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Abstract. This paper describes a new approach for dynamic code analysis. It combines
dynamic symbolic execution and static code analysis with fuzzing to increase efficiency of
each component. During fuzzing we recover indirect function calls and pass that information
to the static analysis engine. This improves static path detection in the control flow graph of a
program. Detected paths are used in dynamic symbolic execution to construct inputs which
will cover new paths during execution. These inputs are used by the fuzzing tool to improve
test-case generation and increase code coverage. The proposed approach can be used for
classic fuzzing when the main goal is achieving high code coverage. As well it can be used
for targeted analysis of paths and code fragments in the program. In this case the fuzzing tool
accepts a set of programs addresses with potential defects and passes them to the static
analysis engine. The engine constructs all paths connecting program entry point to the given
addresses. Finally, dynamic symbolic execution is used to construct the set of inputs, which
will cover these paths. Experimental results have shown that the proposed method can
effectively detect different program defects.
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1. Introduction

Dynamic program analysis has proven to be one of the most effective bugs finding
techniques. It has a low false positive rate and most of the detected defects can be
reproduced. There are several approaches for dynamic analysis. Fuzzing [1] is one
of the most effective and widely used techniques, which detects defects and
provides inputs to reproduce them. But it has some limitations. For example,
fuzzing itself is not usable for analysis of the specific program fragments. The main
reason is that inputs are randomly generated in an attempt to increase the code
coverage. Dynamic symbolic execution [2] is used for systematic generation of
program inputs to cover all possible execution paths. It is significantly slower than
fuzzing and cannot be applied to analysis of large programs.

One of the most widely used fuzzing tools is AFL (American Fuzzy Lop) [3, 4, 5,
6]. It is a coverage guided fuzzing tool, which uses genetic algorithms for test case
selection and mutation adoption. AFL can perform static instrumentation of the
target program or dynamic binary code instrumentation based on QEMU [7] for
coverage gathering. LibFuzzer [8] is an embedded fuzzing library in LLVM [9]
compiler infrastructure, which provides the means to fuzz individual program
function. Syzkaller [10] performs fuzzing of system functions calls for operating
systems (OS) based on their descriptions. It generates and runs small programs
containing system functions calls and monitors the OS state. If a crash is detected
the corresponding input and generated program are stored for debugging purposes.
Peach [11] is used for network protocol fuzzing. It introduces the concept of pit
files, which describe target protocols. Grammar-based fuzzing [12] is used for
fuzzing of programs (compilers, interpreters, parsers, translators etc.) accepting
BNF structured inputs. It has predefined specifications for more than 120
programming languages and data formats.

Symbolic execution of a program typically refers to the process of traversing its
execution tree while evaluating internal and external program data as abstract
symbolic variables instead of concrete values. Program instructions applied to these
variables form path constraints (typically represented as SMT — Satisfiability
Modulo Theory — formulas). Working with these path constraints allows one to
identify valuable information about multiple potential concrete execution paths at
once. Dynamic symbolic execution (DSE) tools incorporate various techniques and
improvements of basic symbolic execution to allow one to solve various practical
program analysis tasks. They are widely used to perform automatic execution tree
traversal by generating concrete input data. In turn, these data sets are used as test
suites for defect detection and various coverage-related analyses for the target
program. Avalanche [13, 14], DySy [15], BINSEC/SE [16] are well known DSE
tools.

There are advantages and limitations for both fuzzing and dynamic symbolic
execution. Black-box and grey-box fuzzing tools can generate a lot of inputs in a
limited time, but suffer from random nature of data generation algorithm and the
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only feedback which is used to support genetic algorithms is coverage data and
crash/hang information for program under analysis. On the other hand, dynamic
symbolic execution tools perform aggressive instrumentation of program under
analysis to gather execution traces in terms of SMT formulas which drastically
influences performance of program under analysis. Also, dynamic symbolic
execution suffers from the path explosion problem [17]. Recent research focuses on
combining different analysis methods to overcome limitations of methods applied
separately. Amongst known solutions we want to mention jFuzz [18], Driller [19], a
hybrid symbolic execution assisted fuzzing method [20] which combine fuzzing and
symbolic execution to overcome known limitations of methods.

In this paper we propose an approach for combining fuzzing, dynamic symbolic
execution and static code analysis for program defects detection.

2. Proposed fuzzing tool

2.1 The Architecture of the tool

The tool consists of four basic components (fig. 1). The first component is a fuzzing
tool, which provides a set of mutations and basic infrastructure. The second
component is a DynamoRIO [21] based client library for code coverage gathering.
The third component is the dynamic symbolic execution tool Anxiety [22]. The
fourth component is a program binary code static analysis engine. The proposed tool
is able to perform classic fuzzing, where the main goal is to increase code coverage
as much as possible. Additionally, it can perform directed analysis of the target
program — instead of trying to increase code coverage the tool tries to generate
input data to cover specified fragments of the target program.

‘ Target program ‘ Target addresses
/- Fuzzing tool 7 ™
Mutation engine Program’s static
of fuzzing analysis engine

‘ DynamoRIO ‘ Dynamic
based coverage symbolic

library execution tool

-

Crashes and hangs ‘

Fig. 1. The architecture of the tool
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For directed fuzzing the tool accepts a set of addresses which should be executed
during analysis. At first, classic fuzzing is performed until coverage stops to
increase for some time (controlled by user). This typically means that there are
certain fragments of code which are completely inaccessible during execution (i.e.
dead code) or can only be reached with an input data set with internal dependencies
that are too complex for the semi-random input mutation algorithms. In order to
generate these input data sets we employ dynamic symbolic execution guided by
static analysis.

2.2 Guided dynamic symbolic execution

Anxiety, the dynamic symbolic execution tool used within the system,
implements «offline» concolic execution:

e it continuously performs concrete executions along with symbolic execution of
the target program using initial input data sets and input data sets generated by
the tool;

e thus, a concrete execution for an input data set produces a symbolic path
constraint for this specific data set;

e this path constraint includes a number of branch points explicitly influenced by
the input data set;

e  for every branch point in the path constraint an attempt is made to invert the
corresponding comparison and check whether the modified path constraint is
satisfiable;

e the process of checking for satisfiability automatically produces a different
input data set which is presumed to force the execution of the program onto a
different path at the corresponding branch point;

e upper and lower depth limits are used to avoid processing the same branch
points (producing input data sets processed previously) and creating path
constraints too large to check in a limited time.

The number of branch points is a critical factor of the analysis complexity. During

guided symbolic execution certain branch points are processed in a different manner

based on fuzzing goals:

e  «blacky lists are used to skip certain branch points which were already covered
during normal fuzzing (meaning that fuzzing produced at least two different
input data sets which force the program execution differently for every branch
point among given);

e  «white» lists are used to augment path constraints with external information —
which direction at the branch point must be taken for all generated paths.

Classic fuzzing, where code coverage increase is the main goal may also be

improved via DSE integration. The only difference is in the list of basic blocks

passed to DSE. Static analysis detects the list of basic blocks, whose both branches
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were executed and pass them to DSE as a «black» list (since no new information we
will be gained by inverting such blocks).

In both cases, traces of the target program execution are stored in order to perform
indirect call recovery (function pointers, virtual functions). This information is used
to improve static analysis which in its turn improves the results of other
components.

Static analysis is periodically invoked during fuzzing to keep the data base of the
target program updated using recovered indirect call addresses. This enables mutual
improvement for static and dynamic analysis. Experimental results prove the
effectiveness of this approach.

2.3 Static analysis engine

The static analysis engine has two basic functionalities: detecting paths in a control
flow graph and program trace analysis. In the first case the tool identifies a number
of paths between two program addresses. The number of limitations are applied for
optimization: path’s maximum length, maximum number of usages for each basic
block or a function during path construction etc. These limitations are necessary to
overcome the path explosion problem. Path construction consists of two basic stages
(fig. 2). The first stage filters some functions based on call graph. It uses forward
and backward BFS (Breadth-First Search) algorithm for entry and destination
addresses of a target program to determine all functions which should be included in
the path detection process. In the second stage we use modified DFS (Depth-First
Search) for path detection. Then we construct a «white» list for DSE. It contains all
basic blocks from detected paths which have branch instructions. The «whitey list is
used by DSE to generate data which will cover both branches of each basic block.

Target program

Disassembler -

[ata base

Static analysis engine
Call graph filter

"" Traces analysis
Paths construction

L L

White list Black list

Fig. 2. Static path detection
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In the second case, static analysis loads the set of traces generated by fuzzing tool
and tries to find all basic blocks whose both branches were executed. Then it creates
a «black» list based on these blocks to be used by DSE for optimization.

2.4 Switching metric

To switch between the fuzzing tool and DSE (static analysis included) we use a
variable parameter N. DSE is invoked if below formula is satisfied:

total_execs — last_effective_exec > 10000 * N

where total_execs — number of executions in the moment when we try to invoke
DSE, last_effective_exec — number of executions when the fuzzing last time was
able to detect new execution path, N — is specified by user.

If the fuzzing tool was not able to open new execution traces for some time , then
we invoke DSE.

2.5 DSE run time metric

We use special metric for calculating the maximum amount of time to allow for the

DSE stage. This amount (in seconds) is calculated according to below formula:
runtime = 30 + total_execs / 50000

where runtime — time limit for a DSE run, total_execs — number of executions at

the moment when we try to invoke DSE.

The running time for DSE is at least 30 seconds (the number is determined

according to experimental results). Our experiments show that less than 30 second

for DSE is not enough to achieve valuable results for an average program. We

increase DSE run time limit in one second after each 50.000 executions, which

enables it to run longer during fuzzing.

2.6 Mutual improvement of static analysis results

While the target program is processed, static analysis engine precision is
continuously improving due to indirect call address recovery. DynamoRIO [18]
based coverage library has trace generation support, which allows us to recover
actual addresses for indirect call instructions. During fuzzing process, unique traces
are generated for the target program. Then they are analyzed for indirect call address
recovery. The process is simple, for each executed block we store information about
previously executed block. Then based on that information the actual address is
recovered: if there is block in trace which belongs to some function f and previously
executed block belongs to some function g, then there is an edge between g and f
functions in the call graph. The newly detected edges are added to the target
program data base.

Improved static analysis has positive impact on DSE results. It allows to construct
more inputs which are covering different execution paths between program entry
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point and destination addresses (a direct fuzzing case). These inputs improve the
coverage of the fuzzing tool and improve its effectiveness. Proposed scheme of
interaction between these three tools allows iteratively improve the results of each
other and overall fuzzing results.

3. Results

3.1 Results of fuzzing integrated with DSE

In the table below (Tab. 1) you will find experimental results of classic fuzzing
(with aim of code coverage increase) integrated with DSE. In this case we try to
increase code coverage as much as possible. All detected crashes were verified
manually.

Table 1. Classic fuzzing guided code coverage increase results

Operating system Test name Detected crashes Running time
(hours:minutes)

Debian-6.0.10 blast2 3 0:15
Debian-6.0.10 faad 1 0:20
Debian-6.0.10 efax 1 0:30
Debian-6.0.10 wavpack 5 0:30
Debian-6.0.10 tic 4 1:00
Debian-6.0.10 ul 7 1:00
Debian-6.0.10 Bsd-form 6 12:00

3.2 Results of directed fuzzing

Results of the directed fuzzing for programs from Linux distribution and DARPA
[23] Cyber Grand Challenge are presented in Table 2. Static analysis has detected
potential program addresses which may have defects. We run fuzzing in directed
mode to generate data, which will cover specified addresses in an attempt to crash
them. The last column shows the number of hits for detected address list. The fist
value is the number of addresses for which the fuzzing tool was able to generate
input data to cover them during execution. The second value is the number of
potential buggy addresses detected by static analysis. For example, for the test
FableReport static analysis has detected 15 potential defect addresses, but fuzzing
tool managed to cover only 7 of them. The number of crashes is not synchronous
with hit addresses due to several reasons:

e program can crash in the same address with different execution paths and
fuzzing will consider it as different crashes
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e if fuzzing managed to generate data which will cover specified address, it is not
necessary that program should crash; the address may be false positive from
static analysis or generated data do not crash it.

All results were verified manually.

Table 2. Directed fuzzing guided by static analysis results

Operating Test name Crashes | Runing time Hits
system (hours:minutes)
Debian-6.0.10 faad 2 21:00 1/1
Debian-6.0.10 passwd 2 0:20 1/1
Debian-6.0.10 uuenview 13 0:50 11
DARPA Flash_File_System 35 2:00 1/1
DARPA 3D_Image_Toolkit 30 19:00 11
DARPA Charter 9 20:00 1/1
DARPA Diary_Parser 9 20:00 1/1
DARPA PRU 2 1:00 1/1
DARPA Recipe_Database 23 20:00 11
DARPA SCUBA_Dive_Logging 10 20:00 1/1
DARPA SFTSCBSISS 1 20:00 1/1
DARPA Simple_Stack_Machine 15 20:00 1/1
DARPA CML 10 20:00 1/1
DARPA Eddy 9 4:00 1/1
DARPA FablesReport 3 4:00 7/15
DARPA Multipass3 7 4:00 1/3
DARPA Online_job_application 4 4:00 1/1
DARPA Overflow_Parking 2 4:00 1/1
DARPA PTassS 5 4:00 1/2
DARPA Sample_Shipgame 5 4:00 212
DARPA SAuth 1 4:00 1/3

4. Discussion

A similar approach is used in Badger [24] tool. It combines fuzzing and dynamic
symbolic execution in the following way: when the input is passed to symbolic
execution it tries to update this input until it reaches new coverage or find a path
with lower cost of analysis in terms of computational resources. This approach uses
trie-based [25] symbolic execution to predict and reduce the complexity of dynamic
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symbolic execution by saving a trie-like structure for path constraints gathered
during path exploration until new part of path detected to execute it in symbolic
manner. Qsym is another analysis tool [26] which combines symbolic and fuzzing.
It uses optimistic solving of relaxed path constraints trying to find new paths with
small cost of computations in solver and pruning conditions gathered from repetitive
basic blocks from symbolic formulae to simplify constraints relying on fuzzing tool
as an efficient validator of generated input.

Our approach differs from the proposed solutions. It uses static analysis to guide
fuzzing and dynamic symbolic execution through continuously updated program
call graph to reach destination address with the help of dynamic symbolic execution.

5. Conclusion and future work

Indirect call instructions addresses are not fully recovered based on program traces.
There can be addresses, which will not be recovered because corresponding path is
not executed during fuzzing. Future research directions are:

e add alias analysis on program’s binary representation to improve indirect
call addresses recovery;

e use available information/traces obtained from fuzzing for alias analysis
improvement.
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Annomayun. B 3T0il cTaTbe ONMCHIBACTCSA HOBBIH MOAXOZ JUIS JAMHAMHYECKOTO aHAIIM3a
nporpaMM. OH COBMEIAeT JMHAMHYECKOE CHUMBOJIBHOE MCIIOJHEHHE IPOrpaMM |
CTaTMYECKHH aHaJIW3 Kojxa TNporpamMm ¢ (a33uHroM Juisi mOBBIIEHHS 3(QEKTHBHOCTH
Ka)XI0T0 U3 MeToloB. B mpomecce ¢a33uHra BOCCTaHABIMBAIOTCS BBI30OBEI I10 BEIYHCIIIEMBIM
ajapecaM M PacIIMPEHHbIH rpad BBI30BOB HepefaeTcss MOIYJIO CTaTHYECKOro aHaiu3a. JTo
MO3BOJISIET  YNYYIIMTh BBIUMCIEHHE IIyTed WCHOJHEHWs TNpOrpaMMbl B  IIpoliecce
CTaTHYeCKOro anaim3a. OTKPHITBIC HOBBIE NyTH HCIOJIHEHHS B MPOrpaMMe MepefaroTcs
MOJYJIO JTHHAMHYECKOTO CHMBOJIPHOTO MCIIONHEHHS JUIsI TEHepaliud HOBBIX HAGOpOB
BHEIIHUX JIaHHBIX MPOTrPaMMBbI C LETbI0 UCTIONHEHHS M aHajIn3a MPOrpaMMbl MO OTKPHITHIM
myTsaM ucnonHeHns. HoBble HaGOPB!I BXOAHBIX AaHHBIX MEPEatoTCs MOAYNO (a33uHra s
YBEJIMYEHHSI TOKPBITUS MPOTPaMMbl C WX HCIONb30BAHHEM B KauyeCcTBE 3aTPaBKH.
IpemtoxeHHbI MOAX0A MOXKET OBITh HCIIOJB30BaH B PaMKax KJIACCHYECKOT'O ATOPUTMA
paboThI (a33uHTa C IENBI0 JOCTH)KEHUS] BRICOKOTO MOKPBITUS KOJIa MPOrpaMMBbl TECTOBBIMU
Habopamu. Tarke HpPEUIOKEHHBI METOJ MOXET HCIOJIb30BaThCsl Ul HANPaBJIEHHOTO
aHanm3a myTed u GparMeHTOB KoJa MmporpamMMel. B aTom ciydaer daszep Gpopmupyer HabOp
aJIpecoB W IepesaeT X MOJIYIIO CTaTHYeCKoro aHaium3a. CTraTndeckwil aHamu3 GopMHpYyeT
Habop myTeil, KOTOpbIe MPUBOJAT K MCIOJHEHHI0 MHCTPYKIMHA MO 3THM afipecaM OT TOYKH
BXOJIa B porpammy. Jlajgee Mojysib THHAMHYECKOE CHMBOJIEHOTO MCTIONTHEHHS UCIIONB3YeTCs
JJIA IOCTPOCHUA Ha60p0B BXOZHBIX JAaHHBIX JUIA MPOXOXKACHUS 110 OTUM ITYTSAM. Pe3yHbTaTbI
JKCIIEPUMEHTOB IOKA3bIBAIOT BBICOKYIO 3(P(EKTHBHOCT, OOHApPYXEHHS MPOrPaMMHBIX
OLIMOOK MPU MPUMEHEHHHU MPEATI0KEHHOTO METO/a.

KiioueBble ciioBa: (a33uHr; HalpaBiIeHHbIH (a33MHI; CTATUUSCKUIl aHaIN3; OOHapYXeHHe
MyTeil HCTIOMHEHUS; THHAMHYECKOEe CHMBOJIBHOE HCTIOTHEHHE
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