB cobbITUN

K.B. Jlasvidosa <kvdavydova@edu.hse.ru>
C.A. llepwakos <sshershakov@hse.ru>
Hayuonanwvnwiil uccnedosamenvckuil ynusepcumem Bvicuias wkoaa SKOHOMUKU,
aabopamopusi [IOUC ¢haxyremema KoMnviomepHvix HAYK,
101000, Poccus, e. Mocxaa, yn. Macnuykas, 0. 20

AHHOoTanms. B naHHOW cTaThke MBI IIpelJlaraéM MeETOJ aBTOMAaTUYECKOTO IOCTPOCHUS
quarpamm mnocnenoBatensHocth UML Ha ocHOBe)KypHAJIOB COOBITHH HMH(OpPMAMOHHBIX
CUCTEM c CepBUC-OPUEHTUPOBAHHON ApXUTEKTYpOH (SOA). Juarpammel
nocnenoBareibHoctTd UML — rpadudeckue momenu, MOAXOSIIUE JUIS MPEACTABICHUS
B3aMMOJICHCTBUH B T€TEPOTreHHBIX KOMIIOHEHTHBIX CHCTEMaX, B YAaCTHOCTH, B HaGHparomux
ceifyac momyisipHOCTE MHPOpMamWoHHBEIX SOA-cucremax. OmnMCBHIBaeMBIE METOL
HCTIONB3YyeT Tpacchl ncronHenus: SOA-cucTeM, IpeICTaBICHHBIE B BUIE)KYPHAIOB COOBITHI.
Iloutn Bce coBpeMeHHBIE MH(GOPMALMOHHBIE CHCTEMBI HMEIOT BO3MOXKHOCTH 3aIllCHIBATh
pe3yIabTaTHl CBOSH PabOTH B JKYpHAIBI COOBITHIL, KOTOPHIE HCIONB3YIOTCS B OCHOBHOM IS
nporecca OTIagkH. Ilo CpaBHEHHMIO C TPATULIUOHHBIMH TEXHHKAMH aBTOMaTHYECKOTrO
CHHTE3a MOJeJeil, KoTopble TpeOyIoT He BCerna MMEIONIMHCS MCXOJHBIH KOI IS CBOEH
paboThl, HAll METOJX JUIi aBTOMATHYECKOTO MOCTPOCHUs JHMArpaMM IOCIEI0BaTeIbHOCTH
UML paGortaeT TONBKO C JOCTYIHBIMU >KypHaJlaMH COOBITHH ¥ HEKOTOPBIMU
IBPUCTHIECKUMH JTaHHBIMU. METOZ COCTOMT M3 HECKOJIBKUX 3TaroB MOCTPOCHUS IHArpaMM
nocneaoBatenbhoctt UML B 3aBUCMMOCTH OT pa3HOM TNEpCHEeKTHBBI, 3aJaHHOM
aHamUTUKOM.OHHM BKJTIOYWAIOT OTOOpakeHHe aTphOyTOB JKypHajla COOBITHI Ha 3IIEMEHTHI
JMarpaMMBl ¢ BO3MOXKHOCTBIO 33/1aTh YPOBEHb aOCTPAKIMH Yepe3 MapaMeTphl, TPYIITHPOBKY
HEKOTOPBIX KOMIIOHEHT JuarpaMmbl u IMOCTPOCHHUE HEPAPXHUICCKUX Juarpamm
MOCJIEZIOBATEILHOCTH. MBI IpeiaraeM rpyninupoBaTh HEKOTOPbIE KOMIIOHEHTHI (COOOIICHUS
U JIMHHUU JKU3HU) Ha OCHOBE PETYIIAPHBIX BBIPAXKEHUH U CTPOUTH HEPAPXUUECKUE JHATPAMMBL,

100

Hasbinosa K.B., lllepurakos C.A. MeTozx aBTOMaTHYecKoro nocTpoenus nepapxudeckux UML-auarpamm
TOCJIeIOBATEIBHOCTH C 33/1aBaeMBIM YPOBHEM JIETATHN3ALNK HAa OCHOBE KypHanoB coObrtuid. Tpyast UCIT PAH, Tom 28,
BoII. 3, 2016. ¢.85-102.

UCHOJIb3YsS BIIOXKCHHbIE (parMeHThl. MBI anpoOUpoBaiM JAaHHBIH METOA IIPU IMOMOIIH
paspaboTanHoro B BHAe IularuHa Microsoft Visio mpotoTtumna. Ilnarua cTpouT auarpamMmy
nocnenoBarensHoctTt UML Ha OCHOBe 3aJaHHOTO JKypHasa COOBITHH B COOTBETCTBHH C
HabOpPOM HacTpanBaeMBbIX I1APaMETPOB.

KnioueBble cjoBa: KypHan coOBITHH; aAumarpamMma mocienosaTtensHoctd UML;
ABTOMAaTHYECKOE BBIBE/ICHUE MOJIEIICH; U3BIICUCHIE TIPOIIECCOB.

DOI: 10.15514/ISPRAS-2016-28(3)-6

Ja nuruposanus:/lassiiosa K.B., Illepmakos C.A.MeTox aBTOMaTHYECKOTO MOCTPOCHUS
uepapxudecknx UML-auarpaMM mocienoBaTeIbHOCTH C 3a/1aBa€MbIM YPOBHEM A€TaIN3aUU
Ha OCHOBE KypHaNoB coObItuit. Tpyos: UCII PAH, tom 28, Beim. 3, 2016. ctp. 85-102 (Ha
anrnmiickom). DOI: 10.15514/ISPRAS-2016-28(3)-6

Cnucok nutepaTtypbl

[1]. OMG. OMGUnifiedModelingLanguage (OMGUML), Superstructure, Version 2.4.1,
August 2011.

[2]. W. M. P. vanderAalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[3]. V.A. Rubin, S.A. Shershakov System runs analysis with process mining. In Modeling
and Analysis of Information Systems, pages 818-833, 2015.

[4]. A. Rountev, B. H. Connell. Object naming analysis for reverse-engineered sequence
diagrams. In Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 254-263, New York, NY, USA, 2005. ACM.

[5]. A. Rountev. Static control-flow analysis for reverse engineering of uml sequence
diagrams. In Proc. 6th Workshop on Program Analysis for Software Tools and
Engineering (PASTE’ 05), pages 96-102. ACM Press, 2005.

[6]. P. Tonella, A. Potrich. Reverse engineering of the interaction diagrams from C++ code.
pages 159-168. IEEE Computer Society, 2003.

[7]. E. Korshunova, M. Petkovic, M. G. J. van den Brand, M. R. Mousavi. Cpp2xmi:
Reverse engineering of uml class, sequence, and activity diagrams from C++ source
code. In WCRE, pages 297-298. IEEE Computer Society, 2006.

[8]. Sparx Systems’ Enterprise Architect. http://www. sparxsystems.com.au/products/ea/.

[9]. IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

[10]. Visual Paradigm. https://www.visual-paradigm.com/ features/.

[11]. Altova UModel. http://www.altova.com/umodel.html.

[12]. MagicDraw. http://www.nomagic.com/products/magicdraw.html.

[13]. StarUML. http://staruml.io.

[14]. ArgoUML. http://argouml.tigris.org.

[15]. H. Osman, M. R. V. Chaudron. Correctness and completeness of CASE tools in reverse
engineering source code into UML model. The GSTF Journal on Computing (JoC), 2(1),
2012.

101

K.V.Davydova, S.A. Shershakov. Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA systems
while Balancing between Abstracted and Detailed Models.Trudy ISP RAN/ Proc. ISP RAS], 2014, vol. 28, no 3, pp. 85-
102.

[16]. L. C. Briand, Y. Labiche, J. Leduc. Toward the reverse engineering of uml sequence
diagrams for distributed java software. IEEE Trans. Softw. Eng., 32(9):642-663,
September 2006.

[17]. R. Delamare, B. Baudry, Y. L. Traon. Reverse-engineering of UML 2.0 sequence
diagrams from execution traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

[18]. T. Ziadi, M. A. A. da Silva, L. M. Hillah, M. Ziane. A fully dynamic approach to the
reverse engineering of UML sequence diagrams. In Isabelle Perseil, Karin Breitman, and
Roy Sterritt, editors, ICECCS, pages 107-116. IEEE Computer Society, 2011.

[19]. Y.-G. Guéhéneuc. Automated reverse-engineering of UML v2.0 dynamic models. In
Proceedings of the 6 th ECOOP Workshop on Object-Oriented Reengineering.
http://smallwiki.unibe.ch/WOOR, 2005.

[20]. OMG. The OMG and Service Oriented Architecture, 2006

[21]. S. Owens, J. Reppy, A. Turon. Regular-expression derivatives re-examined. J. Funct.
Program., 19(2):173-190, March 2009.

[22]. Visio 2010: Software Development Kit, 2010. https://www.microsoft.com/en-
us/download/details.aspx?id=12365.

[23]. C. W. Gunther and E. Verbeek. XES Standart Definition version 2.0, 2014.

[24]. S.A. Shershakov. VTMine framework as applied to process mining modeling,
International Journal of Computer and Communication Engineering vol. 4, no. 3, pp.
166-179, 2015.

102

