Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

Conversion of abstract behavioral scenarios
into scenarios applicable for testing

Pavel Drobintsev < drob@ics2.ecd.spbstu.ru>
Vsevolod Kotlyarov <vpk@ics2.ecd.spbstu.ru>
Igor Nikiforov < i.nikiforov@ics2.ecd.spbstu.ru>
Nikita Voinov <voinov@ics2.ecd.spbstu.ru>
Ivan Selin < ivanselin93@gmail.com>
Peter the Great Saint-Petersburg Polytechnic University,
29 Polytechnicheskaya str, St. Petersburg, 195251, Russian Federation

Abstract. In this article, an approach of detailing verified test scenarios for developed
software system without losing the model's semantics is proposed. Existing problem of
generating test cases for real software systems is solved by using multi-level paradigm to
obtain the real system signals, transactions and states. Because of this, the process is divided
into several steps. Initial abstract traces (test cases) with symbolic values are generated from
the verified behavioral model of software product. On the next step, called concretization,
these values in test scenarios are replaced with concrete ones. Resulting concrete traces are
then used as input for the next step, data structures conversion. This step is needed because
concrete traces do not contain all the information for communicating with developed software
and presented in another way with different data structures. After concrete test scenarios are
detailed, they can be used for generation of executable test cases for informational and
control systems. In this paper, a software tool is suggested for detailing test scenarios. It
consists of several modules: a Lowering editor that allows user to create rules of detailing a
signal, a Signals editor used to define complex data structures inside the signal and a
Templates editor that eases work with similar signals. Process of translating abstract data
structures into detailed data structures used in system implementation is presented with
examples.

Keywords: model approach; model verification; test mapping

DOI: 10.15514/ISPRAS-2016-28(3)-9

For citation: P. Drobintsev, V. Kotlyarov, I. Nikiforov, N. Voinov, I. Selin. Conversion of
abstract behavioral scenarios into scenarios applicable for testing. Trudy ISP RAN / Proc. ISP
RAS, vol. 28, issue 3, 2016, pp. 145-160. DOI: 10.15514/ISPRAS-2016-28(3)-9.

145

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

1. Introduction

One of the most perspective approaches to modern software product creation is
usage of model oriented technologies both for software development and testing.
Such technologies are called MDA (Model Driven Architecture) [1,2], MDD
(Model Driven Development) [2] and MDSD (Model Driven Software
Development) [3]. All of them are mainly aimed to design and generation of
application target code based on a formal model.

The article is devoted to specifics of model oriented approaches usage in design and
generation of large industrial software applications. These applications are
characterized by multilevel representation related to detailing application
functionality to the level where correct code is directly generated.

The idea of model oriented approach is in creating of multilevel model of
application during design process. This model is iteratively specified and detailed to
the level when executable code can be generated. On the design stage formal model
specification allows using verification together with other methods of static analysis
with goal to guaranty correctness of the model on early stages of application
development.

More than 80% [4] of model-oriented approaches are using graphical notations,
which allows simplifying of work with formal notations for developers.
Requirements for knowledge of testers and customer representatives is reduced by
this way and process of models developing are also simplified.

2. Levels of behavioral models development

One of high level languages for system formal model specification is Use Case
Maps (UCM) [5, 6]. It provides visible and easy understandable graphical notation.
Further abstract models will be specified in UCM language to demonstrate proposed
approach in details. Also considered is VRS/TAT technology chain [7], which uses
formal UCM models for behavioral scenarios generation.
Traditional steps of formal abstract model development in UCM language are the
following:

1. Specifying main interacting agents (components) and their properties,

attributes set by agent and global variables.

2. Introducing main system behaviors to the model and developing diagrams
of agent’s interaction control flow.

3. Developing internal behaviors for each agent and specifying data flow in
the system.

Undoubted benefit of UCM language is possibility to create detailed structured
behavioral diagrams. Structuring is specified both by Stub structural elements and
reused diagrams (Maps), which are modeling function calls or macro substitution.
Unfortunately, standard UCM language deals with primitive and abstract data
structures, which are not enough to check implementation of a real system. This
146

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

drawback is compensated by using metadata mechanism [6]. But metadata does not
allow detailing data flow to more detailed levels. That’s why for creating detailed
behaviors it is proposed to use vertical levels of abstractions during behavioral
models development which are: structured system model in UCM language,
behavioral scenarios with symbolic values and variables, concrete behavioral
scenarios are behavioral scenarios with detailed data structures.

Another benefit of UCM usage is possibility to execute model verification process.
UCM diagrams are used as input for VRS/TAT toolset which provides checks for
specifications correctness. These checks can detect issues with unreachable states in
the model, uninitialized variables in metadata, counterexamples for definite path in
UCM, etc. After all checks are completed the user gets a verdict with a list of all
findings and a set of counterexamples which show those paths in UCM model
which lead to issue situations. If a finding is considered to be an error, the model is
corrected and verification process is launched again. As a result after all fixes a
correct formal model is obtained which can be used for further generation of test
scenarios.

After formal model of a system has been specified in UCM language, behavioral
scenarios generation is performed. Note that behavioral generator is based not on
concrete values assigned to global variables and agents attributes, but on symbolic
ones which reduces significantly the number of behavioral scenarios covering the
model. However symbolic test scenarios cannot be used for applications testing as
executing behavioral scenarios on the real system requires concrete values for
variables. So the problem of different level of abstraction between model and real
system still exists. In VRS/TAT technology concretization step [8] is used to
convert symbolic test scenarios. On this step ranges of possible values for variables
and attributes are calculated based on symbolic formula and symbolic values are
substituted with concrete ones. But concretization of abstract model’s behavioral
scenarios is not enough for their execution, because on this stage scenarios still use
abstract data structures which differ from data structures in real system. As a result
conversion of concretized behavioral scenarios of abstract UCM level into scenarios
of real system level was integrated into technology chain for behavioral scenarios
generation.

2. Concretization

In behavioral scenarios data structures are mainly used in signals parameters. There
are two types of signals in UCM model: incoming to an agent and outgoing from an
agent. Incoming signals are specified with the keyword "in" and can be sent either
by an agent or from outside the system specifying with the keyword "found".
Outgoing signals are specified with the keyword "out" and can be sent either to an
agent or to outside the system specifying with the keyword "lost".

An example of outgoing signal can be seen on Fig. 1. The element
"send_Fwd_Rel_Req_V2_papu" contains metadata with the signal

147

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.
"Forward_Relocation_Request_ V2" and UCM-level parameter "no_dns". Outgoing
signals can only be used inside of "do" section as a reaction of the system on some
event.

send_Fwd_Rel_Req_V2_papu T

i*':
inter mann T \

main| commom_check | no_addr_rel_req| deal_rel_rsp

<

w UME 23
Detail

do{
out Forward_Relocation_Request_V2({no_dns) to gud;

1

Fig. 1. Description of “Forward_Relocation_Request V2" signal in metadata corresponding
UCM element

WILEI_praprd i

re\r_F‘\eIi _sEipapuﬂ
e
rrel rea cenrd Furl Ren s—skm EIEE|_FE|_F5FI

<
main | commom_check | no_addr_rel_req | deal_rel_rsp | common_hai

w UME 2 | [3 Emvironment Editor
Detail

seq_nbr: seqMum;

cause_dec: cause

€5 Cause:

in Forward_Relocation_Response_V2(seq_nbr,cause_dec, cs) from gud
do {} then

seq_number := seq_nbr;

gtp_cause := cause_deg;

cause_value = cs;

Fig. 2. Description of the " Forward_Relocation_Response_V2" signal in metadata of the
"rev_Rel_RSP_papu" UCM element

If the signal Forward_Relocation_Response_V?2 is received, then new values taken
from signal parameters are assigned to variables.

Consider an example of converting signal structure of UCM level into detailed
structures of real system for the signal "gtp_forward_relocation_req_s". Based on
high level UCM model symbolic behavioral scenarios are generated containing data
structures described in metadata of UCM elements. Fig.3 contains symbolic test

148

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

scenario where the agent "GTP#gtp" receives the signal
"gtp_forward_relocation_req_s" from agent "GMG#gmg". In symbolic scenarios
actual names of UCM model agents specified in metadata are used.

GTP#qgtp GMG#gmag

gtp_forward_relocation_re os

seq_nbr, ip1, ip2, tid, isintra

Fig. 3. Symbolic test scenario with the signal "gtp_forward_relocation_req_s"

Symbolic behavioral scenario is input data for concretization module, which
substitutes symbolic parameters with concrete values. In current example the
parameters "sge_nbr", "ipl", "ip2", "tid" and "isIntra" are substituted with values
"invalid", "valid", "exist", "valid" and "0". Fig.4 contains concrete behavioral

scenario.
GTP#gtp | GMG#gma |
T

gtp_fonward_relucati0n_req_|s

el

invalid, valid, exist, valid, 0 |

Fig. 4. Concrete test scenario with the signal "gtp_forward_relocation_req_s"

4. Data structures conversion

After concretization, scenarios still have to be processed because their structure
does not match with one's of system under test (SUT). The most straightforward
approach is to manually review all generated scenarios and edit all used signals so
that their structure will reflect SUT interfaces. Obviously, it will require too much
time and may be a bottleneck of the whole process. Therefore, there is a need for
automation.

The common way is making a wrapper that transforms signals to desired form using
one of popular programming languages (C++, Java, etc.). However, it could lead to
making new mistakes and loss of correctness of test scenarios. The main reason for
this is ability to implement incorrect structures on scenarios level. In addition, other
language-specific errors are possible. Cutting down the ability to produce incorrect
code will reduce the number of mistakes while still maintaining good level of
automation.

4.1 Approach

To be able to satisfy these needs a two-step approach called "Lowering" was
suggested. The name comes from descending on lower levels of abstraction. In

149

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

general, lowering can be described as creating processing rules for each signal
called "lowering rules" and application of these rules to the concrete scenarios.
As said above, there are some restrictions on possible operations to save the
correctness of test scenarios, such as:
e It is prohibited to separate constants into several independent parts (e.g.
separating value 1536 in 15 and 36 is not possible)
e Itis prohibited to separate fields of variables values
e Only structures similar to SUT interfaces can be created
e Only constant template values and values that were obtained during
concretization step are allowed
Limitation was made by creating a special language that is used to define lowering
rules. Despite having all these limitations, user can define complex signal and
protocol structure dependent on UCM signal parameters in accordance with
language grammar. On Fig. 5, you can see the grammar in Backus—Naur Form.

LoweringSpec ::= UCMSignal "-»"
LoweringRule | LoweringSpec UCMSignal "-»"
LoweringRule

LoweringRule ::= LoweringCondition |
LoweringRule LoweringCondition
LoweringCondition ::= <condition STRING:
ConditionContent

ConditionContent ::= LoweredElement |
LoweredElement ConditionContent
LowredElement ::= LoweredDo | LoweredSignal
| Lowerediction

LoweradDo ::= <code STRING>

LoweringSignal ::= <signal name STRING>
SignalContent

SignalContent ::= ValueNotation Instance
Via

ValueNotation ::= <empty> | <value STRING>

| "(." valueNotation ".)" | ValueNotation

," ValueMotation

Instance ::= <empty>» | "TAT" | "suT"

Via := <empty> | <port STRING:

UcMsignal ::= Name UCMParam

Mame ::= <name STRING:

UCMParam ::= <empty> | <param name STRING>

| UCMParam "," UCMParam

Fig. 5. Lowering rules language grammar

150

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

4.2 User perspective

For selected UCM-level signal user can define lowering rules. As you can see on
Fig. 6, rule consists of trigger condition and content. Content can be either one
detailed signal, several signals or actions performed on the variables.

4R Lowering Editor 22 | = Properties [El Conscle @ *UMC

*) Signals and Actions | £ Lowering

Signal Types and Actions Lowering Rule: Forward_Relocation

type filter text | v @ Sparam_0 eq 'no_dns'

w . soc_datato_req_s
&) Sgud_header, Ssock
% suT

S = - SR | N -

+) Forward_Relocation_Request V1 A
%! Forward_Relocation_Request_V2
% Forward_Relocation_Response_ V2

Fig. 6. Lowering editor with signal "Forward_Relocation_Request_V2" being selected

After specifying the condition and choosing the type of content, user can edit it in
the right part of the editor. This part dynamically changes depending on what is
selected in the middle of the editor.

For example, some signal was selected. Signals editor will appear in the right part of
Lowering Editor (Fig. 7).

Editor

Lowered signal name: | soc_datato_req_s |
Via: | |
From: SUT ~

Select TDL Type or Template: soc_datato_req_s: relecatio v~

Edit signal parameters in text below: & Qék-
Sgud_header, ~
(.

$socket,

Saddr
S
Sport,
$Forward_Relocation_Request V2 o
1

Apply Discard

Fig. 7. Signals editor

User selects the needed SUT interface in the drop-down list named "Select TDL
Type or Template”. Then user names the signal and puts concrete values in the
fields of detailed signal. Often similar conversion rules are required for different
signals. Templates can be used to simplify this approach. A developer can define a
template of detailed signal, specify either formula or concrete values as a parameter

151

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

of detailed signal and then apply this template for all required signals. For each case
of template usage a developer can specify missed values in the template, change the
template itself or modify its structure without violating specified limitations.
Templates mechanism simplifies significantly the process of conversion rules
creation.

Consider the process of templates usage. Templates are created in separate editor
(Templates Editor). In Fig.8 the template "template_0" is shown which contains
detailed data structures inside and the dummy values which shall be changed to
concrete values when template is used.

Note that template can be created only from SUT interfaces description or another
template.

When a template of data structure is ready, it can be used for creation of conversion
rules. Fig.9 represents usage of the template "template_0" with substituted concrete
values of signal parameters instead of the dummy value "value_temp", which then
will appear in behavioral MSC scenario.

4R Templates Editor &2 Ei=in

Templates Editor
type filter text
4 (= Templates Templates name: template_0
0 template 0

Select TDL Type or
Template:

Edit signal parameters in text below:

128,
value_temp,
(.
8
0, value_temp, 1010'B
J.
&
0,00
J
.
value_temp, 123456789, 5060, 128

Apply

Fig. 8. Templates editor

152

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

Lowering Rule : CONFIGURE Editor

i@y

) Sack_mpeg2=Sampeg2; Sack_multicast=Samulticast;

- . CONFIG_SIG_ST Lowered signal name: COMFIG_SIG_ST
@ 128 Sack_mpeg2, (. (.0, 100, 1010'B), (. 0,0, 0)), Sack_mul| | Via: 5T_sim
% ST_sim
From: v

Select TDL Type or Template: | template 0: Template v

Edit signal parameters in text below: < &
128, ~
T SUT Eslack,mpegz,
CONFIG_SIG_ST) 0,100, 1010'B
128, FLIF, (. (. 0, 100, 10108 .}, (. 0,0, 0)), FLIP, 123456789, 5060, 128 (
0,00
| I ,
)

Sack_multicast, 123436789, 5060, 128

< > Apply Discard

Fig. 9. Template used in signals editor

In both signal and template editors user can use variables — some values that are too
big to remember of retype every time. On the Fig. 7 all the values are taken from
variables. Variables can be selected in the middle of the lowering editor. There are
different types of variables with different editors and checks. For example, the
contents of variable "$gud_header" used in "soc_datato_req_s" detailed signal are
shown on Fig. 10.

Editor

Variable name: gud_header

Variable type Value Metation ~
Select TOL Type or Template: ~

Edit signal parameters in text below:

(.
182,
18,
2
2
32
4,
3456

Apply Discard

Fig. 10. Contents of the variable "$gud_header"

153

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

Variables can contain very complex structures and therefore greatly reduce expenses
on creating detailed signals.

Overall process of selecting UCM-level signal, creating lowering rules and editing
the resulting signal repeats for all UCM-level signals in the project.

4.3 Scenarios processing

Test scenarios Test scenarios
generated by VRS conversion rules

Test scenarios
convertor

Test scenarios of real
system level

Fig. 11. Test scenarios conversion scheme

Implemented module of behavioral scenarios conversion takes as an input the
concrete behavioral scenarios and specified rules of conversion and the output is
behavioral scenarios of the real system level, which can be used for testing. Overall
scheme of conversion is shown in Fig.11.

Detailing stage is based on the grammar of data structures conversion rules
described in Fig. 5 and conversion algorithm. The specific feature of test automatic
scenarios detailing to the level of real system is allow to storing of proved properties
of the system obtained in process of abstract model verification.

154

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX

TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

A concretized trace

| GTP#gtp | | GMG#amg || GUD#gud

gtp_forward_relocati0n_req_|s

invalid, valid, exist, valid, 0 I

allocate_new_seq_nbritemp_seq_nbr)]

"post_reld”

Forward_ReIocatiop_Request_\."Q

}
no_dns

Forward_ReIocation’_Response_V2

valid, req_acc_c, req_acc_c

gtp_forward_relocation_res_s

req_acc_c

FonNard_ReIocati0n_CorqpIete_Notiﬂcation_VE

i

}
valid, discard_c, error_cause

[“decode fail, and discard msg”]

— — —
Fig. 12. Concrete scenario to be lowered

Based on the specified conversion rule each abstract signal in concrete behavioral
scenario is processed. Signal parameters are matched to rule conditions and if the
signal satisfies them, then it is converted into detailed form. Fig.12 shows concrete
scenario, which will be processed.

155

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

In this scenario you can see 3 agents: "GTP#gtp", "GMG#gmg" and "GUD#gud".
For example, we want to test an agent "GTP#gtp". On following trace it will be
described as SUT.

Other agents (or whichever we choose in the settings of the trace preprocessing) are
marked as TAT and joined together.

After data structures conversion, concrete signals are replaced with detailed signals
specified in lowering rules. Once simple signal structure unfolds in very complex
nested data while still maintaining its correctness. You can see the results on Fig.

13.

- gtp_forward_relocation req s

(192,19, 2,2 32 4,3456.), (15, (. (2, 4), (.4. 0., (5,1), (0,0} (1,0}, (.U. 0),00,0),(1,15)). 12, (1, (0L (2, 4), (0,
15.).), (. (0,8),(15,15).),1.), 1,1)(((1515.)), ((15,15.).), 0,0)(. { (.15,15.)), (. (15,15.).), (0,"FFH), (. {. (.15,
15.).), (. (15,15.)), (.(15,15.) 0,0)).0), (- (0 0,°22334455H), (. 1, "22223333444455556666°H)), 5000, (. (. 0,

TIINITH), (0 1,°222222222222229222222H)),1,2,0

[allocate_new_seq_nbr{temp_seq_nbr)

"post_relg”
soc_datato_req_s

(192,19, 2,2, 32, 4, 3456.), 1, (. (.0,°22334455H), (. 1, 222’23333444455555555'H).), 88, (12,
"48850008FFFFFFFFO0000100H.)

soc_datafrom_ind_s

(192,19, 2,2, 32, 4, 3456.), 1, E'(0, 1MI1INH), (1,°22222222222222222222'H)), 88, (. 18,
"4886000E00000001000001000200021000°H.)

| gtp_forward_relocation_re s_rs

(192,19, 2,2, 32 4,3456.), (15, (. (2, 4), r— 0.), (5, 1), (0,0) (1,0}, (’U 0.),00,0),(1,15).).),(.0,0,0,req_acc_c, 0.)

soc_datafrom_ind_s

(192,19, 2,2, 32, 4, 3456.), 1, E'(0, 1MIIH), (1,°22222222222222222222'H)), 88, (1 12,
'488900080000000100000100H.)

[“decode fail, and discard msg”]

L L

Fig. 13. Lowered trace with detailed signals

5. Conclusion

Proposed approach to behavioral scenarios generation based on formal models
differs from existing approaches in using the process of automatic conversion of
behavioral scenarios with abstract data structures into behavioral scenarios with
detailed data structures used in real applications. Proposed language and overall

156

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

scheme of this process allow automating of creation a set of covering behavioral
scenarios.

In the scope of this work, the analyzer/editor for conversion rules of signals from
abstract UCM model level into signals of real system level was developed and
called Lowering Editor. It supports the following functionality: automatic binding
between conversion rule and signal of UCM level, conversion rules correctness
checking, templates usage, highlighting the syntax of conversion rules applying
conditions specification, variables usage, libraries and external scripts (includes)
usage, splitting UCM signal or action into several signals of real system in
according to communication protocol, copy/paste/remove operations, import and
export from/to storage file. Availability of described in the article features is able to
make process of automatic conversion powerful and flexible for a different types of
telecommunication applications.

Adding Lowering Editor into technology process of telecommunication software
applications test automation allowed to exclude effort-consuming manual work in
the cycle of test suite automated generation for industrial telecommunication
applications, increase productivity of test generation in 25% and spread the
properties proved on abstract models into generated code of executable test sets.
Excluding of manual work allow to reduce human factor in testing process and
guaranty quality of generated test suite based on verification results.

References

[1]. Model Driven Architecture- MDA (2007). Available at: http://www.omg.org/mda

[2]. Oscar Pastor, Sergio Espafa, José Ignacio Panach, Nathalie Aquino. Model-Driven
Development. Informatik Spektrum, vol. 31, no. 5, pp. 394-407 (2008)

[3]. Sami Beydeda , Matthias Book, VVolker Gruhn. Model Driven Software Development.:
Springer-Verlag Berlin Heidelberg, 464 p. (2005)

[4]. Robert V. Binder, Anne Kramer, Bruno Legeard. 2014 Model-based Testing User
Survey: Results, 2014. Available at: http://model-based-testing.info/wordpress/wp-
content/uploads/2014_MBT_User_Survey_Results.pdf

[5]. Buhr R. J. A, Casselman R. S. Use Case Maps for Object-Oriented Systems. Prentice
Hall. 302 p. (1995)

[6]. A.A. Letichevsky, J.V. Kapitonova, V.P. Kotlyarov, A.A. Letichevsky Jr.,
N.S.Nikitchenko, V.A. Volkov, and T. Weigert. Insertion modeling in distributed system
design. Problemy programuvannja [Problems of programming] (4), pp. 13-39 (2008).

[7]. I.Anureev, S.Baranov, D.Beloglazov, E.Bodin, P.Drobintsev, A.Kolchin, V. Kotlyarov,
A. Letichevsky, A. Letichevsky Jr., V.Nepomniaschy, I.Nikiforov, S. Potienko,
L.Pryima, B.Tyutin. Tools for supporting integrated technology of analysis and
verification of specifications for telecommunication applications. Trudy SPIIRAN
[SPIIRAS Proceedings], 2013, issue 26. pp. 349-383 (in Russian).

[8]. A. Kolchin, A. Letichevsky, V. Peschanenko, P. Drobintsev, V. Kotlyarov. Approach to
creating concretized test scenarios within test automation technology for industrial
software projects. Automatic Control and Computer Sciences, vol. 47, no. 7, pp. 433—
442 (2013).

157

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

NMpeobpa3zoBaHne abCTPaKTHbIX
noBeAeHYeCKUX CUeHapueB B cLueHapum

npuMmeHunmMmbIe AN TeCTUpoBaHuA

I1]]. JIpo6unyes <drob@ics2.ecd.spbstu.ru>
B.I1. Komnspos <vpk@ics2.ecd.spbstu.ru >
U.B. Huxughopos < i.nikiforov@ics2.ecd.spbstu.ru >
H.B. Bournog <voinov@ics2.ecd.spbstu.ru >
H.A. Cenun < ivanselin93@gmail.com>
Canxm-Ilemepbypeckuii nonumexnudeckuii ynusepcumem Ilempa Benukozo,
195251, Poccus, . Cankm-Ilemepbype, yn. [lornumexnuyeckas, dom 29

AHHOTammsi. B 1aHHOW cTaThe paccCMOTpPEH MHOAXOJ JeTAIM3aliH BepH(HIMPOBAHHBIX
TECTOBBIX CIIEHAPHEB U1 pa3pabaTblBaéMO MPOrpaMMHOM CHCTEMBI 0e3 HW3MEHEHHS
CEeMaHTHKH Habopa, TO €CTh C COXpaHeHHWeM KOppekTHocTH. CymecTByromas mpoOiema
TeHEepallud TECTOB PEalbHBIX IPHIOKEHHII Ha OCHOBE BEpH(HIMPOBAHHBIX a0CTPAKTHBIX
CIIEHAPHEB, CIEHEPHPOBAHHBIX II0 IIOBEAEHYECKOW MOJENH, pEeIIaeTcsi Ha OCHOBE
JeTau3auy a0CTPaKTHBIX CLEHApHEB 10 YPOBHS KOHKPETHBIX COCTOSIHHUH, TpaH3aKLIHUiH,
NPOTOKOJIOB M CHTHAIOB. IIOCKOJIBKY XapaKkTepHOH OCOOEHHOCTBIO paccMaTpUBaEMBIX
aOCTPaKTHBIX MOJIENEeH SBIETCSl CHMBOJIBHOE TIPEICTaBICHIE TIOBECHUYECKHUX CIIEHAPUEB, TO
UX JleTaiu3alys MPOUCXOAWT B JBa JTama. Ha mepBoM sTame — 3Tane KOHKPETHU3ALUH,
CHMBOJIbHBIE MTApaMETPhl CUTHAJOB IIOMyYal0T KOHKPETHBIE 3HAUEHHS, 00pa3ys TeM CaMbIM
KOHKPETHBIE TTOBEJIeHUeCKHe clieHapuH. Ha BTopoMm 3Tare — 3Tarne COOCTBEHHO AeTaNn3alnH,
KOHKPETHbIE a0CTPaKTHBIC CIEHAPHH HEOOXOANMO MPEJICTABIATh B BUAE CTPYKTYP HAaHHBIX,
(OpMBI IIpeACTaBICHNS U 3HAYEHHS KOTOPBIX COJEpKAaT BCIO HEOOXOIMMYIO MH(MOPMAIUIO
Ui o0MeHa C peaJbHBIMHM MpWIOKEeHUsMH. [loydeHHble TakuM 00pa3oM JeTaibHbIC
CIIEHapUU MpeIHAa3HAueHBl JUIl TeHEpalMd HCIOJHUMBIX TECTOBBIX HabOpOB JUIs
MH(OPMAIMOHHBIX W YIPaBSIOMIMX CHUCTeM. B paboTe NpemiokeH WHCTPYMEHTapHil
JIeTalIM3alMy TECTOBBIX CIIEHApPHEB, MO3BOJISIOMINI HE TOJNBKO OIKCATh peajbHble CHTHAIEBL,
HO M JIeTaJIU3HpOBaTh MPOTOKOJbI OOMEHa CHUrHalaMH. B ero cocraB Bxoaut Lowering
editor, mMo3BOJIAIONIMII OMUCHIBATH MpaBHJIa MPEOOPa30BaHUsS CHTHAJIOB B COOTBETCTBHH C
MPUBEJCHHOW pa3paboTaHHOW TrpaMMaTHKOM mpaBui mpeobpasoBanuii, Signals editor,
HCTIONB3YEeMBIH Ul YIOOHOTO OMMCAHMS CIOXHBIX CTPYKTyp curHaioB u Templates editor,
MO3BOJISIIOIIMKA OJHOKPAaTHO OMNMCBHIBATH THUIIOBBIE CTPYKTYyphl. IIpuBenén mpumep mpouecca
npeoOpa3oBaHusi OT aOCTPAaKTHBIX CTPYKTYp JaHHBIX K JICTAIU3HUPOBAHHBIM,
HCTIONB3YIONMMCS TIPH TECTHPOBAHHUH LIEJIEBOTO KOJIA.

Karouessie ciaoa: model approach; model verification; test mapping
DOI: 10.15514/ISPRAS-2016-28(3)-9

Joas muruposanus: I1.J1. [Ipo6unnes, B.I1. Kommipos, U.B. Hukudopos, H.B. Bounos,
WN.A. Cemun. IlpeoOpa3oBaHue aOCTPaKTHBIX IIOBEIEHUECKHX CIICHAPUEB B CLEHAPHU
npumennmble st tectuposanus. Tpyast UCIT PAH, Tom 28, Bemt. 3, 2016 r. crp. 145-160
(na anrmmiickom). DOI 10.15514/ISPRAS-2016-28(3)-9

158

Jpoo6unres I1.J1., Korsapos B.I1., Hukudopos 1.B., Bounos H.B., M. A. Cenun. IIpeo6pasoBanne aGcTpakTHBIX
TOBE/ICHYSCKUX CIICHAPUEB B CLIEHAPHH IPUMEHUMBIE ULl TecTupoBanus. Tpyost UCIT PAH, Tom 28, Boim. 3, 2016,
c. 145-160.

Cnucok nutepaTtypbl

[9].
[10].
[11].

[12].

[13].

[14].

[15].

[16].

Model Driven Architecture - MDA (2007), M[OCTymHO IO CCBUIKE:
http://www.omg.org/mda

Oscar Pastor, Sergio Espafa, José¢ Ignacio Panach, Nathalie Aquino. Model-Driven
Development. Informatik Spektrum, Volume 31, Number 5, pp. 394-407 (2008)

Sami Beydeda , Matthias Book, Volker Gruhn. Model Driven Software Development.:
Springer-Verlag Berlin Heidelberg, 464 p. (2005)

Robert V. Binder, Anne Kramer, Bruno Legeard. 2014 Model-based Testing User
Survey: Results, 2014, JOCTYITHO o CCBIJIKE: http://model-based-
testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf

Buhr R. J. A, Casselman R. S.: Use Case Maps for Object-Oriented Systems. Prentice
Hall. 302 p. (1995)

A.A. Letichevsky, J.V. Kapitonova , V.P. Kotlyarov, A.A. Letichevsky Jr.,
N.S.Nikitchenko, V.A. Volkov, and T.Weigert. Insertion modeling in distributed system
design. TIpo6semu nporpamysans, pp. 13—-39 (2008).

Anypees U.C., bapanoB C.H., Bemormazos A.M., dpobunues II.J., Komuur A.B.,
Kotmspos B.IL., JletnueBckuit A.A., JletmueBckuii A.A. miu., Hemomusamuii B.A.,
Huxudopos U.B., [loruenko C.B., IIpuiima JI.B., Trotun b.B., bonun E.M. CpexncrtBa
MOJCPKKH WHTETPUPOBAHHOM TEXHOJOTWH [UIA aHalW3a © BepUPUKALUN
crierUKaUi TeJIeKOMMYHHUKAIIMOHHBIX Tnpwiokenuit. Tpymer CIIMMPAH. 2013,
BhII. 26, cTp. 349-383.

A. Kolchin, A. Letichevsky, V. Peschanenko, P. Drobintsev, V. Kotlyarov. Approach to
creating concretized test scenarios within test automation technology for industrial
software projects. Automatic Control and Computer Sciences, vol. 47, no. 7, pp. 433—
442 (2013)

159

Drobintsev P., Kotlyarov V., Nikiforov I., Voinov N., Selin I. Conversion of abstract behavioral scenarios into scenarios
applicable for testing. Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 145-160.

160

