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Abstract. Finite State Machine (FSM) based approaches are widely used for deriving tests with guaranteed
fault coverage for discrete event systems and as the behavior of many nowadays information and control
systems depends on time, classical FSMs are extended by clock variables. Moreover, optionality in the real
system’s specifications motivates the studying test derivation against models with the nondeterministic
behavior. In this paper, we adapt classical FSM based test derivation methods for nondeterministic FSMs with
timed guards and timeouts (TFSMs). We show that unlike classical FSM conformance relation, the check
cannot be reduced to checking the correspondence between TFSMs transitions and this violates the main
principle of FSM based test derivation methods. Respectively, a proposed approach and the appropriate fault
model are based on the FSM abstraction of the given TFSM specification that is used to adequately describe
the behavior of a TFSM. The fault domain contains TFSMs with the known upper boundary on the number of
FSM abstraction states and allows to avoid explicit enumeration of implementations under test. We study
properties of the FSM abstraction for a nondeterministic TFSM and justify that the use of an FSM abstraction
allows to adapt classical FSM based test derivation methods when deriving tests with guaranteed fault coverage
for TFSMs. A method is proposed for deriving a complete test suite for a complete possibly nondeterministic
TFSM when an implementation under test is a deterministic complete TFSM.
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Annoranus. KoHeyHO-aBTOMATHBIE METO/BI IUPOKO HCIIONB3YIOTCS MPY CHHTE3€ MPOBEPSIONINX TECTOB C
TapaHTHPOBAHHOH MOMHOTOM 1 JAMCKPETHBIX cHcTeM. IlockonpKy TOBEIEHHE COBPEMEHHBIX
MH(MOPMAIMOHHBIX M YIPABILSIOMMX CHCTEM YacTO 3aBHCUT OT BPEMEHH, KIIaCCHYECKas MOJENb KOHEYHOrO
aBTOMAaTa pacIIMpsieTcss BBEAEHHEM BPEMEHHBIX IIepeMEHHBIX. bomee Toro, ONIHOHATBHOCTH B
cnenuHKAHUAX PEalbHBIX CHCTEM IIOOYXKIaeT K MCCIEOBAaHMAM B OONACTH CHHTE3a TECTOB IS
HEZIeTePMHUHHPOBAHHBIX aBTOMAaToB. B HacTosmel paboTe MBI aJanTUPyeM KIacCHYECKHE KOHEUHO
aBTOMATHbIE METO/BI CHHTE3a TECTOB K HEeJeTePMUHUPOBAHHBIM aBTOMATaM C BPEMEHHBIMH O PAaHHYCHUSIMH
U TaiiMayTamu (BpeMEHHbIM aBToMaraMm). IlokaspiBaeTcs, YTO B OTIMYHE OT KJIACCHUECKHX KOHEYHBIX
aBTOMATOB, IPOBEPKA OTHOIIEHHH KOH)OPMHOCTH MEX/Ty BPEMEHHBIMU aBTOMATaMH HE MOXET OBITh CBEJIeHa
K IPOBEPKE COOTBETCTBHA MEXIY IEpPEX0AaMHu, YTO HAPYIIAeT OCHOBHOH MPHHIUI KOHEYHO aBTOMATHBIX
METOJZIOB CHHTe3a TecTOB. COOTBETCTBEHHO, IPENIOMKEHHBIN II0X0]] X MOJIENb HeUCIIPABHOCTU OCHOBAHBI Ha
KOHEYHO AaBTOMATHOH aOCTpaKIUM aBTOMAaTa-CrieNH(HKAIUK, KOTOpas MCIONB3yeTCsl I ONHCAHHUA
THIOBEJICHHsI BpeMEHHOro aBToMaTa. O0JacTh HEHCIPABHOCTH COAEP)KUT BPEMEHHbIE aBTOMATHI C H3BECTHOH
BepXHEH TpaHHUIEN YHCIa COCTOSHHI KOHEYHO aBTOMATHBIX aOCTPAaKUUH M IMO3BOISET M30eXKaTh SBHOTO
MEPEYNCIICHHs] MHOXECTBA TECTHPYeMBIX peanm3anuid. MBI HMCCleIyeM CBOMCTBA KOHEYHO aBTOMATHBIX
abcTpakiMil HeleTepPMHHUPOBAHHBIX BPEMEHHBIX aBTOMATOB M IIOKAa3bIBAaE€M, UYTO HCIIONB30BAHHME TAKOM
abCTpaKIMH MO3BOJISIET a1aNTUPOBATh KIIACCHUECKHE METOIBI K CHHTE3y TECTOB C TapaHTHPOBAHHOIH MOITHOTOH
JUIL BPEMEHHBIX aBTOMAroOB. IIpe[NIOKCHHBIH METOJ CHHTE3a TECTOB IO3BOISIET CTPOMUTH IOJIHBIS
NPOBEPSIOIINE TECTHl JUIS IIONHOCTHIO ONpPEeNEIEHHBIX BO3MOXKHO HEIETePMHHHPOBAHHBIX aBTOMATOB C
TaliMayTaMH M BPEMEHHBIMU OTPAaHHYEHUSAMM JUIl TECTUPOBAHMS pPeanu3ali, IOBEJECHHE KOTOPBIX
ONMCHIBACTCS I€TEPMUHHPOBAHHBIMH BPEMEHHBIMH aBTOMATaMH.
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1. Introduction

Finite State Machines (FSMs) are widely used for analysis and synthesis of discrete event systems
[1]. In particular, FSM based approaches can be effectively used when deriving test sequences for
determining whether a given implementation considered as a «black box» conforms to its
specification. A number of methods exist for deriving complete test suites with respect to various
fault models [see, for example, 2-5] without the explicit enumeration of possible FSMs under test.
Well-known W-method [2] and many its derivatives have been developed including those for FSMs
with the nondeterministic behavior [4, 6]. In many papers, researchers consider the case when the
specification is a nondeterministic FSM, while an implementation FSM is deterministic and
conforms to the specification if the implementation behavior is contained in that of the specification

176



Traproeckuii A.C., EBtymenko H.B. CHHTe3 TecTOB ¢ rapaHTHPOBAHHO# HOMHOTO# /15 HEIeTePMHHNPOBAHHBIX ABTOMATOB C TAiMayTaMH H BPEMCHHBIMH
OrpaHMYCHHAMH Ha OCHOBE KOHCUHO aBTOMaTHBIX abcTpakimid. Tpyast ICITPAH, Tom 31, Bbim. 4, 2019 1., c1p. 175-188

[6, 7]. In other words, the specification nondeterminism occurs according to the optionality of the
informal requirements’ description and the behavior of a conforming implementation must not
violate the specification.

Nowadays time aspects become very important when describing the behavior of digital and hybrid
control systems, and, respectively, similar to automata [8] classical FSMs were extended with clock
variables [5, 9-14]. When the behavior of a system under test is described by a Timed Finite State
Machine (TFSM), classical FSM-based methods have to be modified and extensions of the W-based
methods are considered in the context of systems with timed constraints [9], [14]. In [11], Merayo
et al. consider timed possibly nondeterministic FSMs where time elapsed when an output has to be
produced after an input has been applied to an FSM under test is limited. The model also takes into
account input timeouts at states. However, the authors do not consider test derivation; yet establish
a number of conformance relations. El-Fakih et al. [10] consider the test derivation and assessment
for FSMs with timed guards; such an FSM has a single clock that is reset at every transition. In the
paper by Zhigulin et al. [13], a method is proposed for deriving complete test suites for FSMs with
timeouts. The authors consider a traditional fault domain assuming that the number of states of an
implementation TFSM (Implementation Under Test) does not exceed that of the state reduced
specification TFSM as well as the maximal finite timeout of the IUT does not exceed that of the
specification. However, as we further show, two reduced TFSMs with timeouts can be equivalent
but not isomorphic and this fact violates the main idea of W-based methods of checking the
isomorphism or homomorphism between the specification and implementation under test. In [12],
the authors show that the behavior of a deterministic TFSM can be adequately described by its FSM
abstraction and this is a hint that a fault model can be derived based on such abstraction for which
well elaborated FSM based methods for deriving tests with guaranteed fault coverage can be applied.
Such a fault model is considered in [15] for deriving a complete test suite against deterministic
TFSMs.

In this paper, we consider FSMs with timed guards, timeouts and output delays (TFSM) which
generalize the TFSM model that has only timed guards or only input timeouts [12]. Moreover, in
our case, a TFSM can be nondeterministic. Timed guards describe the system behavior depending
on a time instance when an input is applied. If no input is applied until an (input) timeout expires
then the system can spontaneously move to another state. An output delay describes a time for
processing a given transition.

We propose a method for deriving a test suite with guaranteed fault coverage against a complete
possibly nondeterministic specification FSM with timed guards, input timeouts and output delays
with respect to the reduction relation assuming that an implementation TFSM under test is complete
and deterministic. The fault model and a procedure for deriving a complete test suite are based on
the FSM abstraction of a given TFSM specification since according to [12], the behavior of a TFSM
can be adequately described by its corresponding (untimed) FSM abstraction.

The structure of the paper is as follows. Section 2 contains the preliminaries for classical and timed
FSMs. It also contains the explanation how the behavior of a TFSM can be described using an
appropriate FSM abstraction. In Section 3, a brief sketch of related work on test derivation methods
for nondeterministic FSMs with respect to the reduction relation is presented while Section 4
contains such a review on test derivation against Timed FSMs. In Section 5, a method is proposed
for deriving a complete test suite against a nondeterministic FSM with timed guards and timeouts
by determining an appropriate fault model based on their FSM abstractions; the section also contains
an example for a test derivation procedure. Section 6 concludes the paper.

2. Preliminaries

This section contains basic definitions of classical Finite State Machines as well as of Timed Finite
State Machines as their extension. We also show how the behavior of a TFSM can be adequately
described by the corresponding FSM and establish some useful properties of such FSM abstractions.
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2.1 Finite State Machines

A Finite State Machine (FSM) [1] describes the behavior of a system that moves from state to state
under input stimuli and produces predefined output responses. Formally, an initialized FSM is a 5-
tuple S = (S, 1, O, ks, so) where S is a finite non-empty set of states with the designated initial
state so, / and O are input and output alphabets, and 4s < (S x I x O x S)is the transition (behavior)
relation. A transition (s, i, 0, s") describes the situation when an input 7 is applied to S at the current
state s. In this case, the FSM moves to state s’ and produces the output (response) 0. FSM S is
nondeterministic [6] if for some pair (s, /) € S x I, there exist several pairs (0, s') € O x S such
that (s, 7, 0, s") € hs; otherwise, the FSM is deterministic. FSM S is complete [6] if for each pair
(s, i) € S x I there exists (o, s") € O x S such that (s, i, 0, s") € hs; otherwise, the FSM is partial.
FSM S is observable if for every two transitions (s, i, 0, 51), (s, i, 0, s2) € hs it holds that s; = 5.
In the following, we consider complete observable possibly nondeterministic FSM
specifications, while an implementation is a complete deterministic FSM.

A trace or an Input/Output sequence a/y, written often as an 1/O sequence, of the FSM S at state s
is a sequence of consecutive input/output pairs starting at the state s. Given a trace o/y, a is the input
projection of the trace (input sequence) while y is the corresponding output projection (output
sequence), i.e., a possible output response of the FSM when the sequence o is applied at state s.
Given a complete nondeterministic FSM, there can exist several output responses for an input
sequence at a given state. A complete nondeterministic FSM is reduced if for every two different
states, the sets of traces do not coincide. The unique reduced form exists for any complete
nondeterministic FSM and can be derived similar to that for complete deterministic FSMs [16].
Given states s and p of complete FSMs S and P, state p is a reduction of s (written, p <s) if the set
of 7/0 sequences of FSM P at state p is contained in the set of //O sequences of FSM S at state s.
FSM P is a reduction of FSM S if the reduction relation holds between the initial states of these
machines.

2.2 Timed Finite State Machines

A Timed FSM (TFSM) is extended with a clock variable, timed guards, timeouts and output delays
[12, 13]. The timed guards at a state have less time upper bounds than the timeout at the state and
describe the behavior at a given state for inputs which arrive at different time instances. The clock
variable accumulates time and is reset to zero when applying an input, producing an output and
moving between states by timeout transitions. Correspondingly, an initialized TFSM is a 6-tuple S
=(1, S, O, hs, As, so) where S is a finite non-empty set of states with the designated initial state
s0, [ and O are input and output alphabets, hs = S x I x O x § x I1 x Zis the transition relation
and As is the timeout function. The set I1 is a set of input timed guards and Z is the set of output
delays which are non-negative integers. The timeout function is the function As: § — § x (N U
{o}) where N is the set of positive integers: for each state this function specifies the maximum time
for waiting for an input. If no input is applied until an (input) timeout expires then the system can
spontaneously move to another state. By definition, for each state of TFSM exactly one timeout is
specified. An input timed guard g € IT describes the time domain of clock variable when a transition
can be executed and is given in the form of interval <min, max> from [0; T), where < € {(, [}, > €
{), 1} and T is the input timeout at the current state. We also denote the largest finite boundary of
timed guards and timeouts as Bs. The transition (s, 7, 0, 8', g, d) € S x I x O x § x Il x Z means that
TFSM S being at state s accepts an input i applied at time ¢ € g measured from the initial moment
or from the moment when TFSM S has moved to the current state; the clock then is set to zero and
S produces output o exactly after d time units and moves to state s’. Given state s of TFSM S such
that As(s) = (s', 7), if no input is applied before the timeout 7 expires, the TFSM S moves to state
s'. If As(s) = (s', ) then 5" = s, and this means that the TFSM can stay at state s indefinitely long
waiting for an input.
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Given TFSM S, S is a complete TFSM if the union of all input timed guards at any state s under
every input i equals [0; 7) when As(s) = (s', 7). In this paper, we consider only complete TFSMs
and the question about the interpretation of undefined transitions in partial machines and their
augmentation is out of the scope of this paper [17].

TFSM S is a deterministic TFSM if for each two transitions (s, i, o1, s1, g1, d1), (8, i, 02, $2, €2, d2)
€ hs, s1# $2,d1 # db 01 01 # 02, it holds that g| N g» = I, otherwise, TFSM S is nondeterministic. In
this paper, we assume that the system specification is a complete observable, possibly
nondeterministic TFSM while the behavior of an implementation under test (IUT) is described by a
complete deterministic TFSM. In other words, the specification describes a set of possible
permissible behaviors of an IUT and a conforming implementation must be one of them.

Example. Consider a TFSM S in Figure 1 with two states, one input and three outputs, where a is
the initial state and As(a) = (b, 2), i.e., the timeout at state a is 2. For state b, As(b) = (b, o), and this
loop is not shown in the figure. If input 7 is applied to the TFSM at state « at time instance 1 measured
from the initial moment then S moves to state b producing output o, after one time unit. However,
if no input is applied to the TFSM until time value reaches 2 then S moves to state b using a timeout
transition. At state b, TFSM S can wait for an input infinitely long.

i, [0, 0]/(oy, 1)
i, (0, 2)/(0,, 1)

=2

i, [0, 0]/(05, 0)

i9 [Oa OO)/(olv 2) i> [07 OO)/(03, 2)

Fig. 1. Timed Finite State Machine S

A timed input is a pair (i, f) where i € [ and ¢ is a real; a timed input (i, /) means that input i is applied
to the TFSM at time instance ¢ measured from the initial moment or from the moment when TFSM
S has produced the last output. A timed output is a pair (o, d) where o € O and d is the output delay
measured from the moment when an input has been applied. In order to determine the output
response of the TFSM at state s to a timed input (i, ¢), state s’, which is reached by the TFSM by
timeout transitions at time instance ¢, is calculated first [13]. State s'is a state where TFSM moves
from state s via timeout transitions such that the maximum sum X of all timeouts starting from
state s is less than ¢. At the second step, a transition (or several transitions for nondeterministic
TFSM) (s, i, 0, 5", g, d) such that t — ¥ € g is considered. According to this transition, the machine
produces the timed output (o, d) to a timed input (i, ¢) applied at state s and moves to the next state
s".

A sequence of timed inputs o = (i1, t1) ... (in, ) 1S a timed input sequence, a sequence of timed
outputs Y = (01, d1) ... (0n, dn) is a timed output sequence. Given the initialized TFSM at state s; with
the value of the clock variable equal to 0 at the initial moment and a timed input sequence (i1, 1) ...
(in, tn), an input 7; is applied when the value of the clock variable reaches #;'= #; — £; where X, that
is the maximum sum of timeouts for the sequence of timeout transitions starting from state s is less
than #;, but becomes equal or bigger when adding the timeout at the current state s;"; after applying
the input at state s;’ the clock variable is set to 0 and the machine produces an output 0; and moves
to a prescribed state s, when clock value is equal to d;. After producing the output o the clock is
reset and the machine is waiting for another input 7, that is applied when the clock variable value
equals ©' = t, — X, etc. A sequence o/y = (i1, t1)/(01, d1) ... (in, t2)/(0n, dy) of consecutive pairs of
timed inputs and timed outputs starting at the state s is a timed I/O sequence or a timed trace of
TFSM S at state s. Note that time of the first timed input in the sequence is counted from startup of
the system at state s while time of all next inputs is counted from the time instance when a previous
output has been produced. Similar to FSMs, a is an applied timed input sequence while v is the
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corresponding output response of the TFSM to sequence a of applied inputs. Given a state of a
complete nondeterministic TFSM, there can exist several output responses to a timed input
sequence.

Similar to FSMs, the set of all timed traces at the initial state specifies the behavior of an initialized
TFSM.

Example. Consider TFSM S in fig. 1. If a timed input sequence (i. 2.5).(, 0) is applied to S at state
a then TFSM first moves to state b by the timeout transition when the clock variable value reaches
2. The clock is reset and output (o1, 2) or (03, 2) is produced, the system moves back to state a and
the clock is reset. When the next input (7, 0) is immediately applied, the TESM moves either to state
a with timed output (03, 0) or to state » with timed output (o1, 1).

Given states s and p of complete TFSMs S and P, state p is a reduction of s (written, p < s) if the set
of timed //O sequences of TFSM P at state p is contained in the set of timed //O sequences of TFSM
S at state s. TFSM P is a reduction of TFSM S if the reduction relation holds between the initial
states of the machines. For deterministic TFSMs S and P, the reductions relation is reduced to the
equivalence relation.

2.3 FSM abstraction

The behavior of a TFSM can be adequately described using a classical FSM that is called the FSM
abstraction of the TFSM and is derived similar to [12]; however, in [12], output delays are not
considered.

Given a complete observable possibly nondeterministic TFSM S = (S, I, O, As, As, so), the largest
finite boundary of timed guards and timeouts Bs and maximum output delay D, we derive the FSM
abstraction of TFSM S as the FSM As = (S4, /U {I}, O4, Ass, o) where Sy < {(s, 0), (s, (0, 1)), ...,
(s, (Bs—1, Bs)), (s, Bs), (s, (Bs, ®©)):s € S}, 04= {(0, 0), (0, 1), ..., (0, D): 0 € O} U {I}. The input
(output) I is a special input (output) of the FSM abstraction. Given state (s, ), t; =0, ..., Bs, of
FSM As and input i, a transition ((s, ), i, (0, d), (s, 0)) is a transition of the FSM abstraction As if
and only if there exists a transition (s, 7, 0, §', g, d) € As such that #; € g;. Given state (s, g), g = (0,
1), ...,(Bs—1, Bs), (Bs, ©), of FSM As and input i, a transition ((s, g, i, (0, d), (s', 0)) is a transition
of As if and only if there exists a transition (s, i, 0, §', g, d) € As such that g; < g. In other words,
transitions under input i € / correspond to timed inputs (i, ) where ¢ is ‘hidden’ as the second
item of states of the FSM abstraction As. Transitions under the special input I correspond to the
clock change between non-integer and integer values, or to a timeout transition between states.
Given state s such that As(s) = (s', T), transitions ((s, n), I, I, (s, (n, n + 1))) and ((s, (n — 1, n)),
I, I, (s, n)) are in the transition relation Ays if and only if n < T. Transition ((s, (n — 1, n)), I, I,
(s',0)) € hssifand only if n = T'< c0. In [12], it is shown that the FSM abstraction of complete and
deterministic TFSM S is also complete and deterministic. In the same way, it can be shown that the
FSM abstraction of a complete observable nondeterministic TFSM S is complete observable and
nondeterministic.

Example. For a deterministic TFSM S in fig. 1, the corresponding FSM abstraction is shown in
fig. 2. FSM abstraction As has states (a, 0), (a, (0, 1)), (a, 1), (a, (1, 2)), (b, 0), (b, (0, ©)). Transitions
((a, 0), i, (01, 1), (b, 0)) and ((a, 0), i, (03, 0), (a, 0)) exist in FSM abstraction As since TFSM S has
transitions (a, i, o1, b, [0, 0], 1) and (a, i, 03, a, [0, 0], 0). FSM abstraction As has transition ((a, (0,
1)), i, (02, 1), (b, 0)) since TFSM S has transition (a, i, 02, b, (0, 2), 1). Transition ((a, 0), I, I, (a,
(0, 1))) of As corresponds to clock change at state a from time instance 0 to the interval (0, 1).

A timed input sequence a. of TFSM S can be transformed into a corresponding input sequence Otrsy
of the FSM abstraction As. In this case, each timed input (7, ¢) is replaced by sequence I.I ... I.i of
inputs of the FSM abstraction where the number of inputs I equals the number of clock transitions
between a non-integer and integer values for the time duration ¢. At the same time the response
of the FSM abstraction to sequence I.I.....I.i equals I.I.....I.(o, d), where the number of inputs
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I is the same as for the timed input (7, f) and (o, d) is the response of the TFSM to timed input (7,
7). Thus, the output sequence of the FSM abstraction yrsy can be transformed into corresponding
timed output sequence y by removing all outputs I. The following statement can be established.
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Fig. 2. FSM abstraction Asof TFSM S in fig. 1

Proposition 1. A timed trace o/y exists for TFSM S if and only if there exists a trace orsa/yrsy for
the FSM abstraction As.

Proposition 2. There exists a timed trace o/y at state s of a possibly nondeterministic TFSM S if
and only if the FSM abstraction As has a trace aursau/yrsu at state (s, 0).

Indeed, all the transitions under input I are deterministic and correspond to the clock change
between integer and non-integer value and equal to increasing of clock variable while transitions at
state (a, g) of abstraction under another input i corresponds to transitions of TFSM at state a at time
(or timed interval) g.

Example. Consider TFSM S in fig. 1 and its FSM abstraction in fig. 2. Timed trace (i, 2.5)/(01, 2).(i,
0)/(03, 0) of TFSM S corresponds to trace I/I.I/I.1/I.1/I.1/1.i/(o1, 2).i/(03, 0) of FSM abstraction
As, and vice versa.

According to Proposition 2, all the trace features of a TFSM are preserved for its FSM abstraction
and thus, the set of reductions of a TFSM can be analyzed based on a set of reductions of a classical
FSM. The following statement establishes necessary and sufficient conditions for two TFSM states
to be in the reduction relation.

Proposition 3. State s of TFSM S is a reduction of state p of TFSM P if and only if state (s, 0) of
the FSM abstraction As is a reduction of state (p, 0) of FSM Ap.

Thus, the conclusion about the reduction relation between two TFSMs can be drawn based on their
FSM abstractions and there exist methods for checking the reduction relation between two FSM
states or between two FSMs.

3. Fault models and test suites

FSM based testing can be preset and adaptive. We first consider the preset testing where test cases
which are (timed) input sequences, are derived from the given TFSM specification to determine
whether a given IUT, which is assumed to have the FSM behavior, conforms to the given
specification.

In this paper, an implementation FSM P conforms to the specification if FSM P is a reduction of the
specification FSM. In other words, an implementation FSM P conforms to the specification FSM if
for each input sequence the output response of the FSM P is contained in the set of output responses
of the specification FSM to this input sequence. In this case, the fault model FM,"M = <S, <, 3,,>
is considered where S is the specification that is a complete observable possibly nondeterministic
FSM, < is the reduction relation, J,, is the fault domain which contains each deterministic complete
FSM with at most m states over the same input alphabet as the specification. Here we notice that
differently from the paper [ 18] where only deterministic FSMs are considered, the specification can
be nondeterministic and the conformance relation is not the equivalence but the reduction relation.
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Correspondingly, different transfer and separating sequences have to be used when deriving a test
suite with guaranteed fault coverage.

A test suite is complete with respect to the FM,,SM = <S, <, 3,,> if for each FSM P € J,, that is not
a reduction of S, the test suite has a sequence for which an output response of P is not in the set of
output responses of S to this sequence.

A complete test suite with respect to FM,,”™ can be derived using an appropriate modification of
FSM based methods for nondeterministic FSMs [6] which are based on deterministically-transfer
(d-transfer) and separating sequences. A state s is deterministically reachable (d-reachable) from
the initial state of the FSM S if there exists an input sequence a such that for any output response 8
to o, the machine S moves from the initial state to state s when o is applied. In this case, a is a d-
transfer sequence for state s. States s; and s, of an FSM S are separable if there exists an input
sequence o such that the sets of output responses of the FSM at states s; and s» to a do not intersect;
in this case, sequence a is called a separating sequence for states s; and s». If a sequence separates
each pair of different states of the FSM S then this sequence is a separating sequence for FSM S.
Once again we remind that differently from [18], not each input sequence is a d-transfer of the
nondeterministic  specification and separable states and separating sequences for the
nondeterministic specification are defined in a different way.

If FSM S has a separating sequence y and each state is d-reachable from the initial state, the

procedure for deriving a complete test suite w.r.t. the fault model FM,™M = <S, <, 3,> where 7 is

the number of states of S, has the following steps:

1. A d-cover set of the FSM S is derived. This set contains a d-transfer sequence for each state of
the FSM S.

2. Each sequence of the d-cover set is appended with the separating sequence y of the FSM S and
every input that also is appended with the separating sequence .
If an adaptive test suite is derived, an adaptive distinguishing sequence can be used instead of a
separating sequence while d-transfer sequences can be replaced by adaptive transfer sequences (if
they exist) [19]. Adaptive distinguishing (separating) and d-transfer sequences can be shorter then
preset, and moreover, they exist more often.
An input sequence o. is adaptive if the next input depends on the outputs of the FSM. Such an input
sequence can be represented by an FSM called a fest case [19]. At each state of a test case, either
there are transitions for one input with all outputs or there are no transitions and in the latter case, a
state is called terminal. Given a test case (TC) D for FSM S, an adaptive sequence specified by is
applied in the following way. If input ; is defined at the initial state do of D then first the input 7; is
applied to FSM S and TC D moves to the ijo-successor d; of state dy if o is the output the response
of S to the input 7;. The next input to apply is the input defined at state dj, etc. The procedure
terminates when a terminal state is reached.
A test case represents an adaptive separating sequence for states 51 and s> of the FSM S if each
input-output sequence from the initial to the terminal state of the test case can happen at most at one
of states s or s2. In the former case, the state s; is identified, while in the latter case it will be state
s2. States s1 and s> of the FSM S are adaptively separable if there is a test case that represents an
adaptive separating sequence for states s; and s». In this case, the corresponding trace from the initial
state to a terminal state of an adaptive separating test case allows to determine what was a state of
the FSM S before the experiment.
If an adaptive sequence separates each pair of different states of the FSM S, then such a sequence is
an adaptive separating sequence for the FSM S.
A test case can also represent an adaptive sequence from the initial state of the FSM S to the state s
if each input-output sequence of the test case from the initial to a terminal state is ended at state s
[19, 20]. In this case, state s is adaptively reachable from the initial state. The derivation of a
complete adaptive test suite is almost the same as the preset: the only difference is that adaptive
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distinguishing sequences are used instead of separating sequences and adaptive transfer sequences

are used instead of d-transfer sequences.

If FSM S has no (adaptive) separating sequence or S has states which are not d-reachable from the

initial state then a complete test suite cannot be derived using the above procedure. In this case, the

so-called state counting reduction (SCR) method should be applied [6].

Below, we describe the main steps of the general SCR-method when deriving a complete preset test

suite with respect to the fault model FM,,M = <S, <, 3,,>.

1. Determine subset Sy of all d-reachable states and derive d-cover of the FSM S which contains
a d-transfer sequence for each state of S.

2. Determine the set R = {R), Rz, ..., R,} of maximal subsets of pairwise separable states; for each
subset R; € R, denote Rjs a subset of all d-reachable states of R;. For each subset R; € R, derive
a distinguishing set 1¥; that contains a separating sequence for each pair of different states of
R;.

3. For each state sx of Sz, derive a set of input sequences Ni: an input sequence o € Ny if for each
1/0 sequence o/f at state sy, it holds that o/ traverses states of some R; € R at least m - |Rjq| +
1 times and this does not hold for any proper prefix of a.. Concatenate each prefix of sequence
o with each sequence of the set /7.

4. Concatenate each d-transfer sequence with each sequence of each set W¥; that was used at Step
3 when terminating an input sequence of the set Ny, k=1, ..., p.

Here we notice that in general case, complete test suites derived by SCR method are much longer

than for the case when the specification FSM has a separating sequence and the derivation method

is much more complex. To minimize our efforts for deriving a complete test suite with respect to

the fault model FM,,™ = <S, <, 3,,>, the adaptive testing can be used instead of the preset [19].

It is known that a test suite can be usually shorter if the specification FSM has a sequence, which

separates every two states [6]. In this case, set I¥; contains only one separating sequences o and R =

{S}. However, such a separating sequence does not always exist and thus, we are obliged to use a

set of separating sequences for test derivation. Adaptive distinguishing (separating) sequences exist

more often than the preset and are usually shorter, thus, adaptive distinguishing sequences can be

preferable for test derivation. Anyway, using adaptive distinguishing sequences can increase the size

of subsets of pairwise distinguishable states from R, and thus, shorten sets ¥, and the sets N, and

correspondingly, minimize a complete test suite.

In the next section, we consider an existing approach for adaptation classical FSM based test

derivation methods for Timed FSM.

4. Related work on TFSM based testing

The problem of deriving a complete test suite against a nondeterministic FSM with timed guards
with respect to the reduction relation has been considered in [20]. The proposed approach is based
on the FSM abstraction of TFSM but that abstraction is a bit different from that considered in the
«Preliminaries» section. In that case, one-to-one mapping between sets of states of TFSM and
corresponding FSM abstraction has been established. The latter allows to inherit the above described
steps for deriving a complete test with respect to the fault domain which contains each deterministic
complete TFSMs with timed guards with at most m states over the same input alphabet as the
specification TFSM S and the largest boundary Bs for input timed guards. However, in general case,
this approach cannot be applied for FSMs with time guards and timeouts since the one-to-one
mapping between transitions of two state reduced equivalent TFSMs with timeouts not always can
be established.

In [15], it is shown that initialized reduced deterministic TFSM specification and TFSM
implementation with timeouts can be equivalent yet not isomorphic; moreover, they can have
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different number of states. The latter violates the main assumption of W-based methods about
checking the correspondence between FSM transitions. As an example, consider TFSMs in fig. 3.
Each state in R and Q is reachable from the initial state and each two different states of each machine
are not equivalent, i.e., both TFSMs are connected and state reduced. By direct inspection, one can
assure that equivalent machines in Figure 3 have different number of states and thus, are not
isomorphic.

i, (0, 1)/(0,, 1)

i, [0, 0]/(o, 0) i, [0, 0]/(o5, 0)

Ofea

i, [0, ©)/(0,, 2) i, [0, ©)/(0,, 2)

Fig. 3. Two state reduced deterministic complete TFSMs R and Q

On the other hand, according to Propositions 1-3, the necessary relationship holds between
transitions of their FSM abstractions. For example, reduced forms of FSM abstractions of TFSMs R
and Q (fig. 3) are isomorphic. FSM abstraction Ar and its reduced form is shown in fig. 4. Thus, in
order to derive a complete test suite for deterministic TFSMs we considered the fault domain
containing every TFSM P over the same input alphabet as S such that the reduced form of the FSM
abstraction of P has at most m > 1 states [15]. A similar approach can be applied for the test
derivation against nondeterministic FSMs with timeouts and timed guards; in the next section,
corresponding fault model and test derivation method are proposed.

i/(0y, 1) i/(0y, 1) i/(0y, 1) /I
100 @0 e 0 02 6.0 HEe, 0 D @0 e 0 n)—
il(0y, 2) il(0,, 2)
i/(0y, 1) i/(0y, 1) i/(0y, 1), I/T
"0 @0 w0 DA 6.0 A 0 D @0
T (0, 2)

Fig. 4. The FSM abstraction Ar of TFSMs R (Figure 3) and its reduced forms

5. Test derivation method for nondeterministic FSM with timed guards and
timeouts

In order to derive a test suite with guaranteed fault coverage against the nondeterministic
specification TFSM, we propose a fault model based on the FSM abstraction of the TFSM and
algorithm of applying the SCR-method to such abstraction.

Given a nondeterministic TFSM S with n states (fig. 1), two deterministic equivalent TFSM
implementations R and Q (fig. 3) which are reductions of S can have different number of states.
However, the reduced forms of their FSM abstractions are isomorphic and are reductions of FSM
abstraction As. Another example in Figure 5 demonstrates that for nondeterministic TFSM Y there
can exist a deterministic TFSM Y’ with the same number of states and the boundary Bs, such that
the reduced form [16] of FSM abstraction Ay has more states than that of Av.

Given the TFSM specification S, we consider the fault model FM,, ™M = <S, <, N,>, where S is
the complete observable, possibly nondeterministic TFSM specification, < is the reduction relation,
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N is the fault domain that contains each deterministic complete TFSM P over the same input
alphabet as the specification such that the reduced form of its FSM abstraction Ap has at most m > 1
states.

As it is demonstrated below it can well happen that some timed FSMs with less states than the
specification TFSM are not included into the fault domain and vice versa, a number of timed FSMs
which have more states than the specification TFSM are included into the fault domain.

Example. Consider TFSM specification S (fig. 1) with two states. Fault domain ¥, of the fault
model FM,,""M = <S, <, N,> contains TFSM R (fig. 3) with three states since the FSM abstraction
Ar has not more states than the FSM abstraction As. At the same time, in Figure 5 the TFSM
specification Y and its non-conforming implementation Y’ are shown such that both TFSMs have
three states and the finite timed guards’ boundary equal two. However, the fault domain X, does
not contain Y’ since the reduced form of its FSM abstraction has more states than Ay. Thus, it can
happen that nonconforming implementations with the same number of states as the specification
TFSM can pass a complete test suite with respect to <S, <, N,>.

i, [0, 0]/(oy, 3)

i, [0, 01/(03, 0) i, (0,2)/(04, 1) i, [0, 01/(0s, 0) i, (0, 2)/(0,, 1)

T=2 /b\ T=2
\ i [0, 2)/(0,, 1)

i, [0, ©)/(0,2)  i,[0, /(03 2) i, [0, ®0)/(03, 2)

Fig. 5. TESM Y and its non-conforming implementation Y’

Note that the FSM abstraction of TFSM S can have non-separable states, i.e., the FSM abstraction
can have a pair of states for which a separating sequence does not exist when the specification TFSM
S has a separating sequence, i.e., all states of the TFSM S are pairwise separable. For example,
TFSM S in Figure 1 has a separating sequence (i, 1) while the corresponding FSM abstraction As
has a pair of non-separable states (b, 0) and (b, (0, «0)), for which the sets of input/output sequences
coincide. In order to derive a complete test suite for such FSM, the SCR method can be used.

As mentioned above, similar to a deterministic FSM abstraction [15], a nondeterministic FSM
abstraction can be minimized using the method from [16]. As an example, for FSM abstraction As
(fig. 2) of TFSM S (Figure 1), equivalent states (b, 0) and (b, (0, ©)) can be merged into one state.
However, unlike deterministic machines, such optimization does not always allow to merge pairs of
non-separable states of the FSM abstraction of the specification and thus, the SCR method is still
used for test derivation.

Algorithm for deriving a complete test suite with respect to the fault model FM,,/"M = <S, < N,>
where m is the number of states of the reduced form of the FSM abstraction of S

Input: The complete observable possibly nondeterministic specification TFSM S

Output: A complete test suite 7S with respect to the fault model FM,, ™M = <S, <, N,,>, where X,
contains every TFSM P over the same input alphabet as S such that the reduced form of the FSM
abstraction of P has at most m > 1 states

Step 1. Derive the reduced form of the FSM abstraction As of TFSM S.

Step 2. Derive a test suite 7S with respect to the fault model FM,,"S™ = <As, <, 3,,> using the SCR-
method described above, where m is number of states of the FSM abstraction As.

Step 3. According to Proposition 1, transform sequences of the test suite 7'S4 into corresponding
timed sequences over the TFSM S and obtain the test suite 7.

Proposition 4. The test suite 7S returned by the above Algorithm is complete with respect to the
fault model FM,,"M = <S, <, N,>.
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Proof. Let a test suite 7S be returned by the above algorithm and TFSM P which is not a reduction
of specification TFSM S is in the set ¥,,. By definition of the fault domain X, the reduced form of
the FSM abstraction Ap has at most m states. Since P is not a reduction of S, the FSM Ap is not a
reduction of As (Proposition 3). Thus, a test suite 7:S4 derived at Step 2 contains an input sequence
arsu, which separates FSMs Ap and As. By Proposition 2, for sequence oursy of the FSM Ap there
exists the corresponding timed input sequence o of the TFSM P that will demonstrate that P is not
areduction of the TFSM S. The latter guarantees that each non-conforming implementation P of the
set N, is detected by the test suite 7.

The fault domain in the above algorithm can be extended and for TFSM S with the reduced form of
its FSM abstraction As which has n states, a complete test suite can be derived by SCR-method with
respect to N,, when m > n. However, in this case length of a complete test suite significantly
increases [21].

In the worst case, the length of a test suite derived by SCR-method exponentially depends on the
number of states of FSM and this also holds for FSM with timed aspects. As experimental results
show, in practice, length of adaptive distinguishing sequences is usually polynomial with respect to
the number of FSM states when such a sequence exists [20, 7]. Respectively, similar results can be
derived for a TFSM when proposed algorithm is used and the boundary on timed guards is not too
big. Note that length of the test suite also significantly depends on timed aspects of the specification
TFSM such as the upper bounds of timed guards and value of timeouts [20, 21].

We note again that the FSM abstraction of TFSM S can have non-separable states while all states of
the TFSM are pairwise separable. However, we underline that the FSM abstraction inherits the d-
reachability of states from the specification TFSM and the following proposition holds.
Proposition 5. States (s, 0), (s, (0, 1)), (s, 1), (s, (1, 2)) ... of FSM abstraction As are d-reachable if
and only if state s is d-reachable in TFSM S.

The statement is implied by Propositions 1-2 due to a deterministic transition under the special input
I. Respectively, all states of FSM abstraction As are d-reachable if and only if all states of TFSM S
is d-reachable.

Example. Consider TFSM S in Figure 1 and its FSM abstraction As in Figure 2. We derive a
complete test suite with respect to the fault model FMs™™M = <S, <, 8¢>. For state (b, 0) of As there
exists a d-transfer sequence I.i and respectively, state b of TFSM S has a timed d-transfer sequence
(@i, 0,5). Other states of FSM abstraction are d-reachable from states (a, 0) and (b, 0) by a sequence
of T inputs. Thus, all states of As are d-reachable from the initial state and for the FSM abstraction
As, Sa= {(a, 0), (a, (0, D), (@, 1), (a, (1, 2)), (b, 0), (b, (0, ))}.

Given FSM As, we can also determine two maximal subsets of pairwise separable states R = {(a,
0), (@ (0, D), (@, 1), (a, (1, 2)), (b, O)}, R = {(a, 0, (a, (0, D)), (@, 1), (a, (1, 2)), (b, (0, %))} and
corresponding distinguishing sets W, = W, = { i, 1.i, I.1.i}. Note that R; = Ris and R> = R»4 since
all states of As are d-reachable.

Consider state (b, 0) and the set N, o) of input sequences derived at Step 3 of the SCR-method when
a test suite is derived with respect to the fault model <S, <, J>. Input/Output sequences with the
input projection of the set N, o) should traverse states of some R; at least 2 =6 — 5 + 1 times while
this does not hold for any proper prefix of the input sequence, and respectively, i.i is in the set N, o)
which traverses states (a, 0) and (b, 0) of R;. Other sequences at state (b, 0) are i.I (traverses (a, 0),
(a, (0, 1))), I.i (traverses (b, (0, ©)), (a, 0)), I.I (traverses (b, (0, )), (b, (0, »))) and thus, N, o) =
{4, il Li, I.I,i, I}.

A fragment of the tree that is obtained when deriving a test suite, is shown in fig. 6. One of test
sequences of 7S, is I.i.i.i.I.I.i and a corresponding timed input sequence of test 7S is (i, 0,5).(7,
0).(7, 0).(Z, 1) =y where (i, 0,5) is a d-transfer sequence and (7, 1) is a separating sequence from ;.
Each sequence of the test suite is applied to TFSM implementation at the initial state. First input i
of y is applied when clock value is equal to 0,5; after applying the input the clock is set to 0 and the
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machine produces corresponding output when clock value is equal to 1 when an implementation is
conforming. After producing the output 0> the clock is reset and the machine is waiting for the next
input i from timed input (7, 0) that is immediately applied after resetting the clock. After applying
this input the clock is reset again and the machine produces an output o, or 03 when the clock value
is equal to 2. After producing any of outputs by the TFSM the clock is reset and the machine is
waiting for a next input, etc.

d-cover

(@0 ] [@on)] ... [®0 ] [&0x)

I
Neor....00 ] (@0) b, 0.
I i I

(0 ] | [@on]| @ ] | [©o)

| || 1

wOw, w,uUW, W, UW,

Fig. 6. A fragment of test suite TS4 for the FSM abstraction As

6. Conclusion

In this paper, we have proposed an approach for deriving complete test suites with respect to the
reduction relation against nondeterministic Finite State Machines with timed guards and timeouts.
Both, a proposed approach and a corresponding fault model are based on the FSM abstraction of
machines with timed guards and timeouts and this allows inheriting the known FSM based SCR-
method when deriving test suites with guaranteed fault coverage for nondeterministic TFSMs.

References / Cnucok nutepartypbl

[1]. Gill A. Introduction to the Theory of Finite-State Machines, McGraw-Hill, 1962, 272 p. / T'unn A.
BBenenune B TeopHio KOHEUHbIX aBTOMaToB. Hayka, 1966, 272 ctp.

[2]. Chow T.S. Test design modeled by finite-state machines. IEEE Transactions on Software Engineering,
vol. 4, no. 3, 1978,pp. 178—-187.

[3]. Dorofeeva R., El-Fakih K., Maag S., Cavalli A., Yevtushenko N. FSM-based conformance testing
methods: A survey annotated with experimental evaluation. Information and Software Technology, vol.
52, issue 12,2010, pp. 1286-1297.

[4]. Hierons R.M., Merayo M.G., Nunez M. Testing from a Stochastic Timed System with a Fault Model.
Journal of Logic and Algebraic Programming, vol. 72, no. 8, 2009, pp. 98-115.

[5]. Krichen M. and Tripakis S. Conformance testing for real-time systems. Formal Methods in System Design,
vol. 34, no. 3, 2009, pp. 238-304.

[6]. Petrenko A., Yevtushenko N. Conformance tests as checking experiments for partial nondeterministic
FSM. Lecture Notes in Computer Science, vol. 3997, 2006, pp. 118-133.

[7]. Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State
Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154 (in Russian). DOI:
10.15514/ISPRAS-2018-30(4)-9 / Trapnosckuit A.C., EBrymenko H.B. K cuHTe3y amantuBHBIX

187

Tvardovskii A., Yevtushenko N. FSM abstraction based method for deriving test suites with guaranteed fault coverage against non-
deterministic Finite State Machines with timed guards and timeouts. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 175-188

Pa3IMYAIOIIMX MOCIIE0BATeNIbHOCTEN U1 KoHeyHbIX aBTomaroB. Tpyast ICIT PAH, Tom 30, Bbin. 4,
2018, ctp. 139-154.

[8]. Alur R. and Dill D.L. A theory of timed automata. Theoretical Computer Science, vol. 126, issue 2, 1994,
pp. 183-235.

[9]. Springintveld J., Vaandrager F., and D’ Argenio P. Testing timed automata. Theoretical Computer Science,
vol. 254, no. 1-2, 2001, pp. 225-257.

[10]. El-Fakih K., Yevtushenko N., and Fouchal H., Testing timed finite state machines with guaranteed fault
coverage. In Proc. of the 21st IFIP WG 6.1 International Conference on Testing of Software and
Communication Systems and 9th International FATES Workshop, 2009, pp. 66—80.

[11]. Merayo M.G., Nunez M., and Rodriguez 1. Formal testing from timed finite state machines. Computer
Networks, vol. 52, issue 2, 2008, pp. 432-460.

[12]. Bresolin D., El-Fakih K., Villa T., and Yevtushenko N. Deterministic timed finite state machines:
Equivalence checking and expressive power. In Proc. of the 5th International Symposium on Games,
Automata, Logics and Formal Verification (GandALF 2014), 2014, pp. 203-216.

[13]. Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation Strategies for Systems
with Time-Outs. In Proc. of the 11th International Conference on Quality Software, 2011, pp. 141-150.

[14]. En-Nouaary A., Dssouli R., Khendek F. Timed Wp-Method: Testing Real-Time Systems. IEEE
Transactions on Software Engineering, vol. 28, issue 11, 2002, pp. 1023-1038.

[15]. Tvardovskii A., El-Fakih K, Yevtushenko N. Deriving Tests with Guaranteed Fault Coverage for Finite
State Machines with Timeouts. Lecture Notes in Computer Science, vol. 11146, 2018, pp. 149—-154.

[16]. Starke P. Abstract Automata. North-Holland Publishing Company, 1972, 419 p.

[17]. Villa T., Kam T., Brayton R.K., Sandgiovanni-Vincentelli A. Synthesis of Finite State machines: Logic
Optimization, Springer, 1997, 381 p.

[18]. Lee D., Yannakakis M. Principles and methods of testing finite state machines - a survey. Proceedings of
the IEEE, vol. 84, issue 8, 1996, pp. 1090-1123.

[19]. Yevtushenko N., El-Fakih K., and Ermakov A., On-the-fly construction of adaptive checking sequences
for testing deterministic implementations of nondeterministic specifications. Lecture Notes in Computer
Science, vol. 9976, 2016, pp. 139-152.

[20]. Tvardovskii A.S., Gromov M.L., El-Fakih Khaled, Yevtushenko N.V. Testing Timed Nondeterministic
Finite State Machines with the Guaranteed Fault Coverage. Automatic Control and Computer Sciences,
vol. 51, Ne 7, 2017, pp. 724-730.

[21]. Tvardovskii A., Vinarskii E. Yevtushenko N. Experimental Evaluation of Timed Finite State Machine
Based Test Derivation. In Proc. of the International Conference of Young Specialists on
Micro/Nanotechnologies and Electron Devices, 2019, pp. 102-107.

MHdopmaumna o6 aBTopax / Information about authors

Aunexcannp TBapIoBCKHil TOIyYMII CTENEHh MarucTpa pagnopu3nky B TOMCKOM rocy1apCTBEHHOM
yuuepcurere. C 2017 roma obyuaercst B acnupantype. McciienoBarenbCkiue HHTEPEChl BKIIOYAIOT
TEOPHIO aBTOMATOB M TECTHPOBAHNE POTPAMMHOT0 00ECIICUCHHSI.

Aleksandr Tvardovskii received his Master’s degree from Faculty of Radiophysics of Tomsk State
University. He is a Ph.D. student since 2017. His research interests include automata theory and
software testing.

Huna EBTymieHKo, JOKTOp TeXHHYECKHX HayK, mpodeccop, IIaBHbIM HayuHbld coTpyaHuk MCII
PAH, npodeccop HUY BIID. Jlo 1991 roga paborana HaydHBIM cOTpyJHUKOM B CuHOuUpCKOM
¢usuko-rexuuueckoM ucerutyre. C 1991 r. padorana B TI'Y npodeccopom, 3aB. kadeapoi, 3as.
maboparopuell MO KOMIBIOTEPHBIM HaykaM. EE wuccimegoBaTenbckue MHTEPECHl BKIIIOUYANOT
(dopMmanbHBle METOABI, TEOPHUI0 AaBTOMATOB, DACIPEAENCHHBIE CHCTEMBI, IPOTOKONBl U
TECTHPOBAHKUE IPOrPAaMMHOI0 0OECIICYEHUs.

Nina Yevtushenko, Doctor of Technical Sciences, professor, a chief researcher of ISP RAS,
professor at HSE. She worked at the Siberian Scientific Institute of Physics and Technology as a
researcher up to 1991. In 1991, she joined TSU as a professor and then worked as the chairhead and
the head of Computer Science laboratory. Her research interests include formal methods, automata
theory, distributed systems, protocol and software testing.

188



