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Abstract. Process mining is a relatively new research field, offering methods of business
processes analysis and improvement, which are based on studying their execution history
(event logs). Conformance checking is one of the main sub-fields of process mining.
Conformance checking algorithms are aimed to assess how well a given process model,
typically represented by a Petri net, and a corresponding event log fit each other. Alignment-
based conformance checking is the most advanced and frequently used type of such
algorithms. This paper deals with the problem of high computational complexity of the
alignment-based conformance checking algorithm. Currently, alignment-based conformance
checking is quite inefficient in terms of memory consumption and time required for
computations. Solving this particular problem is of high importance for checking
conformance between real-life business process models and event logs, which might be quite
problematic using existing approaches. MapReduce is a popular model of parallel computing
which allows for simple implementation of efficient and scalable distributed calculations. In
this paper, a MapReduce version of the alignment-based conformance checking algorithm is
described and evaluated. We show that conformance checking can be distributed using
MapReduce and can benefit from it. Moreover, it is demonstrated that computation time
scales linearly with the growth of event log size.
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1. Introduction

Ever-increasing size and complexity of modern information systems force both
researchers and practitioners to find novel approaches of formal specification,
modeling, and verification. This process is essential for ensuring their robustness
and for possible optimization and improvements of existing business processes.
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Process mining is a research field, which offers such approaches [1]. Process
mining is a discipline, which combines techniques from data analysis, data mining,
and conventional process modeling. Typically, three main sub-fields of process
mining are distinguished in the literature: (1) process discovery; (2) conformance
checking and (3) enhancement [1].

The aim of process discovery is to build a process model based solely on the
execution history of a particular process. Event logs are the most common and
natural way of persisting and representing execution history. By an event log, we
understand a set of traces where each trace corresponds exactly to one process
execution. A typical process discovery algorithm takes an even log as an input
parameter and constructs a process model which adequately describes the behavior
observed in the event log.

The task of conformance checking is to measure how well a given process model
and an event log fit each other. Furthermore, showing only the coefficient of
conformance is usually insufficient for real-life application since analysts often need
to see where and how often deviations happen in order to draw any conclusions.
Therefore, it is often the case when conformance checking algorithms include
computation of additional metrics as well as visualization of deviations.

Process enhancement deals with improvements of processes as well as
corresponding process models.

One of the challenges of process mining, when applied in real life, is the size of data
to be processed and analyzed [2], [3]. Since process discovery has drawn significant
attention of researchers, there are a number of solutions which allow for fast process
discovery from large event logs [4]. These solutions vary from using distributed
systems and parallel computing [5] to applying more efficient algorithms, which
require less data scans and manipulations [6], [7]. In contrast, conformance
checking remains problematic to be made fast due to its theoretical and algorithmic
difficulties. At the same time, efficient, easy-to-use and robust conformance
checking is the key to better process improvement since enhancement approaches
often rely heavily on measuring conformance (for example, see model repair
approaches [8], [9]).

This paper concentrates on implementation details of distributed conformance
checking rather than on its theoretical aspects. It describes a possible way of
speeding up conformance checking. It implies improving one of the existing
conformance checking algorithms so that it can be executed in a distributed manner
by means of using MapReduce [10]. One of the very first papers discussing
distributed conformance checking [11] was dedicated solely to theoretical
foundations of process models and event logs decomposition. The author takes a
look at the algorithmic side of distributed conformance checking and totally skips
problems of its software implementation. In this paper, we consider practical aspects
of distributed conformance checking. Furthermore, we prove viability of the
proposed approach by demonstrating that it really allows measuring conformance of
bigger event logs better than currently existing approaches.

104



HlIyrypos U.C., Muitok A.A. Tlpumenenne MapReduce 11st IPOBEPKU COOTBETCTBUS MOJIENICH TPOLIECCOB U JIOTOB
cobbrtuit. Tpyowr UCIT PAH, 2014, Tom 28, Bbim. 3, c¢. 103-122.

This paper is structured as follows. Section 2 introduces foundational concepts we
use in the paper. In section 3, the reader can find the main contribution. Section 4
proposes several improvements of the approach proposed in section 3. An
implementation of the presented approach is described in section 5. Related work is
reviewed in section 6. Finally, section 7 concludes the paper.

2. Preliminaries

In this paper, we consider process models in the Petri net (simple P/T-nets) notation.
A Petri net is a bipartite graph, which consists of nodes of two types. In process
mining, transitions, denoted by rectangles, are considered as process activities,
whereas places, denoted by circles, designate the constraints imposed on the
control-flow. String labels may be associated with transitions in order to show the
correspondence between activities and transitions. Transitions without labels are
called silent. It implies that silent transitions model behavior and constrains of an
activity in a process, executions of which are not recorded into event logs. Each
place denotes a causal dependence between two or more transitions. Places may
contain so-called tokens. A transition may fire if there are tokens in all places
connected to it via incoming arcs. When fired, it consumes one token from each
input place and produces one token to each output place. Marking is a distribution
of tokens over all places of a Petri net, thus a marking denotes the current state of a
process.

An event log is a recorded history of process runs. Usually the execution of a
process in some information system is recorded for documenting, administrative,
security, and other purposes. The main goal of process mining is to explore and use
these data for the diagnosis and improvement of actual processes.

We consider event logs of standardized nature as they are used in process mining.
Formally, an event log is multiset of traces where each trace is a sequence of events.
Each trace corresponds to exactly one process run. An event contains the name of
associated activity, timestamp, performer name and may contain other additional
properties. In this paper we consider simple event logs, in which events contains
only names of activities. An example model and the corresponding event log are

shown in fig. 1.
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Fig. 1. Petri net and event log
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2.1 Conformance checking

The conformance checking and its place in process mining are defined in [1].
Usually four dimensions of conformance are considered: fitness, precision,
generalization, and simplicity. However, this paper focuses exclusively on fitness.
By the term fitness, we understand the extent to which a model can reproduce traces
from an event log. In other words, fitness shows how well the model reflects the
reality. The fitness dimension is typically regarded as being the most frequently
used and best-defined [1] among the dimensions.

Nowadays, the most advanced and refined conformance checking approach is the
one using alignments [12]. The term alignment is used to denote the set of pairs
where each pair consists of an event from an event log and a corresponding
transition of a model. Such pairs are constructed sequentially for each event in a
trace. A simple alignment for the trace Tr3 (see fig. 1) is depicted in fig. 2.
However, it is allowed to pair an event with no transitions (a special “no move*
symbol >>). This means that the event is present in a log but cannot be replayed by
any transition in the model. It is also possible to map a transition to no events (this
is denoted by the same symbol >>). In that case, the transition is fired but there is no
evidence of this fact in the event log. Thus, there are two main types of steps
composing any alignment: a synchronous move (a transition fired with the same
label as an event name from the event log) and a non-synchronous move (a
transition label and an event name are the different ones or a move is skipped either

in the model or in log). -
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Fig. 2. Alignment

Alignments help to measure the difference between a trace from an event log and
behavior specified by a model. In order to quantify the difference one has to
calculate the number of non-synchronous moves and assess their significance. This
assessment is accomplished by introducing a cost function, which is used for
calculating cost of an alignment. By cost, we understand a number which somehow
designates the significance. The general idea is that some deviations are more severe
than others, thus these deviations have more impact on the overall conformance.
Using cost function one can assign cost for each type of deviation for each transition
and event. Thus, cost function maps a pair of an event and a transition to a number,
which signifies a penalty for having such a pair in a trace. The more the cost is, the
more significant this deviation is. Assuming that all costs are set to 1, the alignment
shown in fig. 2 has the cost 1, because there is only one nonsynchronous move in it
(event D in the trace has to be skipped during model run). Accumulating costs for
all alignments of a particular event log, it is possible to derive the cost for the entire
log.
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It is possible that a particular run through the model and a particular trace have
several possible alignments. In order to choose between them a cost function is used
to evaluate the cost of each alignment. An alignment with the lowest cost is selected
as the optimal alignment. According to [12], it makes sense to use only optimal
alignments when calculating fitness. Alignment-based fitness can be measured
using the metric defined in [13]:

Sopt
ZtrEL Zeetr cost ::p (e, N)
Ztr €L COSty;

where L is an event log, N is a model, COSthpt (e, N) is a cost of a pair (e, (t;, t!))
(e is an event, t; is a transition from model run, t! is its label) in the particular
optimal alignment §,,,, which depends on used cost function cf, cost,; is a total
cost of the trace tr if all moves in it are considered as non-synchronous. Thus,
fitness is a normalized ratio of the accumulated costs calculated for the optimal
alignments to the accumulated costs for the worst possible alignments for a
particular event log.

It is shown in [12] that construction of alignments and selection of optimal among
them for each trace can be converted to solving the shortest path problem. Formally,
a trace from the event log is represented as an event net, which is a special Petri net
having the form of the sequence of transitions connected through places. Then the
product of the model and this event net is constructed. It is shown in [12] that the
problem of optimal alignment calculation can be viewed as a problem of finding a
firing sequence in this product, which can be achieved by using a state-space
exploration approach.

The proposed approach has a low computational performance when dealing with
large models, large event logs or in case of low fitness because of the necessity to
solve the shortest path problem, especially for model of certain types [12]. The
author himself states in [12] that ”from a computational point of view, computing
alignments is extremely expensive®. Moreover, its existing implementation keeps
the processed models, event logs, event nets, and computed alignments in
computer’s main memory. This approach allows for flexible configuration of
visualization settings, and, in some cases, faster completion. However, this feature
makes usage of existing implementation rather hard and inconvenient because the
algorithm typically consumes several gigabytes of main memory even for
processing relatively small models and small event logs (dozens of megabytes).
Thus, it is not suitable for real-life usage.

This paper proposes a way of checking conformance between process models and
big event logs of gigabyte sizes using MapReduce.

f(L,N)I 1-

2.2 MapReduce

MapReduce is a computational model proposed and popularized in [10], although
the idea dates back to the origins of functional programming. MapReduce is a
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popular technology among practitioners and a research area among scientists. It has
a good tool support; all major cloud platform vendors provide the possibility to
execute MapReduce jobs on their cloud clusters.

The model simplifies parallel and distributed computing by allowing software
developers to define only two quite primitive functions: map and reduce. At each
invocation of a map function (also called mapper), it takes a key-value pair and
produces an arbitrary number of key-value pairs. The aim of reduce functions (also
called reducers) is to aggregate values with the same key and perform necessary
computations over them. Thus, a reduce function takes a key-list pair as input
parameters. Usage of such rather trivial functions makes their distribution
straightforward. Last but not least, comes another important function allowed by
MapReduce which is called combine. Its main purpose is to perform reduce-like
computation between mappers and reducers. Combine functions (also known as
combiners) are invoked on the same very computers as mappers. Combiners allow
for further parallelizing computations and decreasing amount of data transferred to
reducers and processed by them. It was pointed out even in the original article [10]
that combiners may dramatically decrease computation time.

One of the most crucial advantages of MapReduce is that algorithms expressed in
such a model are inherently deadlock-free and parallel. Another important
advantage is the tendency to perform computations where required data resides.
Generally, computation of map tasks take place where the required data is stored
since its location is known beforehand. Such an approach ensures that data transfer
between computers and latency, inflicted by it, are minimized. Ideally, data is
transferred between computers where map tasks are executed and computers where
reduce tasks are executed. Unfortunately, it is rarely achievable since all files are
separated into smaller parts, called blocks, and distributed (and also replicated) over
a cluster, thus data needed for execution of a single map task may reside in different
data chunks — there will be a need to move a portion of data from one computer to
another.

3. Fitness measurement using MapReduce

This section describes the approach we propose for checking conformance.

The few adjustments of the existing conformance checking algorithm with
alignments need to be done in order to implement the proposed schema. It is
expected that the algorithm will benefit if distribution is applied to traces. It means
that traces are distributed over a cluster so that their alignments can be computed in
parallel. Another possible option was to distribute computation of each alignment
since efficient distributed graph algorithms for solving the shortest path problem are
known. However, use of them seems excessive because they are aimed at solving
problems on graphs consisting of thousands and millions of nodes, which is not the
case for business process models. A process model consisting of more than a
hundred nodes seems unrealistic.

108



HlIyrypos U.C., Muitok A.A. Tlpumenenne MapReduce 11st IPOBEPKU COOTBETCTBUS MOJIENICH TPOLIECCOB U JIOTOB
cobbrtuit. Tpyowr UCIT PAH, 2014, Tom 28, Bbim. 3, c¢. 103-122.

The general schema is depicted in fig. 3. Map function takes traces one by one and
computes their alignments. This process can easily be carried out in parallel since,
by its definition, an alignment is computed individually for each trace. It is enough
to use a single reduce function, which aggregates fitnesses of all traces and
calculating fitness of the overall event log. Single reducer implies that key-value
pairs emitted by all mappers have the same key. Single reducer can be considered as
a bottleneck due to the reason that before it can start processing it waits for
completion of all maps and transition of all costs to a single computer. To diminish
the negative effect of a single reducer, a combiner function comes in handy. The
problem is that calculating average is not an associative operation, thus it is
impossible to use the basic reduce function instead of the combine function. We
implemented it in a manner resembling the one described in [14]. The general idea
is that calculating average can be easily decomposed into calculating a sum of all
entries of some metric and counting a number of entries, where both of them are
associative operations. It implies changing the structure of values used in key-value
pairs. The modified version of values contains not only statistics (fitness and so on)
but also a counter which shows how many traces describes a particular value. Given
that, combiners only have to sum the values they receive and increment the counter.
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Fig. 3. Conformance checking with MapReduce

4. Potential improvements

One of the possible improvements of the algorithm is to enhance it by adding trace
deduplication. When large event logs are considered, the possibility of the
equivalent traces occurring several times is very high. Hence, it might be desired to
find only unique traces, number of their occurrences and compute alignments only
for them. It will allow for lessening the number of computed alignments. However,
efficient MapReduce algorithm for deduplication of event sequences is far from
trivial. Moreover, it is not guaranteed that time needed for deduplication and
subsequent conformance checking will be shorter than in case of using the standard
approach. This question can only be answered by conducting relevant experiments.

Even though process models is not prone to be large, a lot of time is still required
for checking conformance. Another possible improvement, which aims at reducing
model size, is to employ the “divide and conquer* principle. The way in which the

109



Shugurov 1.S., Mitsyuk A.A. Applying MapReduce to Conformance Checking. Trudy ISP RAN / Proc. ISP RAS, 2014,
vol. 28, issue 3, pp. 103-122.

principle can be applied to cope with high computational complexity of
conformance checking was proposed in [15] and [16]. The general idea is to divide
a process model into smaller sub-parts. Next step is event log projection. This
means that for each fragment of a model all events from the event log that
correspond (names of events are equal to labels of activities) to a particular
fragment are selected. As a result, we get as many projected event logs as
decomposed Petri net fragment.

Once it is done, alignments and costs of each fragment can be computed. Then it is
possible to sum costs of parts following specific rules to get a lower bound of the
cost of the entire log. Having these costs, an upper bound of fitness can be
computed. Performance gain is the most crucial motivation of this approach. Since
time needed for computing alignments depends on trace size, usage of smaller parts
of the model ensures faster computation. A wide range of model decomposition
strategies have been proposed in [17], [15], [18], which leaves the user with the
necessity to empirically choose between them. Last but not least, decomposition
also incurs time overhead and projected event logs takes up disk space, so usage of
the algorithm is not beneficial (or even feasible) in all the possible cases.
Furthermore, there is no research done to establish when usage of which approach
makes more sense.

It is possible to employ a similar approach in the MapReduce environment. There
are two possible options: (1) computation of the overall event log fitness and (2)
computation of fitness of each separate model part. In all the cases fitness is
computed in a three-stage process as it is shown in fig. 4. The zero stage again is the
splitting of the log by traces, which is followed by trace decomposition. Traces are
decomposed using the maximal decomposition described in [15]. However,
incorporation of other decomposition techniques [15], [17], [16] is also possible. At
the second stage, alignments of sub-traces are computed and then aggregated. The
final stage differs depending on the selected computation option. At this stage either
fitness of the overall event log is computed at a single reducer or fitnesses of
individual parts are computed at different reducers (the number of reducers can be
up to the number of model parts). If fitness of individual process parts is calculated,
after the second map unique identification of a model part is used as a key for
emitted key-value pairs. When decomposition is applied, log deduplication’s
importance and potential benefit grow even more.
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Fig. 4. Possible approach with vertical decomposition

110



HlIyrypos U.C., Muitok A.A. Tlpumenenne MapReduce 11st IPOBEPKU COOTBETCTBUS MOJIENICH TPOLIECCOB U JIOTOB
cobbrtuit. Tpyowr UCIT PAH, 2014, Tom 28, Bbim. 3, c¢. 103-122.

5. Implementation and testing

This section describes the actual implementation® of the proposed approach and its
experimental testing. Hadoop [19] was used for implementation and testing of the
approach because it is a common and widely supported open source tool.

5.1 Implementation

The original algorithm was implemented as a ProM Framework plugin. The ProM
Framework [20], [21] is a well-known tool for implementation of process mining
algorithms. The ProM Framework consists of two main components:

e ProM core libraries which are responsible for the main functionality used
by all users and extensions,

e extensions (typically called plugins) which are created by researchers and
are responsible for import/export operations, visualization, and actual data
processing.

The platform is written in such a way that it allows plugins to use data produced by
other plugins. Furthermore, ProM encourages programmers to separate concerns:
export plugins are only used for exporting data, visualization plugins are used for
visualizing objects. As a result, a common usage scenario always consist of a chain
of invocations of different plugins. Among main advantages of ProM are
configurability, extensibility, and simplicity of usage. Last but not least, the
platform allows researchers to easily create and share plugins with others thus
extending the tool and contributing to the overall field of process mining. Despite
all these positive sides, usage of ProM can be inconvenient and tedious, if the
desired goal is unusual in any way.

XES [22] is often considered as a de facto standard for persisting event logs in the
area of process mining. Technically, it is an XML-based standard, which means that
it is tool-independent, extensible, and easy to use. Moreover, ProM fully supports
this standard and has all required plugins for working with it.

Our approach involves usage of raw event logs stored in the format of XES only at
the zero step of the algorithm. Before separate traces are available for the required
computations, it is necessary to sequentially read XES files dividing them into
separate traces. It is accomplished by using the XMLInputFormat from the Mahout
project [23]. XMLInputFormat provides the capability of extracting file parts
located between two specified tags. Moreover, the class is responsible for ensuring
that the entire requested part (in our case — trace) is read, no matter in which blocks
and on which data nodes it resides.

The fact that the initial algorithm was implemented for ProM inflicts several
inconveniences for its distribution. First of all, it is assumed that the plugin is
invoked by ProM via a special context. Essentially, it implies several things:

e the entire ProM distribution has to be sent to each computational node,

! The tool is available at https://sourceforge.net/p/distributedconformance/
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e at each computational node, it is required to start up ProM (it may take up
to couple of minutes on an average computer).

As a result, it may significantly increase latency and incur higher time needed for
termination of computations. To avoid this, it was decided to alter implementation
in such a way that a number of libraries the algorithm depends on in as minimal as it
is possible to achieve. In other words, on the one hand it was desired to separate the
implementation of the algorithm from ProM. On the other hand, usage of ProM
could be useful for initial settings and visualization of final results. As a result, we
achieved such a level of decoupling, that it is possible to launch the algorithm
completely autonomously without the need of installation of the ProM Framework
or any ProM plugins.
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Fig. 5. Implementation of the approach

The resulting architecture is illustrated in fig. 5. Conformance measurement is done
in two-step approach. At first step, the user loads a model, represented by a Petri net
into a special ProM plugin, which serves for setting the options of the alignments-
based conformance algorithm (mapping between transitions and events in event
logs, costs of insertion and skipping in alignments). We use standard ProM classes
for representing Petri nets because they allow for easier compatibility with other
ProM plugins. Loading a model to a main memory should not be a problem because
it is highly unlikely for such models to contain even hundreds of nodes, thus the size
of process models is typically relatively small. Another possible option was to
specify settings exclusively via XML files, though we found it less intuitive and
convenient than visual settings. Once the algorithm is configured, settings are
written to a file which later will be uploaded to a cluster. Last but not least, it is
important to state that this ProM plugin depends neither on Hadoop nor on a chosen
cloud cluster nor on any other auxiliary Hadoop libraries.
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When Hadoop job is initiated, the user is asked to specify directories where event
logs are placed, a path to a Petri net, and a path to conformance settings. A model
and settings are then automatically added into the Hadoop distributed cache — the
files are replicated to each data node, so they are available for fast access by any
mapper. At a startup of each model, the files are loaded into main memory because
they will be used for all the alignment computations.

After completion of conformance measurement, the results are written to a single
file, which afterwards can be downloaded and viewed in ProM. Another sub-task is
to find in which cases deduplication is worthwhile and how exactly it affects
computational time.

5.2 Experimental results

The proposed algorithm was tested and evaluated using Amazon Web Services [24].
In our cluster, we used five m3.xlarge instances (one as a master node, four as data
nodes). A local computer used for conducting experiments with the original
algorithm had the following configuration: Intel Core i7-3630QM, 2.40 GHz, 8 GB
of main memory, Windows 7 64 bit.

For testing purposes, we created a process model comprising some of the main
workflow patterns: sequence, parallel split, synchronize, exclusive choice, and
simple merge [25]. Afterwards, several models derived from the original were
created — they all differ in fitness. Artificial event logs were generated using the
approach proposed in [26]. Logs were generated only for the original model. All
resulting logs were of different sizes.
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Fig. 6. Computation time of the standard approach

Fig. 6 illustrates how computation time depends on a number on traces and fitness.
It is clear from the plots that computational complexity scales linearly with the
growth of a number of traces. Moreover, it is seen that computation time highly
depends on fitness. The lower the fitness, the slower the computations will be. It
seems that computation time does not scale linearly with the decrease of fitness if
the same quantity of logs is used. The clear indicators are the margins between lines
representing fitness 1 and 0.96, and 0.96 and 0.9. Furthermore, we can conclude that
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the lower fitness, the faster computation time increases with the rise of the number
of traces.
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Fig. 7. Computation time with MapReduce

Fig. 7 provides an overview of how the algorithm scales when it is distributed using
MapReduce. It is worth mentioning that 1.66 Gb of logs contain 500 thousand
traces. As in the case of the not distributed algorithm, the graph shows that the
algorithm scales linearly with the increase of a number of traces. Furthermore,
similarly to the not distributed case, for non-fitting models computations take
considerably longer than for perfectly fitting ones, and that computation time grows

faster for non-fitting models.
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Fig. 8. Comparison of the standard and the distributed approaches

In fig. 8, a comparison of distributed and not distributed approaches is provided.
Unfortunately, it is impossible to establish exactly when the distributed
implementation beats the original in terms of performance since the original one
cannot handle event logs of considerable size. In addition, the original algorithm
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was not able of handling more than a hundred of Mbytes. On data of such small
sizes, MapReduce and Hadoop fail to work efficiently because they are designed for
processing much bigger files. In fact, Hadoop does not parallelize processing of
files which are smaller than a single file block. It is clear from Figure 8 that for
relatively small event logs the distributed version works more slowly. It is clear
from the graph that our solutions can handle event logs of several dozens of GBs
even on a small cluster used for conducting these experiments.

6. Related work

Although applicability of MapReduce or distributed systems for the tasks of process
mining has not drawn significant attention yet, there are a few papers, which
consider this subject.
In [27] the authors focus exclusively on finding process and events correlation in
large event logs. According to them, MapReduce solution for such a
computationally and data intensive task as events correlation discovery performs
well and can be scaled to large datasets.
Other works where the authors study applicability of MapReduce to process mining
are [28], [29]. In these articles, a thorough description of several popular discovery
algorithms is provided (the alpha algorithm [30], and the flexible heuristics miner
[31]). Every one of them consists of several consequent MapReduce jobs. First
MapReduce job is responsible for reading event logs from the disc, splitting them
into traces, and ordering event in each trace. The general idea of the second
MapReduce all the implementations is that first step of process discovery typically
requires extracting trivial dependencies between events called log-based ordering
relations. Examples of those are:

e a > b—eventaisdirectly followed by event b,

e a>> b—aloop of length two,

e a >>> b—eventa is followed by event b somewhere in the log.
These relations can be found individually for each trace. Therefore, their
computations are trivially parallelized using Mappers. Further MapReduce jobs vary
but they somehow use mined primitive log-ordering relations to build a process
model. The main potential problem of implementations is that these further
MapReduce jobs typically compute relations for the overall event log. To achieve
this, it is often the case when it is necessary for mappers to produce identical keys
for all emitted pairs so that they all end up on the same computer and processed by
the same reducer. Moreover, the proposed implementations extensively use identity
mappers. It is a standard term for mappers, which emit exactly the same key-value
pairs as they receive without performing any additional computations — all useful
computations performed by combiners or reducers. They are used only because
MapReduce paradigm requires presence of mappers. Despite these concerns, it is
shown that performance and scalability provided by MapReduce are good enough
for the task of process discovery from large volumes of data. Our solution, in
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contrast to the described above, uses a more suitable file format. It allows measuring
conformance without extra steps needed for preliminary log transformations.

In [32] the authors describe their framework for simplified execution of process
mining algorithms on Hadoop clusters. The primarily focus of this work is to show
how process mining algorithm can be submitted to a Hadoop cluster via the ProM
user interface. In order to demonstrate viability of their approach, the authors claim
that they implemented and tested the Alpha miner, the flexible heuristics miner, and
the inductive miner [33]. We opted for not using the presented framework in order
to simplify the usage of our ProM plugin and not to force the user to download all
the codebase required by Hadoop and its ecosystem.

To sum up, these papers clearly demonstrate not only that process mining can
benefit from using distributed systems and MapReduce, but also that such
distributed process mining algorithms are needed and desired for usage in the real-
life environment. Moreover, from these papers it is clear that some common
approaches and techniques of process mining suit the MapReduce model well. Last
but not least, analysis of the related work reveal that there are only theoretical
considerations of parallel or distributed conformance checking and its usefulness.

7. Conclusions

This paper presents one of the possible ways of speeding up large-scale
conformance checking. The paper provides a helicopter-view of distributed
conformance checking and suggests ways for possible extensions and
improvements. One of the proposed algorithms was implemented and evaluated on
event logs, which were different in terms of size and fitness.

As a possible extension, it is worth considering implementing the algorithm using
the Spark framework rather than Hadoop because as it is often claimed Spark might
provide better performance due to its in-memory nature. Furthermore, the XES
standard which defines how event logs should be structured for convenient process
mining, but it seems that the XES standard is not the best option for using with
Hadoop. Thus, it is possible to consider other storage formats such as Hadoop
sequence files or the Avro format.
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AnHoTauusi. Process mining — 3To OTHOCHUTEIBHO HOBasi 00JIaCTh MCCICAOBAHUI, B paMKax
KOTOpO#l pa3pabaThIBAlOTCS METOABI MHCCIENOBAHHS M YIy4YIIEHHS OHM3HEC-TIPOIECCOB.
Crnenudukoil METOIOB process mining sIBISIETCS TO, YTO OHM OCHOBBIBAIOTCS Ha aHAIN3e
HCTOPHH BBINIOJHEHUS] MPOLECCOB, KOTOpas MPEACTABIAETCS B BHAE JIOTOB COOBITHH.
IIpoBepka COOTBETCTBHS MOJENEH NPOLECCOB W JIOTOB COOBITHH  SBIACTCS OTHUM H3
KIIIOUEBBIX HANpaBlICHUHA B 00JacTH process mining. AJTOPHTMBI MPOBEPKH COOTBETCTBUS
HCTIONB3YIOTCSL JUIST TOTO, YTOOBI OIIGHHTH, HACKOJBKO XOpOIIO JaHHAs MOJeNb OH3Hec-
mpoliecca, IpeACTaBICHHas, Hampumep, B Bujae cerd IleTpu, omnucelBaeT IOBeJEHUE,
3amMcaHHoe B JIore cOOBITHH. IIpoBepka COOTBETCTBHUS, OGa3UpyYIOIIascsl HA UCIIOIb30BAHIH
TaK Ha3bIBaGMbIX "BBIPABHMBAHUMN'", HA JTAHHBIH MOMEHT SIBIISIETCSI CAMBIM IEPEIOBBIM H
YacTO HCIMOJB3YEeMBIM aIrOPUTMOM IIPOBEPKHM COOTBETCTBUS. B nmaHHO# pabote
paccMarpuBaercst IpodiemMa 0O0JbIIOH BHIUYUCIUTEIBHON CIIOXKHOCTH JTAaHHOTO anropurMma. B
HacTOsIIIee BpeMsI IIPOBEPKa COOTBETCTBUS HA OCHOBE BEIPABHUBAHMI SBISIETCS HE CIMIIKOM
3¢ (GEeKTHBHOW C TOYKH 3pEHHS NOTPEONCHUS NaMATH W BPEMEHH, HEOOXOAWMOTO st
BBIUUCIICHNH. Pemenne 3Toil mpoOieMbl mMeeT OONbIIOe 3HAYEHHE IS YCHENTHOTO
TIPUMEHEHHs TPOBEPKH COOTBETCTBUSI MEXIy PEaJbHBIMH MOJECISMH OM3HEC-IIPOLECCOB H
JoraMu COOBITHH, 4YTO BechbMa NPOOJEMATHYHO C UCIOJIB30BAaHHEM CYLIECTBYIOLINX
noaxonoB. MapReduce sBnsercss mOmyIsSpHOW MOJIENbIO MapayuIeIbHBIX BBIYUCICHUH,
KOTOpasi ympomaeT peann3anuio 3()GEeKTUBHBIX M MAaCIITaOHPYyEeMBIX paclpeiesIeHHBIX
BRIYMCIICHHNA. B maHHOW paboTe mnpeacTaBicHa MOAMMUIIMPOBAHHAS BEPCHs aITOPHTMA
MPOBEPKH COOTBETCTBHS Ha OCHOBE BBIpaBHHBaHMiA ¢ mpuMeHeHneM MapReduce. Tak xe B
paboTe MMOKa3aHO, YTO IMPOBEPKA COOTBETCTBUS MOXKET OBITh pacmpenereHa C MOMOIIBIO
MapReduce, u uTo Takoe pacmpeneieHHE MOXET NPUBECTH K YMEHBLICHUIO BPEMEHH,
TpebyeMoro mist BeIMMCIeHUH. [lokazaHO, Y4TO adTrOPUTM NPOBEPKH COOTBETCTBHS MOJIEIH
Iporecca U JIora COOBITHI MOXKET OBITh PEATM30BaH B PAClpeleeHHOM BHJE C MOMOIIBIO
MapReduce. TIToka3aHo, 4TO BpeMsl BBIYMCIIEHHS PACTET JMHEWHO C POCTOM pa3Mepa JIOrOB
COOBITHI.
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