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1. Introduction 

The development of complex systems is always a sophisticated task. The develop-

ment of complex safety-critical systems, where the cost of errors is especially high, 

is particularly complicated. Modern best practices suggest that precise and accurate 

requirements management is an important element to solve that task. 

Requirements managements in the context of safety-critical system development 

include the following aspects: 

• building a catalogue of requirements; 

• traceability links to sources of requirements; 
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• traceability links from other development artefacts like tests and code to 

requirements; 

• configuration and version management; 

• change management including change impact analysis. 

The paper presents a formal definition of a metamodel that is used as a basis of 

Requality requirements management tool that is aimed to cover all the aspects. Im-

plementation details of the metamodel in the tool are also discussed and future di-

rections are considered. 

2. Related works 

The problem of requirements management is not a new one. This activity was 

known as a very important one for years. As an example we may cite a publication 

from 1997: 

“The inability to produce complete, correct, and unambiguous software require-

ments is still considered the major cause of software failure today” [1].   

But the requirements engineering task is still the subject of different investigations. 

Some of them defines a methodology [2], a model [3] or a framework [4]. Also, 

there are papers presenting development story of some tools, like [5]. 

Some papers describe both requirements model and its application in a specific tool. 

For example [6] designs a tool for management of requirements in form of specific 

models or [7] that defines some details about a feature management tool for product 

lines. Another paper [8] defines requirements as constraints and examine core con-

cepts related to its implementation in a real tool. 

There are many commercial requirements management tools with a little infor-

mation about architecture and implementation details. There only a few open source 

tools are known and cited in publications like ProR [9] or ReqLine [10]. 

None of the papers on the tools discusses its core model in a formal way. Some ap-

proaches and models are listed in [11] but it specifies mostly methodological as-

pects. 

3. Base model 

3.1 Preliminaries 

The process of software development can be made in different ways. There are 

some general views on requirements management tool’s functions but the set of 

requirements for this tool in specific areas may be different. 

One of the ways to deal with such problem is to develop a model for that tool. This 

approach can be found in [7] or [8]. The model helps to define core concepts of the 

tool and prove some theorems over its functions. 

We need to provide some terminology before starting a model. First, we will define 

what the requirement is. In this paper, requirement means a limitation or definition 
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of some system’s or component’s functional. For our model requirements are 

unique objects that may have a specific description written by natural language and 

are placed in some tree structure defined below. 

3.2 Base model 

Definition 1. A tree G is a triple (V, E, r0), where: 

• V - a set of vertices. 

• E⊂V xV - a set of edges that is an asymmetrical relation on V. 

• 
r0∈V

- a root of the tree. 

• There are no incoming edges for r0 and there are no more than one incom-

ing edge for the other vertices. 

• All vertices are reachable from r0. 

If (v1, v2) ∈  E then v1 is denoted as a parent(v2), while v2 is called a child of v1. We 

define relation reachableE(v1, v2) as a transitive and reflexive closure of the relation 

E. 

Definition 2. Attributed tree AT = (G, Key, Value, attrs) consists of: 

• a tree G = (V, E, r0); 

• a set of attribute keys Key; 

• a set of attribute values Value; 

• a functional relation attrs: V → (Key → Value) that provides each vertex 

with a set of attributes. 

A set of all possible attributed trees is denoted as ATrees. 

An attributed tree is a convenient framework to represent requirements [12] with the 

following semantics. If a vertex v ∈  V represents a requirement for a target system 

and there are children v1, … vn of v, then the children represent a decomposition of 

the requirement v. In other words, if a system satisfies to requirement v then it satis-

fies to all requirements  v1, … vn and vice versa. 

Attributes of vertices contain various information about the requirements, for exam-

ple a unique identifier, description of the requirements in natural language, its repre-

sentation in a formal notation, version, etc. 

An interesting particular case is the attributes, whose value is a vertex v ∈  V or a set 

of vertices vs ⊆ V. It allows to define and to manage relations between different 

vertices. For example, such attributes can be used to represent traceability links be-

tween high level and low level requirements. Formally, this case is achieved if V ∪  

(V) ⊆ Value. 
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4. Declarative model 

4.1 The extension of the base model 

The base model of requirements catalogue is an attributed tree, where each require-

ment has a particular set of attributes. This model is convenient for analysis of the 

catalogue, e.g. for formal analysis, analysis of test coverage, traceability analysis, 

etc. At the same time, it is difficult to manage such model manually because there 

are usually many interdependencies between elements and its attributes. Here and 

after term vertex (element of set V) and elements of requirements catalogue are used 

interchangeably. 

That is why we introduce a declarative model of requirements catalogue that allows 

us to automate the handling of such dependencies. The purpose of the declarative 

model is to store requirements catalogue in more compact and manageable way. 

The declarative model is defined stepwise. Each step is accompanied by definition 

of the transformation of the declarative model to the raw basic model. 

4.2 Predicates 

If requirements are developed for a product line, there is a number of requirements 

shared between different variations of the product. A natural wish is to have a single 

requirements catalogue for the product line and the ability to build a specific one for 

a particular version of the product. That means there is a need to delete a subset of 

requirements from the catalogue if the subset is not applicable to the target product. 

The similar situation happens when a catalogue is used to represent requirements of 

several revisions of a standard or to represent requirements of a standard with op-

tional elements. 

To introduce such ability we propose to choose especial key predicate ∈  Key, 

whose values are boolean. If an element has attribute predicate with value false, this 

element and all its children are removed from the catalogue during transformation. 

The first declarative model DM1 is an attributed tree ((V, E, r0), Key ⊔ {predicate}, 

Value, pattrs) that is transformed to the base model ((V', E', r0), Key, Value, attrs) 

according the following rules: 

• V' = {v ∈  V: ∀  v' ∈  V reachableE(v',v)         

     predicate ∉  pattrs(v') ∨  pattrs(v')(predicate) ≠ false }; 

• E' = E ∩ (V' × V'); 

• ∀  v∈V' attrs(v) = {(k,val)∈ pattrs(v): k ≠ predicate} 

4.3 Calculated attributes 

It is an often situation when attribute value depends on values of the other attributes 

of the same element or even on attributes of the other elements. To express such 

dependencies explicitly we propose the second declarative model DM2 that is an 

attributed tree (G, Key, FValue, fattrs), where 
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• FValue = Func × Value; 

• Func = ATrees × V × Key × Value → Value. 

The declarative model DM1 corresponding to the model DM2 is an attributed tree 

(G, Key, Value, attrs): 

∀  v ∈  V (k,val) ∈  attrs(v) iff   

    ∃  (k, (func,fval)) ∈  fattrs(v): val = func(AT, v, k, fval) 

To build such requirements model it is required to solve a set of equations defined 

by fattrs. A simple approach is to apply fixed point iteration, while some additional 

implementation details will be considered in section V. There are declarative mod-

els that define a set of equations with no solutions or with non-unique solutions. A 

simple but reasonable limitation that allows avoiding such models is a prohibition of 

cyclic dependencies between attributes. 

A particular case when an attribute has a constant value val is represented in the 

declarative model DM2 as a pair (prj4, val), where prj4 is a projection function by the 

fourth argument: prj4(AT, v, k, val) = val. Please note that in DM2 predicate is con-

sidered as a regular element of the set Key. 

4.4 Attribute scope 

Another often situation happens when an attribute is applicable to the whole subtree 

and it has the same value for all elements. Or a similar case is when an attribute is 

applicable to all children of the particular element. 

To handle such situations we propose the third declarative model DM3 that is an 

attributed tree (G, Key, SValue, sattrs), where SValue = FValue × Scope,   Scope = 

{SL, SDC. SS} with an element having the following semantics: 

• SL – an attribute is available only in the element where it is defined. 

• SDC – an attribute is available in the element where it is defined and in all 

its direct children. 

• SS – an attribute is available in the element where it is defined and in all its 

successors. 

An example of attribute scope can be seen on Fig. 1. White rectangles are Vs. Ar-

rows mean child-parent relation. Attribute with some scope is defined in r0. Grey 

rectangles represent different possible scopes of A and the subtrees where it will be 

accessible. 

\A transformation of declarative model DM3 to the model DM2 is straightforward: 

DM2 is an attributed tree (G, Key, FValue, fattrs), where fattrs(v) = {k → fval} such 

that 

• (1) {k → (fval, anyscope)} ∈  sattrs(v) 

• (2) {k → (fval, SDC)} ∈  sattrs(parent(v)) if rule (1) is not applicable, 

• (3) {k → (fval, SS)} ∈  sattrs(v') if rules (1) and (2) are not applicable ∧  

reachableE(v',v) ∧  
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∀  v'' ∈  V ∀  val ∈  Value (reachableE(v'',v) ∧  reachableE(v',v'')) ⇒ {k → (val, SS)} 

∉  sattrs(v''). 

 

Fig. 1. Attribute scopes 

It is interesting to note that nonconstant scoped attributes can get different values in 

different elements because its function can depend on the vertex as a third argu-

ment. 

4.5 Reuse of subtrees 

The next item to consider is a situation when there are several subtrees of require-

ments that are very similar each other up to some limited number of details. In this 

case, it would be ideal to have a single copy of the subtree and the ability to clone it 

with some modifications. This approach is usually called reuse [13]. 

The fourth declarative model DM4 is an attributed tree ((V, E, r0), Key ⊔ {cp}, 

SValue, cpattrs) with especial key cp that satisfies the following constraints: 

• ∀  v ∈  V∀  value ∈  Value∀  s ∈  Scope cp ∈  cpattrs(v) ∧  cpat-

trs(v)(cp) = ((prj4,val), s) ⇒  

val∈  V ∧  ∀  v' ∈  V (v, v') ∉  E; 

• E ∪  {(v, cp(v))| v ∈  CC(DM4)} does not contain loops, where CC(DM4) = 

{v ∈  V| cp ∈  cpattrs(v)} and cp(v) - val∈  V from the constraint above. 

The transformation of the model DM4 to the model DM3 = 

((V', E', r0), Key, SValue, sattrs) is performed by the following algorithm: 

1. curDM4 := DM4 

2. If CC(curDM4) is empty, take DM3 = curDM4 with removing cp from the 

Key set and finish. 

3. Let curDM4 is ((V, E, r0), Key ⊔ {cp}, SValue, cpattrs). 

4. Choose any v0 ∈  CC(curDM4) such that  ∄  v ∈  CC(curDM4) reacha-

bleE(cp(v0),v). Existence of such element follows from lack of loops in E ∪  

{(v, cp(v))| v ∈  CC(DM4)}. 

5. Assume without loss of generality ∀  v∈V (v0,v)∉V. 

6. Build newDM4 = ((V', E', r0), Key ⊔ {cp}, SValue, cpattrs'), where 

• V' = V ∪  {(v0,v') | v'∈V ∧  reachableE(cp(v0),v') } 
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• E' = E ∪  { (v0,(v0,cp(v0))) }  ∪                           

{ ( (v0,v'), (v0,v'') ) | (v',v'') ∈  E ∧             

                         reachableE(cp(v0),v')} 

• ∀  v ∈  V\{v0} cpattrs'(v) = cpattrs(v) 

• cpattrs'(v0) = {(k,val) ∈  cpattrs(v0): k ≠ cp} 

• cpattrs'((v0,v')) = cpattrs(v') 

Please note that newDM4 satisfies both constraints of the fourth declarative model. 

7. curDM4 := newDM4 and goto step 2. 

Lemma 1. The algorithm terminates for any DM4  satisfying the constraints. 

The proof is based on the fact that the cardinality of  CC(curDM4) is decreased eve-

ry iteration because of the choice of the v0 at step 4 that guarantees that elements 

with attribute cp are not cloned, while one such element loses that attribute. 

Lemma 2. The result of transformation does not depend on the order of the selec-

tion of elements at step 4. 

The idea of the proof is that transformations that can be chosen in non-deterministic 

order make modifications in non-intersecting subtrees. 

Interesting to note that combination of reuse and predicate transformation can be 

used to define a generic subtree that is instantiated several times with different ar-

guments using reuse transformation and the original generic subtree is eliminated 

with predicate transformation. Also, predicate transformation can be useful to elim-

inate unneeded elements from the cloned subtrees. 

5. Implementation details 

5.1 Identification 

One of the important aspects of requirements management is requirements identifi-

cation. One of the common approaches it to assign a unique identifier to each ob-

ject, for example, some number or string. 

In addition to that it is possible to provide each element with a qualified identifier 

QID defined recursively on top of identifiers ID that are unique within children of 

the same parent: r0 has QID = '/ID', child v has QID = 'QID(parent)/ID'. 

Let us take some example of requirements for some system. If we use QID we can 

have a human-readable path for each requirement. For example, we may have an 

element with QID = "Functional requirements/Ports/req001". As seen from the path 

it has a parent "Functional requirements/Ports/" and its ID is req001. 

5.2 Calculated attributes 

There are two objects related to attributes in the implementation. The first one, at-

tribute definition A_DEF  represents a pair (func,fval) from the formal declarative 

mode, where func is of type ATrees × V × Key × Value → Value. The second one, 
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attribute A, represents a value of the attribute in the base model. A_DEF is used to 

calculate an actual value A when it is required. 

There are several kinds of functions supported in attribute definitions. 

The first kind is the constant functions prj4 that always returns fval value stored in 

attribute definitions. 

The second kind is template functions that stores in fval value a string with parame-

ters encoded in curly brackets, e.g.  "Hello, {K}". The value of the parameters to be 

used for substitution is taken from attribute with the encoded name, 'K' in the exam-

ple above, of the same element. 

The third kind is formula value generator that stores in fval value a string with an 

expression in a subset of JavaScript language that has access to attributes of the 

same element. 

The fourth kind is virtual attributes that are implemented in Java. They have no 

stored fval value at all, but they have access to the whole context of the element 

including the complete attributed tree. 

For example, Label attribute can take value of user-defined Name attribute if there 

is one or return system-defined identifier otherwise. Another example could be QID 

that calculates qualified identifier of the element as a concatenation via '/' of parent's 

QID with a Name of the target element. 

An important additional information that the tool is able extract from attribute defi-

nition is a set of attribute keys which values are required to calculate the actual val-

ue for the given attribute by the corresponding function. 

5.3 Attributes life-cycle 

For each attribute stored data includes function kind and fval. The pair (func-

kind,fval) is denoted A_ST. System-defined virtual attributes have no stored data, 

they are added to elements on the fly. 

Let us describe a common process of attributes loading for some requirement. 

1. Set of A_ST is loaded from storage to A_DEFS. 

2. Set of scoped attributes that are applicable to the target one is taken from 

its parent and is added to A_DEFS. 

3. The A_DEFS set is handled by Attribute_Calculation procedure described 

below. 

If  attributes are changed by the user using GUI session, the tool has the same 

A_DEFS set that contains a subset of changed attribute definitions. Then the tool 

applies the same  Attribute_Calculation procedure as follows. 

1. A_DEFS set is extended with attributes of the target element that depends 

on any attribute already belonging to A_DEFS. 

2. The order of evaluation of attributes from A_DEFS is calculated. The order 

can be defined as ORDER = (K1..Kn) where Ki is the key of the attribute. 

-∀Ki,Kj∈ORDER if Kj depends on Ki then i<j. 
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The algorithm is described in the next section. 

3. For each A_DEF in the A_DEFS value of A is calculated and placed to 

AS. 

After this procedure AS contains an actual state of attributes after provided changes. 

5.4 Order extraction algorithm 

As an input of order extraction, we have KEYS = (K1.. Kn) that is set of attributes 

name in some random order and DEPS = (Ki → (Kj1..Kjm) ) -  a map of attributes 

dependencies. The algorithm is as follows: 

1. ORDER is set to empty collection. 

2. OSET is the set of handling nodes. 

3. Extract revert dependencies DEPS_R. DEPS_K=(Kj → (Ki1.. Kil)). If Ki 

depends on Kj then DEPS_K contains Ki → Kj record. 

4. Place KEYS to OSET. 

5. Set flag MOD is to False. 

6.  In OSET look for candidate KK with DEPS_K[KK] = KSET that com-

plies one of following rules: 

◦ KSET is empty. 

OR 

◦ !∃Ki∈KSET: Ki∈  OSET. 

7. If KK was found then: 

1. MOD set to True. 

2. KK removed from OSET. 

3. KK  added to ORDER. 

8. If MOD = True & |SET|!= 0 then go to step 4. 

At the end of execution, the ORDER will contain the order in which A’s values cal-

culation. 

5.5 Attribute change management 

The introduction of scope and calculated attributes requires the management of at-

tributes changes to keep all dependent attributes up-to-date. 

There are two possible strategies to deal with attribute updates. The first approach is 

to commit all changes at runtime. The second one is to collect changes in AS and 

then apply them all by request. Immediate commit is tending to be simpler but more 

computing - intensive. Late updates require fewer calculations but need more 

memory. For our tool, we use the second approach because we have large cata-

logues with a possibility of complex relationships between its elements. 

Late changes can be defined in form of new object — changes set CS=(K → OP, 

K→ AOLD, K→ ANEW) where K is the key of attribute, OP ∈  (remove, create, modi-
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fy) is the operation over attribute, AOLD is the value of attribute in AS before opera-

tion,  ANEW is the new attribute value after operation. 

For attribute changes change set needs to store A_DEFS, so minimal CS = (K, K→ 

AOLD, K→ ANEW). To use these changes set we need to extend the model of attrib-

utes set of A. 

When all attribute modifications are collected we need to apply all that changes to 

calculate actual values of attributes. It is implemented in the same way as it was 

described in section V.C. 

One more problem with attribute changes is that some of the changes need to be 

propagated from one requirement to another. To deal with this problem we define a 

concept of change propagators. If A_DEF (virtual attributes only for now) depends 

on attributes from the external element it registers a function-change propagator that 

is called when some change set is applied to attributes of that element. The change 

propagator evaluates if the changes impact the target attribute and initiate its recal-

culation if it is required. 

5.6 Lazy loading 

When we speak about a model of requirements in some common application like 

avionics we need to take into account the number of distinct requirement. Some-

times the number of artefacts for such models tends to be in the thousands or tens 

thousands. In that case, direct management of requirements may require a lot of 

resources. 

To solve this problem we use the lazy loading principle. That means that AT will 

contain only those Vs that are requested during the usage of the model. In most cas-

es that means that in G we have a subtree GL∈G that contains r0 and some subtrees 

that are used during the current working session. 

But laziness of model leads to some difficulties. First of all, we need to overlook AT 

instead of ATL if we need to assure that V with given ID exists. This problem can be 

solved by caching id-related information in CacheStore that is always available. 

5.7 Attribute types 

 In practice, the value of an attribute may have one more property – a type. One pos-

sible set of types includes Integer, Boolean, String, Float. Also, we may define types 

for Collection and Enumeration. In most cases,  the value still is the simple constant. 

But some attribute types cannot be defined as a single value and need to store and 

manage some additional data. For example, Collection type may use specific object 

LIST = (TV, V1..Vn) where TV is the type of collection's value and (V1..Vn) are the 

values stored in the collection. 

One more specific type is Enumeration. First, enumeration requires definitions of its 

values. It can be made by means of ENUM_DEF = (VT, V1...Vn) that is similar to 

LIST one. But to define an attribute with one selected enumeration value we need to 

define one more object ENUM = (KB, VS) where KB is the key of A with 



Кильдишев Д.С., Хорошилов  А.В. Формализация метамодели системы управления требованиями. Труды ИСП 

РАН, том 30, вып. 5, 2018 г., стр. 163-176 

173 

ENUM_DEF and VS is the selected value. But in a case we introduce an ENUM, we 

need to ensure that for every ENUM we will have an AD where T = ENUM_DEF 

and VD will contain VS. 

5.8 References 

One more problem is the implementation of relations between elements of the cata-

logue. Some tools manage them as the set of specific objects placed in the distinct 

set. 

In our model relations are presented in form of specific attribute type REFERENCE. 

For this type we introduce value object REF_VALUE (REF, V, ERR) where REF is 

a string that can be resolved to V, usually containing some kind of identifier, V is 

the corresponding element if there is any matched by identifier, ERR is a string with 

an error message if REF cannot be resolved or contains incorrect value. 

In this case, REF_VALUE initially contains only REF field. If someone requires the 

result of REF_VALUE resolution then the tool tries to resolve the REF and then 

fills V or ERR. 

References are also required some additional handling to support its consistency. In 

a case REF or target V is changed we may need to track its changes and update re-

lated REF_VALUE. 

One more specific problem is reverted links. If we have a relation V1 → V2 we may 

need to know for V2 that it has a relation to V1. This kind of relations is called "re-

verse references". 

If links are stored in AT then we may use one more function (V2, LN) → V1 to store 

reverse relations. If we define a new type of attributes or the specific state of 

REF_VALUE then we face a problem of keeping it up-to-date. 

In our model, we store reverts links in the cache in form of (V2, LN) → (V1… Vn) 

function. That allows us to easily get revert links on V2 if the state of cache is valid. 

In a case of completely loaded AT the problem is not so difficult to solve because 

we always have the actual state of every V. But we cannot guaranty the V’s state in 

case of a partially loaded AT that happens in case of lazy loading. 

If we have some loaded ATL⊆AT, relation (V1, LN) → V2, V1∉AT∧V2∈AT then if 

we need to get revert links on V2 we may need to load the whole AT to be sure that 

all possible V1 were found. 

In our case, this problem is solved by storing reverse links in the cache. But in this 

case, we still have one necessary problem. Let us introduce some link L(V1, V2, 

LN). If we already resolve this link then the record in cache tends to be present. But 

what if we introduce V2 in the model when V1 is loaded and the link is resolved was 

not found? The situation takes place when V2 is loaded by the lazy method, created 

or modified. 

In the worst case, we need to track changes of the whole AT for all links. A better 

solution is to manage some kind of scope for which link tends to be resolved. That 

is not implemented yet, but it is in our plans. 
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Relations can be used for some specific activities. One of them is changes manage-

ment. Changes management is performed when some V1 with links (L1..Ln) is 

changed. In this case, some operations will be performed on V’s obtained from 

L1..Ln. The nature of such operation can be different. For some tools, those Vs will 

be marked in a model with the specific flag. In other cases, the models can define 

additional actions depending on the kind of change. 

Conclusion 

We presented a formal metamodel that is used as a basis for building Requality re-

quirements management tool. We covered different difficulties related to its imple-

mentation. But the experience demonstrates that the model allows handling quite 

big requirements catalogue with many relations between its elements. 

The future work includes analysis and implementation of new kinds of functions for 

calculated values and development of user-friendly patterns for solving common 

user tasks on top of the semantics defined in the paper. Another direction is research 

of possible compositions of the formal model provided by the tool and formal mod-

els used to represent particular requirements. 
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Аннотация. В рамках данной статьи рассматривается метамодель, лежащая в основе 

системы управления требованиями Requality. Базовая модель представляет собой дере-

во, каждой вершине которого сопоставлен набор именованных и типизированных 

свойств. Базовая модель проста и удобна для представления семантики набора требо-

ваний, но оказывается не особо пригодной для формирования и сопровождения сколь-

ко-нибудь сложных каталогов требований. Поэтому авторами вводится набор деклара-

тивных моделей, позволяющих описывать каталог требований более компактным обра-

зом. При этом семантика декларативных моделей задаётся при помощи определения 

трансляции в базовую модель. Эти возможности обеспечивают гибкий инструментарий 

для компактного описания типовых наборов требований. Также в статье рассматрива-

ются особенности реализации представленной метамодели в системе управления тре-

бованиями Requality.  В заключении предлагается исследовать комбинацию представ-
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ленной модели каталога требований с формальными моделями, позволяющими описы-

вать семантику каждого требования в отдельности. 
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