
Труды ИСП РАН, том 31, вып. 3, 2019 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

217

DOI: 10.15514/ISPRAS-2019-31(3)-17

«Life» in Tensor: Implementing Cellular Automata
on Graphics Adapters

N.A. Shalyapina, ORCID: 0000-0001-8742-4903 <nat.shalyapina@gmail.com>
M.L. Gromov, ORCID: 0000-0002-2990-8245 <maxim.leo.gromov@gmail.com>

..National Research Tomsk State University,
36 Lenin Avenue, Tomsk, 634050, Russia

Abstract. This paper presents an approach to the description of cellular automata using tensors. This approach
allows to attract various frameworks for organizing scientific calculations on high-performance graphics
adapter processors, that is, to automatically build parallel software implementations of cellular automata. In our
work, we use the TensorFlow framework to organize computations on NVIDIA graphics adapters. As an
example cellular automaton we used Conway's Game of Life. The effect of the described approach to the
cellular automata implementation is estimated experimentally.

Keywords: Cellular Automata; Conway’s Game of Life; Tensor

For citation: Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics
Adapters. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 217-228. DOI: 10.15514/ISPRAS-2019-
31(3)-17

«ЖИЗНЬ» в тензорах: реализация клеточных автоматов на
видеокартах

Н.А. Шаляпина, ORCID: 0000-0001-8742-4903 <nat.shalyapina@gmail.com>
М.Л. Громов, ORCID: 0000-0002-2990-8245 <maxim.leo.gromov@gmail.com>
Национальный исследовательский Томский государственный университет,

634050, Россия, г. Томск, пр. Ленина, д. 36

Аннотация. В данной статье представлен подход к описанию клеточных автоматов с использованием
тензоров. Такой подход позволяет привлекать различные фреймворки для организации расчетов на
высокопроизводительных графических видеокартах, т.е. для автоматического построения
параллельных программных реализаций клеточных автоматов. В нашей работы мы используем
фреймворк TensorFlow для организации вычислений на графических видеокартах NVIDIA. В качестве
примера клеточного автомата мы рассмотрели игру «Жизнь». Эффект от описанного подхода к
программной реализации клеточных автоматов оценён экспериментально.

Ключевые слова: клеточный автомат; игра «Жизнь»; тензор

Для цитирования: Шаляпина Н., Громов М. «ЖИЗНЬ» в тензорах: моделирование клеточных
автоматов с помощью видеокарт. Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 217-228 (на английском
языке). DOI: 10.15514/ISPRAS-2019-31(3)-17

1. Introduction
The use of automata in description of a dynamic systems’ behavior has been known for a long time.
The key point of this approach to the description of systems is a representation of the object under
study in the form of a discrete automatic device – automaton (State Machine or Transition System).

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

218

Under the influence of input sequences (or external factors) an automaton changes its state and
produces reactions. There are many types of such automata: the Moore and Mealy machines [1], the
cellular automaton [2], and others. The knowledge of the features of the object under study can
provide enough information to select the appropriate type of automaton for the object’s behavior
description. In some cases, it is convenient to use an infinite model. But finite models are mostly
common. In the latter case, the sets of states, input actions (or states of the environment), and output
reactions are finite.
Our work deals with cellular automata (CA). The theory of cellular automata began to take shape
quite a long time ago. The work of John von Neumann [3] might be considered as the first work of
the cellular automata theory. Today, a large number of studies devoted to cellular automata are
known [4, 5]. Note that a major part of these works is devoted to the simulating of spatially
distributed systems in physics, chemistry, biology, etc. [6]. The goal of the simulation is to find the
states of the cells of a CA after a predetermined number of CA cycles. The resulting set of states in
some way characterizes the state of the process or object under study (fluid flow rate at individual
points, concentration of substances, etc.). Thus, the task of simulating a certain process or object by
a cellular automaton can be divided into two subtasks. First, the researcher must select the
parameters of the automaton (the dimension of the grid of cells, the shape of the cells, the type of
neighborhood, etc.). And secondly, programmatically implement the behavior of the selected
cellular automaton. Our work is focused on the second task – the software implementation of the
cellular automaton.
In itself, the concept of a cellular automaton is quite simple and the idea of software implementation
is obvious. However, the number of required calculations and the structure of these calculations
suggest the use of modern supercomputers with a large number of cores and supporting large-block
parallelism. In this case, the cell field of the automaton is divided into separate blocks. Processing
of blocks is done in parallel and independently from each other. At the end of each processing cycle,
the task of combining the processing results of each block arises. This problem was solved in [7] in
the original way. The experimental study in [7] of the efficiency of parallelization was carried out
on clusters with 32 and 768 processors. Despite the high effectiveness of this approach, it has some
issues. First, this approach assumes that a researcher has an access to a cluster. Supercomputers are
quite expensive and usually are the property of some collective access center [8]. Of course, after
waiting a certain time in the queue, access to the cluster is possible. But another difficulty arises: a
special skill is needed to write parallel programs in order to organize parallel sections of the program
correctly. And this leads to the fact that it takes a certain number of experiments with the program
to debug it before use. The latter means multiple times of waiting in a queue for a cluster, which, of
course, delays the moment of launching actual (not debugging) experiments with cellular automata.
We offer an alternative approach for software implementation of cellular automata, which is based
on the use of modern graphics adapters. Modern graphics adapters are also well-organized
supercomputers, consisting of several specialized computational cores and allowing execution of
operations in parallel. Compared to clusters, graphics adapters are available for a wide range of users
and we believe that their capabilities are enough to implement cellular automata. In addition, there
are special source development kits or frameworks (for example, ThensorFlow [9]) that can exploit
multi-core graphics adapters and help a researcher quickly and efficiently create a software product,
without being distracted by thinking about parallelizing data flows and control flows. In this paper,
we demonstrate an approach to implementation of cellular automata on graphics adapters based on
TensorFlow.
In order to use this tool, we propose to describe the set of states of an automaton cells’ by the main
data structure used in this framework, namely, the tensor. Then we describe the process of evolution
of the automaton in terms of tensor operations. A well-known cellular automaton, the Conway’s
Game of Life, is used as a working example.
The paper is structured as follows. Section 3 presents the basic concepts and definitions concerning
the theory of cellular automata. Section 3 provides a description of the game Conway’s Game of

Шаляпина Н., Громов М. «ЖИЗНЬ» в тензорах: моделирование клеточных автоматов с помощью видеокарт. Труды ИСП РАН, том 31, вып. 3, 2019 г.,
стр. 217-228

219

Life, its features and rules of operation. Section 4 is devoted to a detailed presentation of the
proposed approach for software implementation of cellular automata on graphics adapters. The
results of computer experiments with the implementation of the Conway’s Game of Life and
comparison with the results of a classical sequential implementation are presented in section 5.

2. Preliminaries

The Moore machine (finite, deterministic, fully defined) is a 6-tuple 𝐴 = 〈𝑆, �̂�, 𝐼, 𝑂, 𝜑, 𝜓〉, where S
is the finite nonempty set of states of the machine with a distinguished initial state �̂� ∈ 𝑆, I is the
finite set of input stimuli (input signals), O is a finite set of output reactions (output signals), 𝜑: 𝑆 ×
 𝐼 → 𝑆 is a fully defined transition function, 𝜓: 𝑆 → 𝑂 is a fully defined function of output
reactions. If at some moment of time the Moore machine 〈𝑆, �̂�, 𝐼, 𝑂, 𝜑, 𝜓〉 is at the certain state 𝑠 ∈ 𝑆
and the input signal 𝑖 ∈ 𝐼 arrives, then the machine changes its state to the state 𝑠′ = 𝜑 (𝑠, 𝑖), and
the signal 𝑜 = 𝜓 (𝑠′) appears at its output. The machine starts its operation from the initial state
�̂� with the output signal 𝜓 (�̂�). It is important to note that originally Moore defined the machine so
that the output signal of the machine is determined not by the final state of the transition, but by the
initial one (i.e. in the definition above instead of 𝑜 = 𝜓 (𝑠′) should be 𝑜 = 𝜓(𝑠)). However, for
our purposes it is more convenient to use the definition we have specified.
Let ℤ be the set of integers. Consider the set of all possible integers pairs (𝑖, 𝑗) ∈ ℤ × ℤ. With each
pair (𝑖, 𝑗) we associate some finite set of pairs of integers 𝑁, ⊆ ℤ × ℤ, called the neighborhood of
the pair (i, j). Pairs of Ni,j will be called neighbors of the pair (i, j). The sets Ni, j must be such that
the following rule holds: if the pair (p, q) is the neighbor of the pair (i, j), then the pair (p + k, q + l)
is the neighbor of the pair (i + k, j + l), where k and l are some integers. Note that the cardinalities
of all neighborhoods coincide and the sets will have the same structure. For convenience, we assume
that all neighbors from Ni, j are enumerated with integers from 1 to | Ni, j |, where | Ni, j | is the
cardinality of the set Ni, j. Then we can talk about the first, second, etc. neighbor of some pair (i, j).
If the pair (p, q) is the n-th neighbor of the pair (i, j), then the pair (p + k, q + l) is the n-th neighbor
of the pair (i + k, j + l).

Consider the set of Moore machines of the form 𝐴, = 〈𝑆, �̂�, , 𝑆 หே,ೕห, 𝑆, 𝜑, 𝜓〉 such that 𝜓 (𝑠) = 𝑠.
Here i and j are some integers, 𝐵 is the n-th Cartesian power of the set B. The machines
corresponding to the neighbors of the pair (i, j) are called neighbors of the machine Ai, j. Neighboring
machines will be numbered as well as the corresponding neighboring pairs (that is, the first neighbor,
the second, etc.). We specifically note that (i) for each machine Ai, j the set of states is the same, i.e.
S; (ii) for each machine Ai, j, the set of output signals coincides with the set of states, that is, also S;
(iii) as an output signal, the machine gives its current state; (iv) all machines have the same transition
function and the same function of output reaction; (v) as an input signal, machines take tuples of
states (of their neighbors), the number of elements in the tuple coincides with the number of
neighbors, that is, equals to | Ni, j |; (vi) machines differ only in their initial states. Let at a given time
moment the current state of the first neighbor of the machine Ai, j is equal to s1, the state of the second
neighbor is s2, ..., the state of the n-th neighbor is sn, where n = | Ni, j |. Then the tuple (s1, s2, ..., sn)
is the input signal of the machine Ai, j at this very moment. All machines accept input signals, change
their states and provide output signals simultaneously and synchronously. That is, some global clock
signal is assumed.

The resulting set ൛𝐴,| (𝑖, 𝑗) ∈ ℤ × ℤൟ of the Moore machines is called a two-dimensional
synchronous cellular automaton (or simply cellular automaton – CA). Each individual Moore
machine of this set will be called a cell. The set of states of all cells the CA at a given time moment
will be called the global state of the cellular automaton at this time moment.
The transition rules of cells from one state to another (the function φ), the type of neighborhood of
the cells (the sets Ni, j), the number of different possible cell states (the set S) define the whole variety
of synchronous two-dimensional cellular automata.

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

220

For clarity, one can draw cellular automata on the plane. For this, the plane is covered with figures.
Coverage can be arbitrary, but of course, it is more convenient to do it in a regular way. Classic
covers are equal squares, equal triangles and equal hexagons. The choice of one or another method
of covering the plane is dictated by the original problem a CA is used for and the selected set of
neighbors. Next, the cover figures are assigned to the cells of the cellular automaton in a regular
manner. For example, let the plane be covered with equal squares, so that each vertex of each square
is also the vertex of the other three squares of the coverage (fig. 1a). Choose the square of this
coverage randomly and associate it with the cell A0,0. Let the cell Ai,j be associated with a certain
square. Then we associate the cell Ai + 1,j with the square on the right, the cell Ai - 1,j with the square
on the left, the cell Ai,j + 1 with the square above, and the cell Ai,j - 1 with the square below (fig. 1b).
Cell states will be represented by the color of the corresponding square (fig. 1c)

a) b) c)

Fig. 1. A CA represented on a plane covered by equal squares: a) the coverage of the plane; b) association of
the cells with the squares; c) colour representation of cells’ states (for the case |S|=2, «white» – state 0,

«black» – state 1)

The resulting square based representation of a CA on a plane is classical one. In our work we
consider only this representation.
For the square based representation of a CA, the neighborhoods shown in fig. 2 are the most
common.

Fig. 2. The neighborhood (grey cells) of a cell (the black one) by а) von Neumann, b) Moore Geometric
figures

If a given cellular automaton models a process (for example, heat transfer), then the various global
initial states ൛�̂�,| (𝑖, 𝑗) ∈ ℤ × ℤൟ of the cellular automaton correspond to different initial conditions
of the process. According to the definition of cellular automata introduced by us, the set of cells in
it is infinite. However, from the point of view of practice, especially in the case of an implementation
of a cellular automaton, a set of cells have to be made finite. In this case, some of the cells lack some
neighbors. Therefore, for them the set of neighbors and the transition function are modified. Such
modifications determine the boundary conditions of the process being modeled.

Шаляпина Н., Громов М. «ЖИЗНЬ» в тензорах: моделирование клеточных автоматов с помощью видеокарт. Труды ИСП РАН, том 31, вып. 3, 2019 г.,
стр. 217-228

221

3. Conway’s Game of Life
In the 70s of the 20th century, the English mathematician John Conway proposed a cellular
automaton called the Conway’s Game of Life [10].
The cells of this automaton are interpreted as biological cells. The state «0» corresponds to the
«dead» cell, and the state «1» – «alive». The game uses the Moore’s neighborhood (Fig. 2b), i.e.
each cell has 8 neighbors. The rules for the transition of cells from one state to another are as follows:
 if a cell is «dead» and has three «alive» neighbors then it becomes «alive»;
 if a cell is «alive» and has two or three «alive» neighbors then it remains «alive»;
 if a cell is «alive» and has less than two or more than three «alive» neighbors then it becomes

«dead».
For the convenience of perception, the behavior of each cell of the cellular automaton Conway’s
Game of Life can be illustrated using the transition graph (fig. 3).

Fig. 3. Cell Transition Graph of the Conway’s Game of Life, where N is the number of «alive» neighbors
Geometric figures

Despite the simplicity of the functioning of the automaton, it is an object for numerous studies, since
the variation of the initial configuration leads to the appearance of various images of its dynamics
with interesting properties. One of the most interesting among them are moving groups of cells –
gliders. Gliders not only oscillate with a certain periodicity, but also move through the space (plane).
Thus, as a result of experiments, it was established that on the basis of gliders logical elements AND,
OR, NOT can be built. Therefore any other Boolean function can be implemented. It was also proved
that using the cellular automata Conway’s Game of Life it is possible to emulate the operation of a
Turing machine.

4. Features of Conway’s Game of Life Parallel Implementation
According to our definition, a set of states of a cell is finite. It is obvious that, in this case, without
loss of generality, we can assume that the set of states is the set of integers from 0 to |S| - 1, where
|S| – is the cardinality of the set of states. Therefore, the global state of the cellular automaton can
be represented as a matrix A. The element Ai,j of this matrix is equal to the current state of the cell
Ai,j. We call the matrix A the matrix of the global state of the cellular automaton. If there are no
restrictions on the number of cells, then matrix A will be infinite. As have already been mentioned,
the number of cells has to be limited from a practical point of view, that is, it is necessary to somehow
choose the finite subset of cells. After that, only selected cells are considered. In this case, the ability
to describe the global state of the cellular automaton by the matrix is determined by which cells are
selected. We assume that the following set of cells is selected: {𝐴,| (1 ≤ 𝑖 ≤ 𝑚) ∧ (1 ≤ 𝑗 ≤ 𝑛)},
where m and n – two fixed natural numbers. In this case, the global state matrix is obtained naturally.
Since we use the TensorFlow framework for implementation of a CA, we should work with concepts
defined in it. The main data structure in TensorFlow is a multidimensional matrix which in terms of
this framework is called a tensor. However, in many cases, such a matrix may not correspond to any
tensor. The tensor in the n-dimensional space must have np + q components and is represented as
(p + q)-dimensional matrix, where (p, q) is the rank of the tensor. And, for example, a 2 by 3 matrix
does not follow these restricions. But the convenience of data manipulation provided by the
framework justifies some deviations from strictly defining the tensor. Therefore, in the case when
we are talking about the software implementation of a cellular automaton using TensorFlow, we will

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

222

consider the notion of the global state matrix of a CA and the notion of the global state tensor of a
CA as equivalent.

Fig. 4. Some initial global state of the finite state machine for the Conway’s Game of Life

Thus, the evolution of the global state of a cellular automaton can be represented (within
TensorFlow) as a transformation of the components of the global state tensor. Such a transformation
will be called the evolution of the tensor.
Thus, the logic of the transition of the cellular automaton from a given global state to the next global
state will be described using operations on tensors. In particular, for the software implementation of
Conway’s Game of Life in our work such operations are the convolution of tensors and the
“restriction” of the components value. Let us consider a small example.
Let some initial global state of the cellular automaton (fig. 4) be given.
Black cells are a «alive» cell (state 1), zero means that the cell is «dead» (state 0). The corresponding
tensor of the global state has the form (1):

 𝑻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0

0
0
0
1
1
1
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

The next state of a cell of the cellular automaton of the Conway’s Game of Life depends on the
number of living neighbors of this cell. We suggest using convolution to count the number of living
neighbors of a cell. Since set of neighbors in the Conway’s Game of Life are specified by the Moore
neighborhood, the convolution kernel will have the form (2):

 𝑺 =
1 1 1
1 0,5 1
1 1 1

൩

Note the special role of the element S22 = 0,5. This element corresponds to the cell for which the
number of living neighbors is calculated. Let the number of living neighbors of a certain dead cell
be calculated. Then it will turn out to be integer because component S22 will be multiplied by the
state of the dead cell (and it is equal to 0), and in the sum the number S22 will not participate. It will
turn out to be half-integer in the case when the number of living neighbors of a living cell is
calculated. This is important when the cell has two living neighbors. Then the dead cell must remain
dead, and the living cell must live. That is, if after the convolution the counted number of living

Шаляпина Н., Громов М. «ЖИЗНЬ» в тензорах: моделирование клеточных автоматов с помощью видеокарт. Труды ИСП РАН, том 31, вып. 3, 2019 г.,
стр. 217-228

223

neighbors turns out to be 2 (the cell is dead, it has 2 living neighbors), then in its place should be 0
in the tensor of the global state of the cellular automaton in the next cycle. If, after convolution, the
counted number of living neighbors is 2.5 (the cell is alive, and it has 2 neighbors), then in its place
should be 1 in the tensor of the global state of the cellular automaton in the next cycle.
Constructing a convolution with the kernel S of the tensor T, we obtain the new tensor C, where at
the intersection of the i-th row and j-th column there is an element corresponding to the number of
living neighbors for the cell Ai,j. Note that we obtain a tensor (m – 2) (n – 2) when constructing a
convolution with a kernel of size 3 3 of an arbitrary tensor of the size m n. In order to save the
initial dimensions of the global state tensor of a cellular automaton, we will set the elements in the
first and last row and in the first and last column of the global automaton tensor to 0. We will append
these zero rows and columns to the result after the convolution is completed. Appended elements in
the formula (3) are highlighted in gray. The mentioned fact suggests that some of the subsequent
computations are superfluous (namely computations on the appended elements). The amount of
extra computations for the global state tensor with dimensions m n will be (2m – 2) + (2n – 2).
Then, the part of extra computations in the amount of useful computations is (మషమ)శ(మషమ)

(షభ)(షభ)
= 𝑂(భ

+

భ

).

(3)

Taking into account the agreement on the half-integer value of the number of living neighbors, the
integer part of the value of the tensor component C determines the number of living neighbors of
the cell, and the presence of the fractional part means that the cell was alive in the previous step.
According to the rules of the Conway’s Game of Life it is necessary to transform the tensor C in
order to determine the global state of the cellular automaton in the next step. Components with
values in the range [2.5, 3.5] should take the value 1 (cells are alive). The remaining components
should become 0 (cells are dead). Among the classical operations on tensors there is no operation
that would allow to express the required transformation. However, the framework used in our work
was created primarily for the problems of the theory of artificial intelligence, namely, for
implementation of neural networks. The data flow there is the flow of tensors (a tensor as an input,
a tensor as an output). Computational elements, that change data, are layers of the neural network.
So, for example, in our case for the convolution we use a two-dimensional convolution layer with
the kernel S (formula (2)). Any tool for neural network implementation ought to have the special
type of layers – activation layers (layer of non-linear transformations). These layers calculate
activation functions (some non-linear functions) of each element of the input tensor and put the
result into the output tensor. TensorFlow offers a standard set of non-linear activation functions. In
addition, it is possible to create custom activation functions. We built our own activation function
based on a function from a standard set of functions, called a Rectified Linear Unit (ReLU). The
function ReLU is defined as follows (formula (4)). Its graph is shown in fig. 5:

 𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥)
Taking into account the required transformation of the components of the tensor C described above,
we suggested the function presented in (5):
δ = 𝑅𝑒𝐿𝑈൫4(𝑥 − 2,125)൯ − 𝑅𝑒𝐿𝑈൫4(𝑥 − 2,125)൯ − 𝑅𝑒𝐿𝑈൫4(𝑥 − 2,125)൯ + 𝑅𝑒𝐿𝑈൫4(𝑥 − 2,125)൯ (5)

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

224

Fig. 5. Diagram of ReLU function

Fig. 6. Diagram of the transition function of the Conway’s Game of Life

As a result of applying the function δ to each component of the tensor C, the tensor of the global
state of the cellular automaton will take the following form (formula (6)).

 𝑻ᇱ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Thus, the software implementation of the Conway’s Game of Life using TensorFlow is a two-layer
neural network. The first layer is convolutional, with the kernel from formula (2). The second layer
is the activation layer with the activation function from formula (5).

5. Experimental results
We have implemented the described approach for the cellular automaton of the Conway’s Game of
Life in Python. Since there was no one in our group familiar with TensorFlow, but we have some
experience in Keras [11], the implementation was built using Keras as a kind of wrapper over
TensorFlow. Keras is a high level interface to various low-level artificial intelligence libraries,
including TensorFlow.
The resulting program was launched on a graphics adapter with CUDA support. For comparison
with the classical implementation of the cellular automaton of the Conway’s Game of Life on a
uniprocessor system, we used the implementation of [12].
R-pentamino located in the middle of the field (fig. 4) was used as the initial global state of the
cellular automaton of the Conway’s Game of Life in the experiments.
We took a square game field (the matrix of the global state of the cellular automaton) with
dimensions m × m, where m varied from 10 to 350 with the step 10. For each m, we calculated 1000
subsequent global states of the cellular automaton. The execution time was measured. The

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

y

x

0
1
2
3
4
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

y

x

Шаляпина Н., Громов М. «ЖИЗНЬ» в тензорах: моделирование клеточных автоматов с помощью видеокарт. Труды ИСП РАН, том 31, вып. 3, 2019 г.,
стр. 217-228

225

calculations were repeated 10 times. Time was averaged. All experiments were conducted on a
computer with the following characteristics: Intel Core i5-3470@3.2 GHz CPU, 8 GB RAM,
Windows 7-x64 OS, GeForce GTX 650 Ti graphics adapter (1024 MB RAM, 928 MHz base
frequency, 768 CUDA cores).
Dependency diagrams of the program execution time on the «length» of the square field side m of
the game are shown in fig. 7 and 8. We also built regressions. The regression curves are shown in
fig. 7 and 8 as well. A second-degree polynomial was chosen as the regression hypothesis.

Fig. 7. Results of experiments with a single-threaded implementation

Fig. 8. Results of experiments with CUDA (Keras+TensorFlow) implementation

It can be noted that for small values of m, the execution time of a single-threaded program is smaller
than the execution time of the multiprocessor (the graphics adapter) implementation proposed by us.
However, as m grows, the situation changes and the proposed multiprocessor implementation begins
to outperform the classical single-threaded implementation. We associate this with the overhead of
transferring data from the computer’s general RAM to the graphics adapter’s RAM and returning
the result from the graphics adapter’s memory to the computer’s memory. When the dimensions of
the game field of the Conway’s Game of Life are small, the time of actual calculations of the global

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

226

states of the cellular automaton is much less than the time of transmission of information. As the
field size grows, the computation time of the cellular automaton state becomes significant and the
multiprocessor implementation on the graphics adapter begins to outrun the single-threaded speed.
Obviously, the dependence of the execution time of programs on the “length” m of the square field
side of the Conway’s Game of Life must be parabolic. With the growth of m, the number of cells
grows as m2, each cell needs to be processed once per cycle. Therefore, the number of operations
must be of the order of m2. According to the obtained results we constructed regression polynomials
of the second degree. Regression curves are in good agreement with experimental data (Fig. 7, 8). It
may seem that for a multithreaded implementation the dependency should be different. However,
we note that when the number of cells becomes much more than the number of cores in a multi-core
system (in our case, the graphics adapter had 768 cores), then processing will be performed block
by block: first comes one block of 768 cells, then another, etc. Thus, m2/K operations will be done,
where K is the number of cores, that is, also of the order of m2.

6. Conclusions
In this paper, a tensor approach to the software implementation of cellular automata is described and
programmatically implemented. The approach is focused on launching programs on multi-core
graphics adapters. The program is implemented in Python using TensorFlow and Keras as an
interface to TensorFlow. TensorFlow allows automatically generate and run multi-threaded
programs on multi-core graphics adapters.
The effectiveness of using the developed approach was shown during a series of computer
experiments. For the experiments the Conway’s Game of Life was chosen. If the number of cells in
the automaton is less or equal to the number of cores, then the maximum acceleration can be
observed. If the number of cells exceeds the number of cores, then the parallel sections of the
program are executed sequentially. This means that with a very large size of the playing field the
type of dependence will be parabolic when using a graphics adapter. The latter is confirmed by
regression analysis.

References / Список литературы
[1]. Harris D., Harris S. Digital Design and Computer Architecture. Morgan Kaufmann, 2012, 721 p.
[2]. Toffolli T., Margolus N. Cellular Automata Machines. MIT Press, 1987, 279 p.
[3]. von Neumann J. Theory of Self-Reproducing Automata. University of Illinois Press, 1966, 403 p.
[4]. Bandman O. Simulation Spatial Dynamics by Probabilistic Cellular Automata. Lecture Notes in Computer

Science, vol. 2493, 2002, pp. 10–19
[5]. Malinetski G.G., Stepantsov M.E. Simulation of diffusion processes by means of cellular automata with

Margolus neighborhood. Computational Mathematics and Mathematical Physics, 1998, vol. 38, no. 6, pp.
973-975.

[6]. Weimar J.R. Cellular Automata for Reaction-Diffusion Systems. Parallel Computing, vol. 23, no. 11,
1999, pp. 1699–1715.

[7]. Medvedev Yu.G. Development and Research of a Three-Dimensional Cellular Automaton Model of a
Viscous Fluid Flow. PhD thesis, Novosibirsk, 2005, 108 p (in Russian). / Медведев Ю.Г. Разработка и
исследование трехмерной клеточно-автоматной модели потока вязкой жидкости. Диссертация на
соискание ученой степени кандидата технических наук, Новосибирск, 2005 г., 108 стр.

[8]. Computing Cluster «SKIF Cyberia». Available at: https://cyberia.tsu.ru, accessed 12.05.2019 (in Russian)
/ Вычислительный кластер СКИФ Cyberia.

[9]. TensorFlow. Available at: https://www.tensorflow.org, accessed 12.05.2019.
[10]. Gardner M. The Fantastic Combinations of John Conway's New Solitaire Game "Life". Scientific

American, vol. 223, no 4, 1970, pp. 120–123.
[11]. Keras: The Python Deep Learning library. Available at: https://keras.io, accessed 12.05.2019.
[12]. Implementation of the Game "Life" using С++. Available at: https://code-live.ru/post/cpp-life-game,

accessed 12.05.2019.

Шаляпина Н., Громов М. «ЖИЗНЬ» в тензорах: моделирование клеточных автоматов с помощью видеокарт. Труды ИСП РАН, том 31, вып. 3, 2019 г.,
стр. 217-228

227

Информация об авторах / Information about authors
Наталия Андреевна ШАЛЯПИНА получила степень магистра радиофизики в 2018 г. В
Национальном исследовательском Томском государственном университете, Томск, Россия.
В настоящее время она готовит диссертацию на соискание степени кандидата физико-
математических наук по направлению Информатика и вычислительная техника. Область
интересов – клеточные автоматы, моделирование.
Natalia Andreevna SHALYAPINA received the M.S. degrees in radiophysics from National
Research Tomsk State University, Tomsk, Russia. She is currently pursuing the Ph.D. degree in the
field of Information and Computer Engineering. Research interests – cellular automata, simulating.
Максим Леонидович ГРОМОВ окончил радиофизический факультет Томского
государственного университета и в 2004 году получил степень магистра радиофизики. В 2009
году защитил кандидатскую диссертацию. С 2009 года занимает должность доцента
Томского государственного университета. Научные интересы связаны с дискретными
моделями различных систем, обработки информации.
Maxim Leonidovitch GROMOV graduated from Radiphysics faculty of Tomsk State University and
got master degree of Radiophysics in 2004. In 2009 he defended the PhD thesis in computer science.
Since 2009 he holds the position of Associate Professor of Tomsk State University. Scientific
interests are connected with dicrete models of different systems, information processing.

Shalyapina N.A., Gromov M.L. «Life» in Tensor: Implementing Cellular Automata on Graphics Adapters. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 217-228

228

