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Abstract. Memory errors in Linux kernel drivers are a kind of serious bugs that can lead to
dangerous consequences but such errors are hard to detect. This article describes static
verification that aims at finding all errors under certain assumptions. Static verification of
industrial projects such as the Linux kernel requires additional effort. Limitations of current
tools for static verification disallow to analyze the Linux kernel as a whole, so we use a
simplified automatically generated environment model. This model introduces inaccuracy,
but provides ability for verification. In addition, we allow absent definitions for some
functions which results in incomplete ANSI C programs. The current work proposes an
approach to reveal issues with memory usage in such incomplete programs. Our static
verification technique is based on Symbolic Memory Graphs (SMG) with extensions aiming
to reduce a false alarm rate. We introduced an on-demand memory conception for
simplification of kernel APl models and implemented this conception in static verification
tool CPAchecker. Also, we changed precision of a CPAchecker memory model from bytes to
bits and supported structure alignment similar to the GCC compiler. We implemented the
predicate extension for SMG to improve accuracy of the analysis. We verified of Linux kernel
4.11.6 and 4.16.10 with help of the Klever verification framework with CPAchecker as a
verification engine. Manual analysis of warnings produced by Klever revealed 78 real bugs in
drivers. We have made patches to fix 33 of them.
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1. Introduction

Operating system kernels are often written in the C programming language. This
language is portable and effective, but unfortunately it is not memory safe. Memory
issues can lead to vulnerabilities or unpredictable failures. Common methods such
as testing are unable to find all problems. A probable solution to get an evidence of
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satisfiability of safety properties is formal methods and there are results of
comprehensive formal verification of the seL4 microkernel [1]. However formal
methods generally require a whole program and a complete model of its
environment to produce an appropriate verdict. For example, Microsoft developed
Static Driver Verifier (SDV) [2] to improve Microsoft Windows stability. SDV
contains models of the kernel and drivers’ environment, and over 60 API usage
rules.

The Linux kernel is important open source software. There are many research and
industrial projects for improving kernel quality by verification, testing, bug hunting,
fuzzing and error reports. Coverity [3], Saturn [4], DDVerify [5], Coccinelle [6],
Linux Driver Verification [7] are projects which work on improving Linux stability.
This article considers operating system kernel drivers with automatically generated
environment models as a target for approbation of a memory verification
technology. Main contributions of the paper are connected with extensions of an
existed static memory verification approach to be able to perform Linux kernel
drivers verification, which are described in Section 4.

2. Linux driver verification

The Linux kernel represents an industrial code base with more than 10 million lines

of drivers’ code. A distinctive feature of Linux is instability of internal interfaces. A

high speed of changes with a distributed development process requires an efficient

bug finding strategy.

The research of faults in Linux operating system drivers divides errors into typical

and specific [8]. Specific faults in drivers are described as connected with hardware

and not applicable to other drivers. Typical faults can be specified by some rule

which is true for all or some group of drivers. Typical faults are further divided into:

e  Linux specific faults, which correspond to rules of correct usage of the Linux
kernel API;

e races and deadlocks, which are related with parallel execution;

e generic problems, which are common for C programs such as null pointer
dereference, integer overflow, etc.

Authors show that 29.2% of typical errors fixed in stable branches of the Linux

kernel are generic problems. Statistics of memory problems corresponding to all

generic faults is shown in Table. 1.

Table. 1. Ratio of memory problems corresponding to all generic faults

Type Percentage
NULL pointer dereference 30.4%
Resource: 23.5%
memory leak,
double free,

use after free

144



BacunbeB A.A. Craruueckas Bepudukauus Momyiel supa Linux va ommGku paGoTsl ¢ namsiteio. Tpyost UCIT PAH,
Tom 30, Beim. 6, 2018 1, cTp. 143-160

Buffer overflow 7.8%

Uninitialized: 5.9%
uninitialized pointer free,
write to unallocated memory

Total 67.6%

This information shows that the main part of generic faults match memory errors.
We suggest to improve situation with memory safety of the Linux kernel with help
of static verification.

The Linux Driver Verification project (LDV) [7,9,10] aims at performing
automatic static driver verification and reporting detected problems. It provides a
static wverification framework called Klever [11] for Linux kernel verification
including automated environment model generation [12, 13], rules of correct kernel
API usage, interfaces for storing and visualization of verification results [14]. As a
verification engine Klever includes the CPAchecker [15] verification tool.

In this work, we added several extensions into the CPAchecker verification tool for
memory safety verification and improved Klever environment models to check
memory safety for drivers of the Linux kernel. We have made experimental
evaluation on drivers of Linux kernel 4.11.6 and 4.16.10, analyzed all memory
safety problems reported by the verification tool and classified them into bugs and
false alarms. We prepared bug reports and fixes to the newest kernel versions.
Regarding false alarms, we conclude that automatic environment generation heavily
affects verification results and requires further improvement.

3. Symbolic memory graphs

The symbolic memory graph (SMG) algorithm [16] is a kind of shape analysis. It
works with directional graph representation of a memory state. Nodes are used for
symbolic values, memory regions and abstracted structures representation. Edges
show references between nodes and are divided into point-to edges for pointers and
has-value edges. Each edge and node in SMG has a set of labels representing size,
offset and allocation status. One symbolic memory graph with abstractions can
represent several memory states called concrete memory images. Set of all concrete
memory images for SMG G is denoted as MI(G).

Our SMG implementation in CPAchecker keeps mapping between global, stack
variables and memory regions. Also, it tracks mapping between symbolic and
concrete values. A memory graph is modified in correspondence with analyzed
source code.

Detailed description of operations on SMG can be found at [16]. Here we provide a
brief overview.

3.1. Read/write data reinterpretation
This operation emulates memory modification with validity checks.
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Modifications: A level of details for a memory model allows to take into account
such low level interpretation as unions and provide facility for reinterpretation
values even on the same offset with different types.

Algorithm supports partial values overwrite if memory for corresponding field
intersects. For example:

1 union {

2 int 1i;
3 char c;
4 }ous

5 u.i = 10;
6 u.c = 'A';

After line 5 union u will contain integer value 10 with size 4 byte, but after line 6
from this union we are able to read 1 byte char 'A' or an undefined 4 byte integer
value.

Checks: For these operations, the algorithm performs checks against null pointer
dereference and read/write within object bounds.

3.2. Join of SMGs

This operation is central one for abstraction and decision whether a current memory
state is covered by another one and vice versa, so the algorithm can drop one of the
states. It takes as input 2 SMGs G, G,, compares their concrete memory images and
produces join status with summarization SMG G. If MI(G,) € MI(G,) and
MI(G;) 2 MI(G,) then SMGs are semantically incomparable and their join is
undefined.

Algorithm travels through pair of SMGs and tries to join nodes. It is possible if
nodes have same sizes, validity, and special conditions for join with abstract lists.
Abstract lists are joinable if they have same head, previous and next fields offsets, a
join result will have a number of elements equal to minimum from originals. Also, a
result of a join region with an abstract list become an abstract list. It is possible to
insert an empty list abstraction at any correct position in a graph to increase
opportunity of correct join.

3.3. Summarizing sequences of objects to list abstraction

This operation comes from the shape analysis theory. Ideas for different abstractions
could be found in Sagiv work [17]. SMG uses single and double linked lists as
abstractions.

The algorithm discovers sequences of neighboring objects which could be
considered as list entry candidates and then sequentially adds them into one abstract
list and increases its size. An abstraction size is considered as number of elements
necessarily present in the abstraction.
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3.4. Abstract list materialization

Materialization is an operation for unfolding the abstraction to memory regions on
write/read from abstracted regions.

3.5. Checking equality and inequality of values and pointers

The algorithm supports incomplete checking for equality and inequality of values
and pointers. In some cases, it can fail with different point-to edges from one
abstracted region.
The tool performs stack variables cleaning on function exit and checking for
dangling pointers to allocated memory, which helps identify memory leak errors.
Let's consider analysis of a simple example:
void main () {

void *array;

long b = 2;

long ¢ = 3;

array = calloc(l, 16);

memcpy (&array[4], &b, 4);

memcpy (&array[5], &c, 4);
}
Steps of the algorithm are shown in figs 1-6 below.
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Stack

#1: void madniy;
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level=Dl

Location: void *amay;

Fig. 1. Modification: allocate the 4 byte memory region on stack for pointer array
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@D

Location; long b = 2;

Fig. 2. Modification: allocate the 4 byte memory region on stack for variable b and
assign it a new value #1 with explicit value 2

Check: a memory region size is sufficient for the assigned value.
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Fig. 3. Modification: allocate the 4 byte memory region on stack for variable ¢ and
assign it a new value #2 with explicit value 3
Check: a memory region size is sufficient for the assigned value
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Fig. 4. Modification: allocate the 16 byte memory region on heap (mark it by tag
calloc_ID3), fill it by NULL values, and assign to array a new point-to-value #4 which points
to O offset of region calloc_ID3

Check: a region memory size is sufficient for the assigned value.
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Fig. 5. Modification: assign 4 byte value #1 by offset 4 of region calloc_ID3
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Check: dereference and assignment are done within allocated memory.
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Location: memspy(&iara{S], & 4ULY

Fig. 6.Modification: assign 4 byte value #2 by offset 5 of region calloc_ID3, remove
intersecting values, so value at offset 4 of region calloc_ID3 is not defined

Check: dereference and assignment are done within allocated memory.
4. Extensions for SMG

4.1. Bit precise model

The Linux kernel operates on structures with bit fields. We implemented bit fields in
CPAchecker and switched SMG operations granularity from byte to bit precision.
Also, we simulate structure alignment corresponding to GCC compiler memory
usage.

4.2. Predicate extension

We implemented tracking of predicates over symbolic and concrete values stored in
a memory graph. This feature allows filtering infeasible paths. On branching we
perform a predicate satisfiability check to decide which branch is feasible. In
addition, this method allows us to extend memory region over-read and overwrite
checks for arrays using an error predicate check on a data reinterpretation operation.

4.3. On-demand memory

We consider the Linux kernel as trusted code and drivers as untrusted code in
following sense: all structures provided to drivers by the kernel core are controlled
by the kernel. We assume that the kernel recursively initializes all structure/union
fields so drivers do not require to manage these structures. We supported the current
point of view as the on-demand memory (ODM) concept within CPAchecker.
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Allocation of ODM is made by special function void* ext_allocation(). A returned
pointer allows any recursive dereference by any offset and distinguishes values by
list of offsets and pointers from the original pointer. Additionally, any explicitly
allocated memory which is reachable from on-demand memory is considered as
automatically freed on program exit.

SMG implementation of ODM is done by special labels on memory regions and
following behavior rules:

e any first dereference (read/write/free) of ODM pointers assumes that they are
not NULL, ODM function pointers are an address to a pure function which
returns nondeterministic value for non-pointer return value types or a pointer to
ODM for pointer return value types;

e read memory:
o  read without previous read or write:
v valid for any offset;

v returns nondeterministic values for non-pointer types and a pointer to
ODM for pointer types;

o  read after write:
v' valid for any offset;
v returns values that were written by write;
o  read after read:
v' valid for any offset;
v returns the same values that were read previously;
o read after free is not valid.
e write memory:
o write:
v' valid for any offset;
v store new values in memory;
write after free is not valid.
free memory:
pointers to ODM are not subjected for memory leaks;

pointers to regular memory which are contained in ODM are not subjected
for memory leaks;

free of any ODM offset is valid;
double free of ODM with the same offset is not valid;
read or write of freed ODM is not valid.

o O O O
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5. Configurable Program Analysis

The theory of SMG is implemented as Configurable Program Analysis (CPA) [18]
within CPAchecker under the name SMGCPA.

Common CPA has abstract domain, transfer, merge and stop operators:

e abstract domain describes abstract states which represent sets of concrete states
of the program;

e transfer gets one state and a control flow operation as input and returns all
states which appears after applying the operation on the original state;

e merge takes 2 states as input and tries to combine them into one;
e stop identifies when one state is covered by others and decides whether it is
required to continue analysis with a current state.

CPAchecker allows to combine different CPAs into one composite CPA. It works
with a composite state which includes states of each involved CPAs. Merge
produces a Cartesian product of separate analyses merge results.

SMGCPA fits into CPA conception with the following operators:

e abstract domain has SMG states as abstractions;

e transfer performs SMG transformations corresponding to a current control flow
operation;

e merge tries to join SMGs from states and returns new SMG if join is
successful,

e stop checks whether MI(G1) € MI(G2) or a state has memory issues.

6. Experimental results

Experiments were performed with the help of Klever static verification
framework [11], that is a part of LDV project [7]. Klever automatically generates
environment models for each separate driver.

We checked memory safety for drivers of Linux 4.11.6 and Linux 4.16.10.

Table 2 and 3 present results of experiments on 6224 and 5215 generated
verification tasks for Linux 4.11.6 and 4.16.10 respectively. We used the 15 minutes
CPU time limit for each verification task. We performed manual analysis of 561
Unsafe verdicts for Linux 4.11.6 and 266 Unsafe verdicts for Linux 4.16.10 and
classified 49 Unsafes as real memory bugs and 512 as false alarms for Linux 4.11.6
and 29 real bugs and 237 false alarms for Linux 4.16.10.

Table 2. Evaluation on drivers of Linux 4.11.6
Safe 1560

Unknown 4023 Timeouts 2594
Others 1429
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Unsafe 641 Bugs 49
False alarms 512
Without marks 80

Table 3. Evaluation on drivers of Linux 4.16.10

Safe 2093

Unknown 2830 Timeouts 1293
Others 1537

Unsafe 292 Bugs 29
False alarms 237
Without marks 26

Causes of false alarms (512 on 4.11.6 and 237 on 4.16.10) are the following.

e Imprecise environment models (258 + 96);

Automatically generated environment models could mistakenly provide wrong
driver initialization and cleanup. Also, some emulated functions are imprecise for
correct proof of memory safety.

e  Absent function (139 + 58);

Current environment models do not contain functions imported from other drivers.
This leads to false alarms if undefined functions are important for memory safety
properties.

e Require predicate SMG (83 + 43);

These false alarms are connected mainly with arithmetic operations on unknown
values. We expect that some common patterns used in software could be emulated
by additional predicates description, e.g. bitwise AND on unsigned values provide
result value less or equal to operands and this is common check for array
dereference in the Linux kernel.

e  SMG problems (13 + 32);

Problems with analysis such as missed values after merge and wrong assumptions
about loop invariants.

e  \Verification task generator problems (10 + 5);

The verification task generator omits information about packed pragma for
structures at final source files. Sometimes it provides less allocation sizes than
unpacked structure sizes.

e  Unknown allocation sizes (9 + 3);

If SMG can not derive explicit values for allocation sizes it uses a predefined value,
which may be less than required.
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The list of reported bugs is presented in Table 4. Not all bugs were reported, because
some of them were detected in old unsupported drivers or were already fixed.

Table 4. Bugs in Linux 4.11.6 reported to Linux Kernel Mailing List (https://lkml.org/lkml)

Message ID Subject

2017/8/1/615  Buffer overread in pv88090-regulator.ko

2017/8/10/693  hwmon:(stts751) buffer overread on wrong chip

2017/8/10/597 dmaengine: gcom_hidma: avoid freeing an uninitialized pointer
2017/8/15/322  ASoC: samsung: i2s: Null pointer dereference on samsung_i2s_remove
2017/8/10/535 i2c: use release_mem_region instead of release_resource
2017/8/16/493 mtd: plat-ram: Replace manual resource management by devm
2017/8/11/366  mISDN: Fix null pointer dereference at mISDN_FsmNew
2017/8/10/522  parport: use release_mem_region instead of release_resource
2017/8/11/368  video: fhdev: udifb: Fix use after free on dIfb_usb_probe error path
2017/8/10/550  dvb-usb: Add memory free on error path in dw2102_probe()
2017/8/16/345 udc: Memory leak on error path and use after free

Table 5. Bugs in Linux 4.16.10 reported to Linux Kernel Mailing List (https://lkml.org/lkml)

Message ID Subject

2018/7/6/412  uwb: hwa-rc: fix memory leak at probe

2018/7/18/551 media: dm1105: Limit number of cards to avoid buffer over read
2018/7/23/964 media: dw2102: Fix memleak on sequence of probes
2018/7/6/389  video: goldfishfb: fix memory leak on driver remove
2018/7/23/944  firmware: vpd: Fix section enabled flag on vpd_section_destroy
2018/7/27/764  misc: ti-st: Fix memory leak in the error path of probe()
2018/7/27/503 media: vimc: Remove redundant free

2018/7/23/949  gpio: ml-ioh: Fix buffer underwrite on probe error path
2018/7/27/769 can: ems_usb: Fix memory leak on ems_usb_disconnect
2018/7/27/661 regulator: tps65217: Fix NULL pointer dereference on probe
2018/7/27/655  scsi: 3ware: fix return 0 on the error path of probe
2018/7/27/772  net: mdio-mux: bem-iproc: fix wrong getter and setter pair
2018/7/23/1020 HID: intel_ish-hid: tx_buf memory leak on probe/remove
2018/8/6/572  pinctrl: axp209: Fix NULL pointer dereference after allocation
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2018/7/27/508 media: davinci: vpif_display: Mix memory leak on probe error path
2018/7/27/512  drm: gxl: Fix error handling at gxI_device_init
2018/7/27/727 fmc: Fix memory leak and NULL pointer dereference

2018/7/27/755 drm: gxl: Fix NULL pointer dereference at
gxl_alloc_client_monitors_config

2018/6/9/253  staging: rts5208: add error handling into rtsx_probe
2018/7/27/644  tty: rocket: Fix possible buffer overwrite on register_PCI
2018/8/6/615  serial: mxs-auart: Fix potential infinite loop

2018/8/7/292  ush: gadget: fotg210-udc: Fix memory leak of fotg210->ep[i]

Let's consider the bug 2017/8/15/322 from Table 4 discovered in the Samsung 12S
Controller driver within Linux 4.11.6 for which our patch was applied in 4.14-rcl.

1229 static int samsung i2s probe(struct platform device *pdev)
1230 {
1231 struct i2s dai *pri dai, *sec dai = MULL:

Fig. 7. (a) probe function

Klever provides a full error trace from an entry point to a error occurrence for the
Unsafe verdict. The parts of the error trace for the Samsung 12S Controller driver
are shown in fig. 7.

Fig. 7 (a) shows a part of the error trace with the declaration of the variable struct
i2s_dai *pri_dai in function samsung_i2s_probe(). In the same function in fig. 7 (b)
pri_dai is initialized by function i2s_alloc_dai() (line 1246), and field sec_dai
becomes NULL (line 1095).

The third part of the error trace in fig. 7.(c) shows that sec_dai initialization is
skipped by condition in line 1319 (quirks & QUIRK_SEC_DAI) triggered by device
capabilities, so pri_dai is remained equal to NULL.

In the fig. 7, (d) we see that the structure pri_dai becomes stored at driver_data by
dev_set_drvdata() in line 1363 and then extracted by dev_get_drvdata() in line 1382
of samsung_i2s remove(). Next the driver assigns sec_dai in line 1383 and then
perform dereference of sec_dai in line 1386 without check for NULL, which leads
to NULL pointer dereference.

The bug can be reproduced on Samsung s3c6410-i2s and exynos7-i2sl devices by
inserting and removing driver module sound/soc/samsung/i2s.ko, because the
condition in line 1319 is false for i2sv3_dai_type and i2sv5_dai_type_i2s1 (see lines
1454 and 1477 in sound/soc/samsung/i2s.c).
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1246 ~ pri_dai = i2s_alloc_dai(pdev, 0);

1687 struct i2s dai *i2s ;

1689 i2s = (struct i2s dai *)tmp;

1690 assume( ((unsigned long)i2s) != ((unsigned long)((struct i
1093 12s->pdev = pdev;

1694 12s->pri dal = (struct 12s dai *)o;
[ 1685 i2s->sec_dai = (struct i2s dai *)0;

1096 12s->12s dai_drv.symmetric_rates = 1U;

1097 125->12s dal drv.probe = &samsung_12s dai_probe;
1698 125->12s dal_drv.remove = &samsung i2s dal_remove;
1699 125->12s dal drv.ops = &samsung i2s dal ops;

1160 125->12s dal drv.suspend = &i2s suspend;

Fig. 7. (b) pri_dai initialization

AJ21i0

1319 if (quirks & QUIRK SEC DAI) {

1320 sec_dai = 12s alloc dai(pdev, true);

1321 if (!sec dai) {

1322 dev_err(&pdev->dev, "Unable to alloc 125 sec\n");
1323 ret = -ENOMEM;

1324 goto err_disable clk;

1325 }

1326

1327 sec_dai->lock = &pri_dai->spinlock;

1328 sec_dal->variant regs = pri_dai->variant_regs;
1329 sec_dal->dma_playback.addr = regs_base + I2STXDS;
1330 sec_dai->dma_playback.chan name = "tx-sec”;

1331

1332 if (!'np) {

1333 sec_dai->dma_playback.filter data = i2s pdata->dma_
1334 sec_dai->filter = i2s pdata->dma_filter;

1335 }

1336

1337 sec_dai->dma_playback.addr width = 4;

1338 sec_dai->addr = pri_dai->addr;

1339 sec dai->clk = pri_dai->clk;

1340 sec_dal->quirks = quirks;

1341 sec_dal->idma_playback.addr = idma_addr;

1342 sec_dai->pri dal = pri_dai;

1343 pri_dai->sec dai = sec dai;

1344

1345 ret = samsung_asoc_dma platform register(&pdev->dev,
1346 sec dai->filter, “tx-sec”, NULL);
1347 if (ret < 0)

1348 aoto err disable clk:

Fig. 7. (c) skipped pri_dai initialization
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p— T st o e gt —empeimisiopees omey oo _—
1316 assume(ret >= 0);
1319 assume( (quirks &2U) == 6U);
1357 assume( ((unsigned long)i2s pdata) == ((unsigned long)((struct
1363 ~ dev_set_drvdata(&pdev->dev, (void *)pri dai);
1934 return;
1365 » pa_runtime_set_active(&pdev->dev);
1366 pm_runtime enable(&pdev->dev);
1368 » ret = i2s_register_clock_provider(pdev);
1369 assume(ret = 0);
1370 return o;
361 » ldv 2 probed default = ldv_post_probe(ldv 2 probed default);
438 » Remove device from the system. Invoke callback remove from platform
1389 v samsung_i2s _remove(ldv 2 resource platform device);
1389 truct i2s dai *pri dai
1381
1382 truct i2s dai *)tap;
1382 » pri dal = (struct 12s dal *)dev_get drvdata((struct device
1628 return ((void *)dev->driver data);
1628
1385 pri dai->sec dal = (struct 12s dai *)¢;
1386 sec_dai->pri dai = (struct 12s dai *)6;

Fig. 7. (d) dev_set_drvdata/dev_get_drvdata and NULL pointer dereference

7. Conclusions and future work

We have presented the approach to find memory errors in Linux kernel drivers using
static verification. Whereas the Linux kernel is widely tested, our experiments show
that it is possible to find memory bugs in Linux kernel drivers with help of our static
verification method.

We expect to reduce the false alarm rate by introducing a more precise predicate
extension. Further efforts will be aimed at reducing the number of timeouts.

References

[1]. G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and G.
Heiser, Comprehensive formal verification of an os microkernel. ACM Transactions on
Computer Systems, vol. 32, no. 1, 2014, pp. 2:1-2:70.

[2]. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek,
S. K. Rajamani, and A. Ustuner, Thorough static analysis of device drivers. SIGOPS
Operating Systems Review, vol. 40, no. 4, 2006, pp. 73-85.

156



BacunbeB A.A. Craruueckas Bepudukauus Momyiel supa Linux va ommGku paGoTsl ¢ namsiteio. Tpyost UCIT PAH,

TOM

30, Boim. 6, 2018 ., ctp. 143-160

(3]

[41.
[5].

[6].

[7].
[8].

[al.
[10].

[11].

[12].

[13].

[14].
[15].
[16].
[17].

[18].

. D. Engler and M. Musuvathi. Static analysis versus software model checking for bug
finding. Lecture Notes in Computer Science, vol. 2937, 2004, pp. 191-210.

Saturn. Precise and Scalable Software Analysis. Available at: http://saturn.stanford.edu/,
accessed 01.12.2018.

T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher. Model checking
concurrent Linux device drivers. In Proceedings of the 22nd IEEE/ACM Int. Conference
on Automated Software Engineering, 2007, pp. 501-504.

N. Palix, G. Thomas, S. Saha, C. Calvés, J. Lawall, and G. Muller. Faults in Linux: Ten
years later. In Proceedings of the 16th Int. Conference on Architectural Support for
Programming Languages and Operating Systems, 2011, pp. 305-318.

Linux driver verification project. Available at: http:/linuxtesting.org/ldv, accessed
01.12.2018.

V. Mutilin, E. Novikov, and A. Khoroshilov. Analysis of typical faults in Linux operating
system drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 22, 2012, pp. 349-374 (in Russian).
DOI: 10.15514/ISPRAS-2012-22-19.

A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov. Establishing Linux driver
verification process, Lecture Notes in Computer Science, vol. 5947, pp. 165-176, 2010.
I. Zakharov, M. Mandrykin, V. Mutilin, E. Novikov, A. Petrenko, and A. Khoroshilov.
Configurable toolset for static verification of operating systems kernel modules.
Programming and Computer Software, vol. 41, no. 1, 2015, pp. 49-64.

Klever verification framework. Available at: https://forge.ispras.ru/projects/klever,
accessed 01.12.2018.

I.S. Zakharov, V.S. Mutilin, and A.V. Khoroshilov. Pattern-based environment modeling
for static verification of linux kernel modules. Programming and Computer Software,
vol. 41, no. 3, 2015, pp. 183-195.

A. Khoroshilov, V. Mutilin, E. Novikov, and I. Zakharov. Modeling environment for
static verification of linux kernel modules. Lecture Notes in Computer Science, vol.
8974, 2015, pp. 400-414.

E. Novikov and I. Zakharov. Towards automated static verification of GNU C programs.
Lecture Notes in Computer Science, vol. 10742, 2018, pp. 402-416.

D. Beyer and M. Keremoglu. CPAchecker: A tool for configurable software verification.
Lecture Notes in Computer Science, vol. 6806, 2011, pp. 184-190.

K. Dudka, P. Peringer, and T. Vojnar. Byte-precise verification of low-level list
manipulation. Lecture Notes in Computer Science, vol. 7935, 2013, pp. 215-237.

R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. Lecture Notes in Computer
Science, vol. 1781, 2000, pp. 1-17.

D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:
concretizing the convergence of model checking and program analysis. Lecture Notes in
Computer Science, vol. 4590, 2007, pp. 504-518. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1770351.1770419

157


http://saturn.stanford.edu/

A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 6, 2018. pp. 143-160

Cratuyeckas Bepudmkaumsa ouMb0oK UCNONb30BaHNA
namaTtn B moaynsax aapa OC Linux

A.A. Bacunves <vasilyev@ispras.ru>
Huemumym cucmemnozo npoepammupoganus um. B.11. Heannuxoea PAH,
109004, Poccus, . Mockea, yn. A. Coaxcenuysvina, 0. 25.

Abstract. Ommbky HCTIONB30BaHMS HAMATH B MOIYJISAX SApa ONEPalMOHHOM cucteMbl Linux
CIIO)KHO OOHApYXHTb, HO OHH MOTYT HPHBECTH K CEpPhE3HBIM MOCIENCTBUSIM. B maHHOI
CTaTbe MBI OITMCEIBAEM METOJ[ CTaTHUECKON BepH(HKAIMH, O3BOJISIOMNIT 00HApyKHUBATh BCE
OIIMOKH B paMKax HperoiokeHui Meroma. Crarmdeckas BepH(HKAINSI KPYIHBIX IPEKTOB
taknX, kak sapo OC  Linux, TpeGyror momomHuTenbHBIX ycunnid. CoBpeMeHHbIC
HMHCTPYMEHTHI CTaTHYECKOH BepH(HUKAIMU HE MO3BOJAIOT aHAIM3HPOBATH AP0 KaK €IUHOE
Lesoe, TMO3TOMY MBI HCHONB3YeM YIPOIICHHYIO aBTOMATHUECKH TCHEPHPYEMYIO0 MOJENIb
OKpYXKEHHA. DTa MOJEeNb BHOCHT HEKOTOPYIO HETOYHOCTb, HO IIO3BOJIIET IPOBOAUTH
CTaTUYECKyI0 Bepupukanuio. Taxke MbI JOIMyCKaeM OTCYTCTBHE Tela HEKOTOPHIX (DYHKIIUH,
YTO NMPUBOAUT K HEIOJIHBIM IporpaMmam, HanucaHHEIX Ha si3bike ANSI C. B nanHoli pabore
npeJyIaraeTcs Moaxo K OOHApY)KEHUIO OIIMOOK MCHOJIB30BaHUS MaMSsTH B TAKUX HETOJIHBIX
nporpamMmax. Hama TexHmka cratHYeckoil BepHU(MKaIMM OCHOBaHA Ha TEOPHUH
CHMBOJINUECKHX TpadoB MaMATH M €€ PAaCIIMPEHUH Ul CHIDKEHHS KOJIHYECTBA JIOXKHBIX
cpabarsiBaHui. MBI BBENM KOHLEMIHUIO IMAMATH IO TPeOOBaHUIO IS YNPOIICHUS MoAemneit
untepdeiicoB sapa OC u peamu3oBanu ee B (pelMBOpPKE CTATHYECKOW BepUPUKALUI
CPAchecker. Tawke Mbl M3MeHHIM TouHOCTh Mozpenu mamstu CPAchecker ¢ GaiitoB Ha
TOAJCPKKY OTJACTBbHBIX OWTOB UM JO0AaBWIIM TIOAJEP)KKY BBIPDABHHBAHUS CTPYKTYD,
AQHAJIOTHYHOE HCIOJIb30BAHOMY B KOMIWIsATOpe. [ MOBBIMICHWS TOYHOCTH aHalIW3a MBI
peann3oBaNy NPEANKATHOE PACIIUPEHUE COCTOSHUSI CHMBOJIMYECKOro rpada mamstu. Mel
npoBenu mpoBepky moaynei sapa OC Linux st Bepeuit 4.11.6 u 4.16.10 ¢ momorpto
¢peiiMBopka  crarmueckoid  Bepudukarmu  Klever ¢ uwHCTpymMeHTOM — BepHUMKannH
CPAchecker, uro mo3Bomiio npoanainsupoBats 6224 u 5215 momyneil cOOTBETCTBYIOIIMX
Bepcuid. PyuHoi#t aHanm3 npemynpexaennii ot dpeiimBopka Klever BousiBun 78 peanbHBIX
omunOOK B MOAYIAX siapa. MBI cienany matyu A1 HCIpaBlieHus 33 U3 HUX.

KnioueBble c10Ba: aHAIW3 PEKypCHUBHBIX CTPYKTYP JAHHBIX; CTAaTHUECKas BEPH(UKAIIHS;
CHMBOJIMYECKHE rpadbl HaMsITH; MOACIH MAMSTH.
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