Rock Flow Simulation by High-Order
Quasi-Characteristics Scheme

Mikhail P. Levin <mlevin@ispras.ru>
Ivannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. A pure second-order scheme of quasi-characteristics based on a pyramidal stencil
is applied to the numerical modelling of non-stationary two-phase flows through porous
media with the essentially heterogeneous properties. In contrast to well-known other high-
resolution schemes with monotone properties, this scheme preserves a second-order
approximation in regions, where discontinuities of solutions arise, as well as monotone
properties of numerical solutions in those regions despite of well-known Godunov theorem. It
is possible because the scheme under consideration is defined on a non-fixed stencil and is a
combination of two high-order approximation scheme solutions with different dispersion
properties. A special criterion according to which, one or another admissible solution is
chosen, plays a key role in this scheme. A simple criterion with local character suitable for
parallel computations is proposed. Some numerical results showing the efficiency of present
approach in computations of two-phase flows through porous media with strongly
discontinuous penetration coefficients are presented.
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1. Introduction

In recent fifteen years many high-resolution numerical schemes modifying Godunov
scheme have been proposed (see, for instance, [1-5]). However, the problem of
development of high-order schemes with monotone properties in regions near the
discontinuities of solutions remains in the focus of activities for many researchers in
numerical methods for partial differential equations (PDE) and in computational
fluid dynamics (CFD). According to the well-known Godunov’s theorem, second-
order explicit monotone schemes on the fixed stencils do not exist. Up to now, two
different ways to resolve this restriction are known. The first one uses the idea of
lowering the approximation order in the narrow regions near the discontinuities of
solution. In fact, this approach has been realized in most of the modern high
resolution schemes, because they set some restrictions on the recovery functions or
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limiters to provide the monotone properties of solutions in zones where the
discontinuities could arise. An excellent analysis of this approach is presented in
[3,5]. Therefore, most of high-resolution schemes cited above are hybrid schemes,
because their approximation order is lowered in the zones near the discontinuities.
Various hybrid quasi-characteristics schemes for the solution of supersonic
aerodynamics problems and two-phase porous media problems were developed and
considered in [6-11].

The second way consists in the construction of high-resolution schemes on the non-
fixed stencils. For instance, one can apply two or more high-order schemes defined
on different stencils and choose a final solution in each nodal point among
admissible solutions to provide a monotone properties in regions where the
discontinuities could arise. Such approach was considered in [12-14]. In these
articles, various quasi-characteristics schemes of the second-order were proposed
and considered. All these schemes use a combination of two second-order
approximation scheme solutions having the different dispersion properties. A
special criterion according to which, one or another admissible solution is chosen
between two admissible solutions to provide the monotone properties near the
discontinuities, plays a key role in this scheme. In [12-13], a heuristic criterion
based on the third-order theoretical estimation of the average value of the governing
equation operator with respect to the grid cell is proposed. Unfortunately, it has a
non-local and directed character and could not be easily adopted in multi-
dimensional case and in parallel computations. In [14], simpler local and non-
directed heuristic criterions suitable for parallel computations are proposed. As is
shown in [12], the quasi-characteristics schemes are more accurate than fourth-order
approximation schemes in computing of the initial-value problems for the PDE of
hyperbolic type, because the quasi-characteristics schemes are generalization of
well-known back-ward characteristics schemes which are essentially more accurate
in comparison with all other well-known numerical schemes. The reason of this
consists in the naturally accurate treatment of the characteristic properties of the
governing equations by the quasi-characteristics schemes in comparison with
Godunov’s type schemes based on the conservation laws treatment. Therefore, in
recent years, various numerical schemes based on characteristics were proposed
[15-19] for the solution of initial boundary value problems for reaction-diffusion
equation and for correct setting of boundary conditions in decomposition of such
problems.

In this article, we consider the application of a new multidimensional scheme of
quasi-characteristics to the numerical simulation of two-phase flows through porous
media with strongly discontinuous penetration coefficients. This scheme
approximates a transport equation in the system of the porous media equations on
the pyramidal stencil without any splitting. A simple criterion suitable for the
selection of final solution among two admissible solutions to provide the monotone
properties of the final solution without spuriuos oscillations is proposed. Numerical
results for various ratio of penetration coefficients are presented. These results show
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that the technique considered here could be efficiently used for the accurate
numerical modelling of flows through the essentially heterogeneous porous media.

2. Governing equations, initial and boundary conditions

Let us consider the problem of a numerical simulation of two-phase flows through
essentially heterogeneous porous medium with piece-wise constant absolute
penetration factor. In the two-phase case, the governing equations [20] can be
presented in the following form with respect to the water saturation s and the
pressure p as unknown functions
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Here m is a porosity factor, k = k(z,y) is an absolute penetration factor of porous
medium, k., = k. (s) and k, = k,(s) are a relative penetration factors of water and
oil, 1, and p, are a viscosity of water and oil. Let us notice that the oil saturation
s, can be evaluated by the water saturation according to the following simple
formulas, =1 —s.

Since the relative penetration factors %, and k, are functions only of water
saturation s, then equation (1) can be presented as follows
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Now we see that the system of governing equations (23) is of mixed type. Equation
(3) is a nonlinear transport equation of hyperbolic type and the equation (2) is of
elliptic type. Let us consider the transport equation (3) as a main governing equation
and the elliptic equation (2) as a nonlinear restriction for coefficients of the main
governing equation. Then we can apply the quasi-characteristics technique to solve
the initial boundary-value problem for the transport equation and also on each time
level we need to solve the boundary-value problem for elliptic equation to define the
coefficients of the governing equation. In our approach, for the solution of the
boundary-value problem for the elliptic equation we use the well-known five points
finite difference conservative scheme and bi-conjugate gradient algorithm as in [7,
11].

Let us consider rectangle flow regions D =0 <2z <L, 0 <y < H divided into
two subregions D1 = 0.2L <z <0.8L, 0<y < Zand D, = D — D;.

The absolute penetration factor % in each subregion is a constant function, therefore
in all region we have
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Initial conditions for the transport equation (3) are
_[02, if 0<z<L, 0<y<H,
S(.’L‘yy70)_{ 1.0, if =L, 0<y<H (5)

and the boundary conditions are

%zo,ﬁt>ay=QHyogng;

s(Lyy,t)=1.0,if 0<y<H, t>0.

(6)
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£ 6L | . @sE &
X

Fig.1. Flow region

For the pressure equation (2) of the elliptic type we set a mixed Neumann and
Dirichlet boundary conditions as follows
I —0,if O<z<L,y=0H;

dy
= if a=L, 0<y<H.

P, and Qg are known parameters here. The relative penetration factors of the water
k., and oil k, are chosen as follows

0, if s<0.1;
¥, if 01<s<0.8; (8)
1, if s>0.8;

1, if s<0.1;
)3
0

kuw(s) = (56.07'1

if 0.1<s<08; (9)
, if $>0.8.
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Physically, the initial boundary value problem (2-9) describes two-phase porous
media flows between two horizontal wells, where the left boundary = =0
corresponds to the production well and the right boundary = = L corresponds to the
injection well.

3. Numerical scheme

In this section, we consider a non-splitting quasi-characteristics scheme on the
pyramidal stencil applied to the solutions of the transport equation (3). Non-splitting
scheme means that we do not use in our scheme any splitting technique for solution
of the couple system of finite difference equations approximating the governing
partial differential equation. It is very important in application to problems with
heterogeneous coefficients, because in such problems sometimes splitting leads to
the lowering of exactness of solutions. We develop this scheme with respect to the
3D transport equation written in the generalized form as follows

hudiad == = 10
8t+b18x+b28y bs, (10)

satisfying the following initial conditions
U(O,I’,y) = uo(x,y) . (11)

Here u(t, ,y) is a searching function and b; = b;(t,z, y, u, 9%, g—’;), (i=1,2,3)
and ug(z,y) are given.
In quasi-characteristics schemes [10], we approximate the governing equation

written in the expanded characteristics form along some spatial grid lines [ (quasi-
characteristics) in (¢, x, y) space as follows
du dx. ,0u dy. . 0u

(—)H-[bl—(E)z]%+[b2—(ﬁ)z]a—y =b3 . (12)

Here (%)z is a total derivative of the searching function « with respect to ¢ along
line .

As quasi-characteristics usually are used some grid lines belonging to the
considering stencil. They should lie in close vicinity with respect to the
characteristics of governing equation, and sometimes can coincide with them.

Now we consider a uniform, for simplicity, in each direction finite-difference grid
in space (¢, x,y). We denote grid steps 7, h,, and h, respectively. Let us consider a
pyramidal stencil P,P,P;P,R in the grid space. suppose that its basement
P, P, P; P, belongs to some data layer t =t and vertex R belongs to the new layer
t=to+ 7. Coordinates of the above mentioned vertices are follows:
Pi(to,zo + hayyo — hy),  Pa(to,xo + hayyo + hy),  Ps(to,zo — ha,yo + hy),
Py(to, o — hayyo — hy), R(to+ 7,20,90). Also we take into consideration
mo(to, Zo, yo) @ center point of the basement of the pyramid stencil and denote the
nodal points corresponding to the central points of the pyramid basement ribs as
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follows: my(to, o + hasYo),  m—(to,To — hayYo),  n4(to, To, Yo + hy),
’n,,(to, Zo,Yo — hu)
We suppose that the characteristics of the transport equation going through the point
R is lying inside the considering stencil and as a quasi-characteristics we can
choose ribs P;R of the pyramidal stencil. Then approximating the expanded
characteristic form of the governing equation along these lines, we obtain

URUP; TR—TP; 1/ 0u

———+[b1)p,r — —(55) PRt

+H(b2) PR — (G ) PR = (b3) PR,

where: =1,2,3,4,

(13)

Fig.2. The pyramidal stencil

According to [10] we take the following approximation of the outward derivatives
at the middle layer t = to + 3

ou ou

(%)t:twg = (%)0 + (x = 20)W +d(y — vo) , (14)
(Godimiors = (5o + (= w0V +do = z0) 15)

Here we take a center point of the middle section of our stencil (o + %, x0,%0) as

the point C' (or C;) and choose values W and V' (or W; and V7 ) at the middle
layer to + 5 by the formulas

W[ = W(mo) = %[

Upy —2Un_ tup,

h 2
Um . —QUmQO U _ + uUp, —2u7m12+ +up, ] (16)
h(t ha: ’
o _1 up, —21LM+ +up,
Vi=V(mg) =3 [7%2 a”)
Un | —2Umg+Un _ Upy —2Um _ +UP,
h?/2 + h‘yz ] ’
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We denote as W (mg) and V' (my) the finite difference operators approximating the

second order derivatives of the searching function with the second order
approximation error on the appropriate stencil with middle point mo .
By substitution of relations (14-17) into (13), we obtain a system of four equations

with respect t0 ur , (5%)c, (§%)c and d. Solving it we obtain %, . In non-linear

case, we need to do three iterations on nonlinear coefficients as is usually done in
the method of characteristics. We call the scheme considered above scheme I.
Now we construct a second scheme of the second order approximation with
different dispersive properties in comparison with scheme I. For this purpose we
choose point C7; and values W;, V;; according to the following formulas
Zf bl(zo,yo,to) > 0 and bz(xo,yo,to) > O
then W[[ = VV(P4), ‘/]] = V(P4) 5
Cr1 = (Pag, Pay,to + %)
Zf bl(xo,yo,to) >0 and bg(l‘o,yo,to) <0,
then Wi =W(Ps), Vip=V(Ps),
Cr1 = (P3g, Py, to + 3)
Zf bl(xo,yo,to) <0 and bg(l‘o,yo,to) <0,
then W[[ = W(Pg), ‘/]] = V(Pg) ,
Cr1 = (Pag, Poy,to + 5) ,
if bl(zo,yo,to) <0 and bg(xo,yo,to) >0,
then Wi = W(Pl), Vir = V(Pl) ,
Crr = (Piz, Pry,to + %) .
By substitution of relations (14-15) and (18) into (13), we obtain a system of four
equations with respect to uz , (3%)c, (%)c and d. Solving it we obtain u%!. As

was mentioned above in non-linear case, it is necessary to do three iterations in
evaluation of u£!. We call this scheme scheme I1.

In [12-13] for 2D case, it was shown that by choosing one of two non-monotonous
admissible solutions of the second order approximation with different dispersive
properties, one can construct the final solution with monotone properties. As in the
papers cited before, the criterion for the choosing the final solution is based on the
analysis of the average value of the governing transport equation operator evaluated
on each elementary mesh cell by the high order quadrature formulas. In this
criterion, the history of computations in previous grid points is taken into account
and therefore is not suitable for the parallel computations and in multi-dimensional
case. For 2D case, a simpler heuristic criterion based on the minimization of the
rough approximation of the average value of governing operator was proposed in
[14]. This criterion does not take into account the history of computations. It has a
local character and it is suitable for the parallel realization.

In this paper, we construct a simple heuristic criterion as a minimal principle for the

increment of searching function over the stencil in following form
U final Coumy+Cirup, +Coupy, +C3up; +Caup, ‘
R Co+C1+C24C3+Cy ’

— mi %
=M= T |uR —
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Here C;, 1 =0,1,2,3,4 are some constants to be chosen. As our numerical tests
show, the best result  corresponds  to the  following set
Co=1,C;=0,i=1,2,3,4

Thus the final solution in each grid point is chosen among two admissible solutions
ul, and u£! according to the following simple mi_nimal principle

up™ = min,_s rr |[ul — Um, |- (20)

It is easy to see that this principle has a local character and it is very suitable for
parallel computations, because it allows in principle to provide computations of
searching function in each grid node independently in separate processors in
computers with massive parallel processors and in computers with pipe-line
processors it allows to provide the maximal loading of pipe-line.

4. Results of computations

Now let us consider some numerical results obtained by the proposed method.
Computations were carried out for the following values of parameters m = 0.2,
kp, =1.0- 1072 m?2, 4y =1-100 N-sec-m™2, o =3-10"6 N - sec- m =2
, L=H=100m, Py=0, Qp=0.69444-10"12 m? - sec™!. Parameter kp,
varies in the range from 0.50- 1072 m? to 0.01- 102 m2. Thus the absolute
penetration in the subregion D, is 2 to 100 times less than those in subregion D, .
Presented results correspond to the uniform grid with 61*61 nodal points in (X,y)-
space.

The first series of results corresponds to kp, = 0.5-10~'2 m?. Fig.3 shows the
isolines of water saturation s and appropriate 3D chart for time ¢ = 400 hours.
Fig.4 and 5 show the same results for ¢+ =800 hours and ¢ = 1200 hours
respectively.

Fig.6 shows two functions characterizing the efficiency of the oil recovery process
by the water drive. Line 1 corresponds to the ratio of the recovery oil to the total oil
volume in initial moment ¢ = 0 with respect to time

J11 = s(z,y,t)|dzdy

o(t) =2 21
€ JI1 = s(z,y,0)]dzdy *)
D
and line 2 corresponds to the function
L
YL -
Y(t) = 7 (22)

L
J (B Eo) SE]ody
0

-
s
Q
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describing the water content in ihS development mixture at the production well
corresponding to the boundary =y According to the presented results we can see
that the solution of the considering problem has a wave type and the %ont of water
wave solution is spreang faster in the upper part of the flow region ~2 with high
penetration. Subregion ! with low penetration plays the role of the partial obstacle
and the water wave also is spre%ding_irbtﬂ?seléegip% but more slowly. The second
series of results corresponds to "t and the appropriate results
are presented on Fig.7-10. In this case, we can see that there are two shock-type
water waves in the considering flow. The first wave corresponds to isolines 0.25 and
0.35 and the second corresponds to 0.45 and 0.55. According to the presented
results it is easy to see that the first shock wave is spreading through the region with
the low penetration, but the second wave stays near the right border of the low
penetration subregion.

The third series of results corresponds to kp, = 0.01-107'2 m? and the
appropriate results are presented on fig. 11-14. In this case, the water is not
spreading through the region with the low penetration and the water wave front is
stopping near the right border of the low penetration subregion, which plays a role
of a solid obstacle in the flow region.

Time t=400 hours Time t=400 hours

L )
8 8
90 e 5 &
80 £
N
3
70
&0
Y 2
50 5 2, E o
40 s
0
20
88 53
i 11 1 511
. i
0 10 20 30 40 &1 B0 70 8 8l 100

Fig.3. The water saturation at ¢ = 400 hours. kp, = 0.50 - 10712 m?.

Time =800 hours Time 1=B00 hours
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Fig.4. The water saturation at¢ = 800 hours. kp, = 0.50 - 10712 m?.

Time t=1200 hours Time 1=1200 hours
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E 2
% 2
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9
40 &0 B0 70 &0 90 100
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Fig.5. The water saturation at ¢ = 1200 hours. kp, = 0.50 - 10712 m?.
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Fig.6. Characteristics of efficiency of oil recovery.
Line 1-6(t),line2 -y(t). kp, = 0.50 - 10712 m?.

The analysis of the efficiency of the oil recovery process shows that after the
moment ¢ = 250 hours, when the water wave in the upper part of the flow region is
close to the production well (boundary = = 0), the efficiency falls down and oil
from the low penetration subregion and even from the high penetration subregion
(0<z<0.2L, 0 <y <0.5H) almost can not be developed by the water drive.

206



Jleun ML.II. YncneHHOE MOJICITHPOBAHHE IBYX(A3HBIX TCUCHUH Yepe3 CYIECTBCHHO IeTEPOreHHYIO IIOPHUCTYIO CPeITy
CXeMOH KBa3HMXapaKTEePUCTHK BBICOKOTO nopsiika. Ipyost UCIT PAH, Tom 30, Bbim. S5, 2018 ., ctp. 197-212

Time =400 hours oy
i Time =400 hours

BD\b l
| o 8

5
B0
y Q\D
ol g g ou 2
ro, 35\/’2//_:—0-—’_U

. 2 ko)
[

=
=]

@
=1

I
=]

=

v -
o
Slogs  opo—————085—]
s "

o 10 20 30 40 &0 B0 70 a0 9 100

Fig.7. The water saturation at¢ = 400 hours. kp, = 0.20 - 10712 m?2.
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Fig.8. The water saturation at¢ = 800 hours. kp, = 0.20 - 10712 ;2.
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Fig.9. The water saturation att = 1200 hours. kp, = 0.20 - 10712 m?2,
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Fig.10. Characteristics of efficiency of oil recovery. Line 1-6(t), line 2 - (t).
kp, = 0.20- 10712 m?2.

According to our results, we see that in the case considered in this paper, it is
possible to develop only about 35 percents of oil by the usual water drive
technology although 70 percents of oil is contained in the high penetration
subregion. These results are in good correspondence with well-known practice.

Time =400 hours Time =400 hours

T
¥}

\"!"l’i‘f"’l it
\\\‘\Q‘ﬂ' "J'l', R i)
A

1

T
]
g ""IJJ'Imn'-': ]

Wi i

Fig.11. The water saturation att = 400 hours. kp, = 0.01- 10712 m2.

5. Conclusions

Our high-precision numerical quasi-characteristics technique developed for the
transport equation of hyperbolic allows us to obtain solutions of complicated porous
media problem with essentially heterogeneous parameters without mesh fitting
procedures on rough spatial meshes. This technique can be implemented even on
small computers and workstations for fast evaluation and exact modeling of oil and
gas development technological processes.
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Fig.12. The water saturation att = 800

Time 1=1200 hours
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Fig.14. Characteristics of efficiency of oil recovery.
Line1-6(t),line2 -~(t). kp, = 0.01- 10712 m?.
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UucneHHoe MoaenupoBaHue ABYX(a3HbIX TeYeHUN Yepes
CyLLeCTBEHHO reTeporeHHyIo NOPUCTYIO cpeay CXeMou
KBa3nxapaKTepUCTUK BbICOKOro nopsiaka

M.II. Jlesur <mlevin@ispras.ru>
HUnemumym cucmemnozo npoepammupoganus um. B.11. Heannuxosa PAH,
109004, Poccus, . Mockea, yn. A. Conscenuyvina, 0. 25

AHHOTanMsi. PaccMaTpuBarOTCsl BOMPOCHI YHCICHHOTO MOJACIUPOBAHUS HECTAMOHAPHBIX
JBYX(a3HBIX MOTOKOB B MOPUCTHIX Cpelax ¢ CYLIECTBEHHO HEOAHOPOJHBIMU CBOMCTBAMH C
HOMOIIBI0 YHCIICHHONW CXEMbI KBa3MXapaKTePHCTHK BTOPOTrO MOpsAKA ammpoKcHMaiud. B
OTJIMYHE OT H3BECTHBIX CXEM BBICOKOTO MOPS/AKA, MPEICTABICHHAS CXEMa HMEET BTOPOii
HOPSIOK  aNNpOKCHMAIMKH B 00JacTsAX ¢ OONBIIMMH TpajHCHTAMH DEIICHHH, a Takke
COXpaHsieT MOHOTOHHBIH XapakTep pelieHuil. DTO JOCTUTaeTcs 3a CYET BHIOOpa HTOTOBOTO
pelieHnst B Ka)KI0H pacueTHOW TOYKE U3 HECKOJBKUX JOIMYCTUMBIX PELICHHH C Pa3INIHBIMU
IUCTICPCHOHHBIMHA ~ CBOMCTBaMH. MOHOTOHHBI XapakTep pemeHus OO0ecreunBaeTCs
CIIEIMANBHBIM KPUTEpUEM BBIOOpa pelieHns, CHOPMYIUPOBAHHBIM B MPEICTABICHHON
pabote. DTOT KpHTEpHil WMEET JIOKAJIbHBIM XapakTep W yA00€H Uil MapajuielbHBIX
BBIUKMCIICHHN. D(GQEKTUBHOCT TMOJX0Ja MNPOMUTFOCTPUPOBAHA HA pEUICHHH 3ajad
BBITCCHCHHsT He(TH BOMOH B CYIIECTBEHHO HEOJHOPOJHBIX MOPUCTBHIX IUIACTAX C
ko3 durrieHTaMu  aOCONMIOTHON MPOHUIIAEMOCTH, CKauyKOOOpa3HO H3MCHSIOMMMHUCS B
JECSITKA M COTHH Pas3.
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TCUCHUS, IIOPUCTHIE I'ETEPOTCHHBIC CPE/IbI.

DOI: 10.15514/ISPRAS-2018-30(5)-12

Jas mutupoBanus: Jleun M.II. UnucnenHoe MoaenupoBaHue ABYX(a3HBIX TEUESHHUH depe3
CYLIECTBEHHO T€TEPOr€HHYIO IOPUCTYIO CpEeAy CXEMOH KBa3MXapaKTEPUCTHK BBICOKOTO
nopsiaka. Tpynst UCIT PAH, tom 30, Beim. 5, 2018 1., ctp. 197-212 (Ha aHrmiickoM si3bIKe).
DOI: 10.15514/ISPRAS-2018-30(5)-12

Cnucok nutepatypbl

[1]. B. Engquist, B. Sjogreen. High-Order Shock Capturing Methods. Computational Fluid
Dynamics Review, John Willey and Sons, 1995, pp. 210-233.

[2]. E. Godlewsky, P.A. Raviart. Numerical Approximation of Hyperbolic Systems of
Conservation Laws. Springer-Verlag, 1996, 524 p.

[3]. K.W. Morton. Numerical Solution of Convection-Diffusion Problems. Chapman and
Hall, 1996, 384 p.

211


https://link.springer.com/journal/211/86/2/page/1

Levin M.P. Rock Flow Simulation by High-Order Quasi-Characteristics Scheme. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 5, 2018, pp. 197-212

[4].

[5].

[6].

[7].

[8].

[al.

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

212

S.B. Hazra, P. Niyogi, S.K. Chakrabartty. Study in non-oscillatory schemes for shock
computation using Euler equations. Computational Fluid Dynamics Journal, vol. 7,
1998, pp. 163-176.

Sh. Wo, B.M. Chen, J. Wang. A High-Order Godunov Method for One-Dimensional
Convection-Diffusion-Reaction Problems. Numerical Methods for Partial Differential
Equations, vol. 16, 2000, pp. 495-512.

M. I1. JleBuH. Pa3HocTHas cxema KBasUXapaKTEPUCTUK U €€ NPUMEHCHUE IJIA pacueTa
CBEPX3BYKOBBIX TeUCHUI raza. JK. BRIUMCI. MaTeM. U MaTeM. ¢us., Tom 33, no. 1, 1993
r., ctp. 131-141.

M. 10. Xenros, M. II JleBun, MeTon KBa3suUXapaKTepUCTUK B 3aJadax MEXaHUKU
nopucThiX cpen. JK. BEIUUCI. MaTeM. u MateM. ¢u3., Tom 33, n0.10, 1993 r., ctp. 1594~
1599.

M.P. Levin. Computation of 3-D supersonic flow with heat supply by explicit quasi-
characteristics scheme. Computational Fluid Dynamics Journal, vol. 4, 1995, pp. 311-
322.

M. 1L JleBun, JI. B. CumopoB, I'mOpumnas  moaudukanms CXEMBI  METOJa
KBa3sUXapaKTEPUCTUK Ha HNUPpaMUAAIBHOM mabnone. JK. BBIYMCII. MaTEM. M MAaTEM.
¢wus., rom 35, no.2, 1995 r., crp. 310-317.

M.P. Levin. Quasi-characteristics numerical schemes. In Hyperbolic Problems: Theory,
Numerics, Application, Springer, 1999, pp. 619-628.

A.l. Ibragimov, M.P. Levin, L.V. Sidorov. Numerical investigation of two-phase fluid
afflux to horizontal well by quasi-characteristics scheme. Computational Fluid
Dynamics Journal, vol. 8, 2000, pp. 556-560.

B.M. bopucos, 10.B. Kypunenko, W.E. Muxaiinos, E.JI. Hukonaesckas. Merox
XapakTEPUCTUK JUIsA pacuecra BUXPEBBIX CBEPX3BYKOBBIX YCTaHOBUBIIUXCS
npocTpaHCTBeHHBIX Teuenuit. M.: BI] AH CCCP, 1988 r..

E. JI. Hukonaesckas. O6 0IHOM Ki1acce pa3HOCTHBIX cxeM Oeryinero cuera. M.: BI[ AH
CCCP, 1987 r..

D.Y. Kwak, M.P. Levin. High-Resolution Monotone Schemes Based on Qasi-
Characteristics Technique. Numerical Methods for Partial Differential Equations, vol.
17,2001, 262-276

S.-H. Chou, Q. Li. Characteristics-Galerkin and mixed finite element approximation of
contamination by compressible nuclear waste-disposal in porous media. Numerical
Methods for Partial Differential Equations, vol. 12, 1996, pp. 315-332.

H. Wang, M. Al-Lawatia, A.S. Telyakovskiy. Runge-Kutta characteristic methods for
first-order linear hyperbolic equations. Numerical Methods for Partial Differential
Equations, vol. 13, 1997, pp. 617-661.

H. Wang, M. Al-Lawatia, R.C. Sharpley. A characteristic domain decomposition and
space-time local refinement method for first-order linear hyperbolic equations with
interfaces. Numerical Methods for Partial Differential Equations, vol. 15, 1999, pp. 1-
28.

M. Marion, A. Mollard. A multilevel characteristics method for periodic convection-
dominated diffusion problems. Numerical Methods for Partial Differential Equations,
vol. 16, 2000, pp. 107-132.

C.N. Dawson, M.L. Martinez-Canales. A characteristic-Galerkin approximation to a
system of shallow water equations. Numerische Mathematik, vol. 86, Issue 2, 2000, pp.
239-256.

TO.I1. XKentoB. Mexanuka HedrerazonocHoro miacta. M.: Henpa, 1975.


http://37.26.174.102/cgi-bin/koha/opac-search.pl?q=Provider:%D0%92%D0%A6%20%D0%90%D0%9D%20%D0%A1%D0%A1%D0%A1%D0%A0,
https://link.springer.com/journal/211/86/2/page/1

