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AnHoTanus. B oToli craThe npescTaBieHo npuMeHeHne Meroa Buptyansnoro Opyaura (Virtual Savant) st
peleHnss IpobiIeM paclpeseleHus PecypcoB, MIUPOKO H3YyYEeHHOH 00JTAacTH ¢ HECKOJIbKHMH pPealbHBIMU
IpHIOKeHUAMH. Virtual Savant — 9T0 HOBBIH METOA MATKHX BBIYHCIEHHMIT, B KOTOPOM HCIIONB3YIOTCS METOJIBI
MAIIMHHOTO OO0YUYeHHMs /Ul BHIYMCICHNUSI PEIeHHI JaHHO! npobiiembl onTuMusarumu. Llens Virtual Savant —
HAy4UThCS PellaTh JaHHYIO MPOOIEeMy ¢ MOMOIIBIO PEIIeHUH, PACCUNTAHHBIX 110 YTAIOHHOMY allfOPHTMY, a
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€ro Au3aifH I03BOJISIET MCIONB30BaTh IIPEHMYINIECTBA COBPEMEHHBIX IIapaUIeNbHBIX BBIYUCIUTEIBHBIX
uabpacTpykTyp. [IpennoxeHHbli MOAX0N OLEHHBAETCS HA PEIIEHUH 33/1adl O PIOK3aKe, KOTOpasi MOJENUpyeT
pa3IHYHbIC BAPUAHTHI 331a4 PACIIPeIeTIeHNs PECYPCOB, YUHTHIBAs HAOOP IK3EMILLIPOB PAa3HOTO pasMepa U
CJIOKHOCTH. ODKCIICPUMEHTAIbHBI aHaIW3 HPOBOJWICS Ha MHOrosiepHom cepsepe Intel Xeon Phi.
Pe3ynbTaThl MOKa3plBalOT, 4To Virtual Savant crocoOGeH BBIYHCISTH TOYHBIE DPELICHUS, JEMOHCTPUPYS
XOpoIIne CBOHCTBA MACIITAOMPYeMOCTH IPH YBEIHYCHHHM 00beMa HCIOIb3yeMBIX BBIYUCIUTENBHBIX
pecypcos.

KiioueBble cj10Ba: BUPTYaIbHBII 9pYIHUT; MAalIMHHOE 00yYeHNe; apajulenbHas 00paboTka; pacipene/eHue
PecypcoB; 3ajiada O PIOK3aKe; MHOTOSIIEPHBIE MPOIIECCOPHI
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1. Introduction

Resource allocation refers to the assignment of a number of available resources or assets to different
issues or items. Resource allocation is an important concept that models several situations and
problems arising in economics, strategic planning, project management, scheduling, logistics,
production, engineering, and many other related areas [1].

Many resource allocation problems are modeled by the general framework formulated by the
Knapsack Problem (Knapsack Problem) [2]. Knapsack Problem is a combinatorial optimization
problem that, given a set of items with associated weights and profits, proposes determining the
number of each item to include in a collection (i.e., the knapsack) in order to maximize the total
profit while ensuring that the total weight is less than or equal to a given limit (i.e., the knapsack
capacity). Different allocation problems are modeled by considering the capacity of the knapsack as
the available amount of a given resource and the items as activities to which the resource can be
allocated.

This article describes a generic paradigm that proposes applying a computational intelligence
approach to find accurate solutions to resource allocation problems modeled by the 0/1 Knapsack
Problem in short computation times. 0/1 Knapsack Problem is a binary version of the Knapsack
Problem where each item is considered as an atomic unit, i.e., each item can be included in the
knapsack as a unit or discarded (i.e., it cannot be split to fill the knapsack). This binary version of
the Knapsack Problem allows modeling interesting resource allocation problems such as activities
in project management, scheduling and location problems, feature selection, among others.

The Virtual Savant paradigm is applied to solve the 0/1 Knapsack Problem, which models allocation
problems. Virtual Savant is a novel method that uses machine learning techniques to learn how a
reference algorithm solves a given problem [3]. Virtual Savant is inspired by the savant syndrome,
a rare condition in which a human demonstrates mnemonic or computing abilities far superior to
what would be considered normal. As an example, some patients with savant syndrome (savants)
are able to enumerate and identify huge prime numbers without the underlying knowledge of what
a prime number is, or accurately determine the day of the week of a given date extremely fast.
Reported evidence suggests that patients with savant syndrome use pattern recognition in order to
efficiently solve problems [4,5,6].

The Virtual Savant paradigm proposes applying a learning approach using computational
intelligence to predict the results computed by a reference algorithm that solves a given problem
[7,3]. Virtual Savant receives as input a set of problem instances and the results computed by the
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reference algorithm, which is used to train a machine learning classifier. Once the training phase is
completed, Virtual Savant can be applied to solve new, unknown, and even larger problem instances.
In this way, the Virtual Savant paradigm aims at learning the behavior of a given resolution
algorithm in order to generate a completely different program that reproduces an analogous but
unknown process to compute accurate results for the same problem. Furthermore, the resulting
generated program is lightweight and can take advantage of modern massively parallel computing
architectures to provide a fast and powerful problem solving schema.

Following previous works [8,9], this article describes a deeper study on how to solve the 0/1
Knapsack Problem using Virtual Savant. The first evaluation of Virtual Savant in a parallel
environment (Intel Xeon Phi 7250 server) to solve the 0/1 Knapsack Problem is presented. The
accuracy of the proposed approach is studied as well as its parallel capabilities and performance on
a many-core computing environment. Experimental results when solving 0/1 Knapsack Problem
instances of varying size and difficulty suggest that the proposed approach is able to compute
competitive solutions while showing good scalability properties when increasing the number of
processing elements.

The article is organized as follows. Section 2 presents the 0/1 Knapsack Problem formulation,
introduces Virtual Savant and presents an overview of the related literature. Section 3 outlines the
application of Virtual Savant to the 0/1 Knapsack Problem. Section 4 presents the experimental
evaluation of the proposed approach and, finally, Section 5 presents the conclusions and main lines
of future work.

2. Problem and method

This section introduces the 0/1 knapsack problem, describes the Virtual Savant paradigm, and
presents a review of the related literature.

2.1 0/1 Knapsack Problem formulation

The 0/1 Knapsack Problem is a classic combinatorial optimization problem which is proven to be
NP-hard [10]. The mathematical formulation is as follows. Given a set I of items, each with a profit
p; and a weight w;, the 0/1 Knapsack Problem consists in finding a subset of items that maximizes
the total profit, without exceeding the weight capacity W of the knapsack.

Eq. 1 shows the problem formulation, where x; € {0,1} indicates whether item i is included or not
in the knapsack.

argmax {(Xiz, pixi | iy wix; < W 3 )

Despite its straightforward formulation, the 0/1 Knapsack Problem has a large solution space and is
frequently used as a benchmark to evaluate optimization algorithms. Additionally, the 0/1 Knapsack
Problem can be used to model several optimization problems with direct real-world applications in
many fields.

In the context of this work, the 0/1 Knapsack Problem is useful to evaluate the Virtual Savant
paradigm for several reasons: i) it is a NP-hard optimization problem; ii) it allows studying the
behavior of Virtual Savant in problems with binary variables and simple constraints; iii) a large
dataset of problem instances is publicly available with varying size and difficulty.

2.2 Virtual Savant

Virtual Savant is a novel paradigm to automatically generate programs that solve optimization
problems in a massively parallel fashion [11]. The paradigm is inspired by the savant syndrome, a
rare condition in which a person with significant mental disabilities has certain abilities far in excess
of what would be considered normal [5]. People with this condition (savants) usually excel at one
specific skill such as art, memory, rapid calculation, or musical abilities. The methods used by
savants to solve problems are not fully understood due to the difficulties in communicating with

23

Massobrio R., Dorronsoro Diaz B., Nesmachnow Canovas S.E. Virtual Savant for the Knapsack Problem: learning for automatic resource
allocation. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 2, 2019. pp. 21-32

them, since the syndrome is usually associated with autism. The main hypothesis states that savants
learn through pattern recognition [4]. This mechanism allows savants to solve a given problem
without understanding the underlying principles (e.g., being able to enumerate prime numbers
without understanding what a prime number is).

In analogy to the savant syndrome, Virtual Savant consists in training a machine learning classifier
to automatically learn how to solve an optimization problem from a set of observations, which are
usually obtained from a reference algorithm that solves the same problem. Once the training phase
is completed, Virtual Savant can emulate the reference algorithm to solve new, unknown, and even
larger problem instances, without the need of any further training. The Virtual Savant paradigm
consists of two phases: classification, where results for unknown problem instances are predicted,
and improvement, where predicted results are further improved using specific search procedures.

2.3 Related work

The 0/1 Knapsack problem has been widely studied in the operations research field. Nemhauser and
Ullman [12] presented an exact algorithm to solve the 0/1 Knapsack Problem based on dynamic
programming. The proposed algorithm was devised to solve capital allocation problems with
constrained budgets, in the field of economics. Later, an optimized implementation of the original
Nembhauser-Ullman algorithm was proposed by Harman et al. [13]. This version was applied to solve
instances of the Next Release Problem, an optimization problem from software engineering where
the goal is to determine the features to include in a new release of a given software product [14].
The optimized implementation by Harman et al. is used in our work to train the proposed Virtual
Savant for 0/1 Knapsack Problem.

Few articles were found in the related literature applying machine learning techniques to solve
optimization problems, in line with the Virtual Savant proposal.

Vinyals et al. [15] introduced Pointer Networks (ptr-nets), a model based on recurrent neural
networks. Similarly to the approach applied in Virtual Savant, ptr-nets are trained by observing
solved instances of a given problem and the proposed scheme is also able to deal with variable size
outputs. The proposed model was applied to solve three different discrete combinatorial
optimization problems: finding planar convex hulls, computing Delaunay triangulations, and solving
the planar Travelling Salesman Problem. Experimental results indicated that the trained models were
able to address problem instances larger than those seen during training and find competitive results
for the studied problems.

More recently, Hu et al. [16] applied a similar approach to the one proposed by Vinyals et al. to the
three-dimensional bin packing problem, a specific variant of an allocation problem. A deep
reinforcement learning approach is used to decide the sequence to pack items in a bin, while the
empty space and the spatial orientation in which the items are placed inside the bin are calculated
by heuristic methods. The reported experimental results showed that the proposed approach
outperformed a specific heuristic for the problem. Improvements of 5% on average over the baseline
results were obtained for the problem instances studied.

Our previous works were able to obtain promising results when applying Virtual Savant to a task
scheduling problem [17,18,7,11]. The application of Virtual Savant to the 0/1 Knapsack Problem
has been previously studied in [8,9]. This article extends those two previous works by evaluating
the parallel capabilities of the Virtual Savant model in a many-core parallel infrastructure.

3. Virtual Savant for the 0/1 Knapsack Problem

This section describes the application of the Virtual Savant paradigm to the 0/1 Knapsack Problem.
The Virtual Savant implementation for the 0/1 Knapsack Problem uses Support Vector Machines
(SVMs) for the classification phase. SVMs are trained using Nemhauser-Ullmann as a reference
algorithm, which computes exact solutions for the 0/1 Knapsack Problem [13]. Each item of the
problem instance is considered individually during the training phase of Virtual Savant. Therefore,
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each feature vector holds the weight and profit of the item, along with the capacity of the knapsack.
The classification label is 0/1, indicating whether the reference algorithm included (or not) the item
in the knapsack. Thus, a single solution of the reference algorithm provides as many observations
as the number of items in the instance. The LIBSVM framework with a Radial Basis Function kernel
was used [19]. A specific fork of the LIBSVM package was designed to improve training times on
many-core architectures [20]. Fig. 1 outlines the training scheme for Virtual Savant to solve the 0/1
Knapsack Problem.

items

weight Problem instance:

profit List of items with their
weight, profit and the

knapsack :
s s knapsack capacity.

capacity

Inputs to the SVM:

1. Weight, profit and

SVM knapsack capacity for
a given item.

2. 0/ indicating
2 T whether the reference
algorithm included the

{ iten in the knapsack
L o

solution of the reference algorithm
Fig. 1. Training scheme of Virtual Savant for the 0/1 Knapsack Problem

Fig. 2 presents the complete model of Virtual Savant to solve the 0/1 Knapsack Problem. Once the
learning process is completed, Virtual Savant uses (in parallel) multiple instances of the trained
SVM to predict whether or not to include each item in the knapsack. These decisions are independent
for each item, providing Virtual Savant with a high degree of parallelism. The output of the
classification phase is a vector that holds, for each item, the probability of including it in the
knapsack. Since the length of the training vectors is fixed (3 features + 1 label), there is no need to
re-train the SVM to solve problem instances of different size (i.e., with varying number of items).
This allows Virtual Savant to easily scale to problem instances of larger dimensions, without
requiring any additional training process.

The improvement phase takes as input the resulting vector of probabilities computed in the
prediction phase. One candidate solution is generated per computing resource available, by
randomly sampling according to the probabilities of including each item. Finally, a local search
heuristic is applied over each generated solution. The local search operator considered in this work
is very simple, just performing random modifications on the items to include or not. On each step
of the local search, a randomly-chosen bit in the solution is flipped, the new solution is evaluated,
and the local search continues from that solution if an improvement is made. Algorithm 1 describes
the method to evaluate the score of a solution in the local search procedure, considering a solution
with profit P, weight W, overweight 0 = W — C, where C is the knapsack capacity; k > 0; m €
(0,1). P, W, and O are scaled using the minimum and maximum weight and profit values in the
problem instance. The improvement phase, as well as the prediction phase, is massively parallel,
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since more local searches can be spawned as more computing resources are available.
Algorithm 1. Score assignment for solutions during the local search

input: solution, instance
scale (W, P, o0, C,
instance)

if 0<0 then

return P
else if 0<m-C then
return P—k-0
else
return -0

itemms

weight Problem instance:

profit List of items with their
knapsack weight, profit ant_l the
capacity knapsack capacity.

Prediction phase:
-
Vector with
probabiliies of
including (or not)
each item in the
knapsack.

p(0)
p(1)

v

synchronization

[EEEEEE] [EREEEE
improvement improvement
operator operator

[LTTTT]

best solution

v
mannnn

mprovement
operator

Improvement phase:

-Corrections
-Local search

Fig. 2. Model of Virtual Savant applied to the 0/1 Knapsack Problem

Two corrections schemes are included in the improvement phase in order to ensure that the returned

solution satisfies the knapsack capacity restriction:

o Greedy correction by profit (CP): iteratively removes the item with lower benefit until the total
weight is lower than, or equal to, the knapsack capacity.

o Greedy correction by weight (CW): iteratively searches for the items with weight higher than, or
equal to, the overweight of the solution and removes the one with the lowest weight among them.
If no item satisfies this condition, it removes the one with the highest weight.
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The corrections are applied to each tentative solution after the local search, to ensure that the returned
solution satisfies the knapsack capacity constraint. After all local searches and corrections are
completed, the overall best solution found is returned.

4. Experimental analysis

This section reports the experimental analysis of the proposed Virtual Savant for the 0/1 Knapsack
Problem.

4.1 Problem instances

The evaluation was performed over benchmark problem instances with different size and correlation
between weight and profit of items. The correlation is related to the difficulty to solve an instance
[13]. The benchmark includes 50 datasets, each with instances of size 100 to 1500 items (stepsize:
100). For each problem size, correlation varies from 0.0 to 1.0 (stepsize: 0.05). The benchmark,
including a total of 15.750 problem instances, is publicly available at ucase.uca.es/nrp.

4.2 SVM training

The training phase was performed using dataset 1, to evaluate three different feature configurations.
Results show that the best accuracy results were achieved when using item weight, item profit, and
knapsack capacity. Regarding the size of the training set, results show that training with 15% of
dataset 1 allows achieving good accuracy metrics. Increasing the number of observations results in
marginal accuracy improvements, while significantly increasing training times.

The parameters for the SVM (C) and the RBF kernel (y) were configured prior to the experimental
evaluation. Cross-validation was performed over a set of 5.000 samples randomly selected from
dataset 1. Results suggest that the best results are computed with C=8192 and y=0.5. Average
accuracy for all datasets increased from 89.35% to 90.48% after parameter configuration. For the
improvement phase, the parameters of the score assignment function in the local search were
configured to m=0.2 and k=2 and the stopping criterion was set to 1000 iterations.

4.3 Experimental results

After configuration, the trained SVM was used to evaluate the complete Virtual Savant model on
datasets 2 to 5. These datasets are completely new for the algorithm, as they were not used during
the training phase. The experimental evaluation focused on both the quality of the solutions and the
performance and scalability when using a massively parallel computing infrastructure.

4.3.1 Hardware platform

A many-core computing infrastructure was used in the experimental analysis, in order to evaluate
the capabilities of Virtual Savant to compute accurate results over a massively parallel platform. A
typical many-core computing infrastructure consists of tens or thousands of simpler independent
cores. The use of many-core processors has been increasing in the past years, with extensive
applications in embedded systems and high-performance computing platforms [21].

Many-core architectures can be programmed using the standard CPU model without needing
specific knowledge about the underlying parallel hardware. Even without including platform-
specific features, many-core systems offer support for serial legacy code [22]. The evaluation of
Virtual Savant for the 0/1 Knapsack Problem was performed on an Intel Xeon Phi 7250 processor
with 68 cores and 64GB RAM.

4.3.2 Scalability

Virtual Savant approach is elastic and adapts to the underlying hardware platform: if more
computing resources are available, Virtual Savant can use them on both the prediction and the
improvement phase. In the prediction phase, the computational load of predicting whether each item
is included or not in the knapsack is balanced among the computing resources available. In the
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improvement phase, Virtual Savant takes advantage of available resources to execute more local
searches on tentative solutions, thus increasing the probability of computing more accurate results.
The scalability of Virtual Savant when using a varying number of computing elements was evaluated
for the prediction and improvement phases. Fig. 3 reports the average execution time (in seconds)
for all problem instances studied when varying the number of threads.

:
]
‘-u
; "y

execution time (s)

o 50 100 150 200 250
threads

Fig. 3. Execution time varying the number of threads

Results show that Virtual Savant scales very well when increasing the number of threads up to the
number of cores available. When more threads are spawned, the performance starts degrading due
to threads sharing resources. Consequently, the remainder of the experimental evaluation was
performed using 68 threads. These results confirm the good scalability properties of Virtual Savant.

4.3.3 Virtual Savant: prediction phase accuracy

Boxplots in Figs. 4 and 5 correspond to the accuracy achieved during the prediction phase of Virtual
Savant grouping problem instances by size and weight/profit correlation, respectively. The median
prediction accuracy of the SVM is larger than 90% for all problem sizes studied. No significant
differences are noticed among instances of different sizes. On the other hand, significant differences
can be observed in the accuracy of the prediction phase on instances with varying weight/profit
correlation. Instances with weight/profit correlation of 0.5 are the simplest to predict for the SVM,
with a median accuracy value of over 97%. Additionally, in the worst case, the median accuracy of
the SVM is larger than 80%.
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Fig. 4. Prediction accuracy for instances grouped by size.
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Fig. 5. Prediction accuracy for instances grouped by weight/profit correlation.

4.3.4 Virtual Savant: quality of solutions

Results computed by Virtual Savant were compared with the known optima for the studied instances,
to evaluate the efficacy of the proposed approach. Table 1 reports the average ratio to the optima for
problem instances grouped by size. Table 2 reports the average ratio to the optimum, grouping
instances by the correlation between weight and profit of items.

Results achieved by Virtual Savant grouped by instance size differ from the known optima in just
2-4% on average for all problem instances studied. This is an encouraging result considering that
the improvement phase of Virtual Savant consists in a straight-forward local search which does not
incorporate any specific knowledge of the problem, thus making it potentially extensible to other
related optimization problems. When looking at results grouped by weight/profit correlation, Virtual
Savant allows computing accurate results for all problem instances studied. In the worst case, Virtual
Savant differs from the optimum in 6% on average (for instances with no correlation between weight
and profit).

Table 1. Average ratio to optimum with varying size

size | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
ratio [ 0.98| 0.98| 0.98| 0.97| 0.97| 0.97| 0.97(0.97
size [ 900 | 1000 [ 1100 | 1200 | 1300 | 1400 [ 1500
ratio[ 0.97| 097 0.97| 0.97| 0.97| 0.97| 0.96

Table 2. Average ratio to optimum with varying correlation

correlation 0]0.05| 0.1(0.15| 0.2]0.25| 0.3[0.35| 0.4]0.45
ratio 0.94]10.9510.96|0.9710.97(0.98(0.98(0.99|0.99]0.99
correlation| 0.5]|0.55| 0.6|0.65| 0.7]|0.75| 0.8(0.85| 0.9]0.95
ratio 0.99(0.98(0.9710.9710.96]|0.96|0.96(0.96(0.97]0.98

5. Conclusions and future work

This article presents the application of Virtual Savant to the 0/1 Knapsack Problem. Virtual Savant
learns from a reference algorithm in order to generate a new program that can solve the same
optimization problem in a massively parallel fashion. Experimental results show that Virtual Savant
allows computing competitive results in reduced execution times thanks to its scalability when using
multiple computing elements. The experimental analysis, performed on a many-core infrastructure,
showed the good scalability properties of the Virtual Savant paradigm and its elasticity to adapt to
modern massively-parallel computing infrastructures.

The main lines of future work include applying other machine learning classifiers, using different
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heuristics and metaheuristics for the improvement phase, and evaluating over larger problem
instances.
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