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Abstract. Development of system-on-chips or network-on-chips requires verification of standalone units
(peripherals and commutators) and a system as a whole. An approach to test development for verification of
programmable standalone units is presented. The tests are written in C++ using a specific API to program the
device-under-test (DUT) and the test environment. The API functions are implemented in the standard
environment library; the specific implementation depends on the test environment structure: a standalone
device, a device as a part of controllers block or a device as a part of the whole SoC. For system-level
verification the test program is translated for execution on a general-purpose core of the verified SoC as well
as the standard environment library. The testbench for unit-level verification consists of the environment library
and the test linked to the testbench as a PLI-application, an adapter for the DUT-system bus interface and,
possibly, a specific imitator of an external device. Different devices with one programming interface can be
tested by the same test program even if they have different bus interfaces; different bus interfaces require
different adapters to be implemented. The presented approach gives an opportunity to use the same test program
both for standalone and for system-level verification (as an integration test). The implementation of the
presented approach and its application to verification of microprocessors of the Elbrus family are described.
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Paspa6oTka yHuBepcanbHbIX TECTOBbIX MPOrpamMm
ANl aBTOHOMHOW M CUCTEMHOM Niormyeckon Bepudmkauum
nporpaMMmMpyemMbIX KOHTPOJNEpPoB
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Amnnotauus. [1pu paspaGoTke cHCTEM-Ha-KPUCTALIe HEOOXOUMO POBOANTH BEPHPUKALHIO KAaK OTACIBHBIX
noaMonyieil (KOHTpoiuiepoB nepudepuitHbix UHTEpdEiicoB 1 KOMMYTATOPOB), TAK U CUCTEMBI B 1ienoM. B
CTaThe MPEICTABICH IIOAXOA K pa3paboTKe TECTOB Ul BepU(HKALMK [IPOrPaMMHPYEMBIX KOHTPOJUICPOB.
Tectbl pa3padaThIBalOTCs Ha s3bIKE MporpaMmupoBanust C++; MporpaMMHUpOBaHIE TECTUPYEMOTO yCTPOHCTBA
1 TECTOBOT'O OKPY)XECHHSI OCYIECTBIISICTCS C IIOMOIIBIO CIIELHAIBHOr0 POrpaMMHOro uHrepdeiica. GyHkuun
3TOr0 IMPOrPaMMHOTrO HMHTepdelica peanusyroTcsi B CTAHAAPTHOW OMOIMOTEKE TECTOBOTO OKPYXKEHHS,
peanu3aiys 3aBUCUT OT CTPYKTYPBI TECTOBOTO OKPY/KCHHUS: B Ka4eCTBE MOAECIMPYEMOr0 yCTPOHCTBA MOXKET
BBICTYIATh TOJIBKO TECTHPYEMbIl KOHTPOJIIEP, KOHTPOJLIEP B COCTaBe 010K KOHTPOJIEPOB, MIN KOHTPOJIIEP
B COCTaBe IIOJIHOM CHCTeMbl-Ha-KpucTaLie. [t Bepu(pUKaLin CHCTEMHOrO ypOBHsI GHOIMOTEKa U TECTOBAs
HporpamMma KOMIMITHPYIOTCS [Tl MCTIOIHEHHUS Ha OJJHOM M3 BBIYUCIHTENBHBIX P CUCTEMbI-Ha-KpUCTAILIC.
TIpu aBTOHOMHOI Bepu(HKALMU TECTOBAs IPOrpamMMa U OMOJIMOTEKa OKPYKEeHHs (POPMHUPYIOT MPOrPaMMHBII
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MOJYyJ1b, B3aUMOJICUCTBYIONIHH ¢ cuMyiaaTopoM RTL-onucanus ¢ momousio crannapTHoro unrepdeiica PLI;
OubiroTeyHble (YHKIUH B3aUMOACHCTBYIOT ¢ MOJEIUPYEMBIM YCTPOMCTBOM 4Yepe3 CIICIHANbHBIA agamnrtep
CHCTEMHOr0 MHTepdelica; KpoMe TOro, B TECTOBOE OKPYKEHHE MOXKET ObITh BKIIOYEH MMUTATOP BHEIIHETO
ycrpoiictBa. IIpu TakoM yCTpoiicTBE TECTOBOIO OKPY)XKEHHsI OfIHA M Ta K€ TECTOBas MPOrpaMMa MOXKET
HPOBEPSITH YCTPOHCTBA C OJHMM HPOTPAMMHBIM HHTep(elicoM, HO Pa3sHBIMHM CHCTEMHBIMU HHTepdelicamu;
HEOOXOJUMO TONIBKO pPEealn30BaTh COOTBETCTBYIOIIWE ajanTepbl. IIpeacTaBIeHHBI HOIXOA IIO3BOJIIET
3aIlyCKaTh TECTOBYIO INPOrpaMMy KaK aBTOHOMHBIH TECT, TaKk M B KaueCcTBe TeCTa HMHTEIPAl[MH Ha
BepuduIupyemMoii cucteMe-Ha-KpHCTamie. B craTtbe onmmcansl peanu3anusl MpeICcTaBIeHHOrO MOAXO0Aa U ero
NPUMEHEHHE B MapIIpyTe BepHPHUKAIMI MEKPOIPOLIECCOPOB ceMelcTBa DIbopyc.

KuroueBble ciioBa: jormdeckas Bepu(HKalusi ammaparypbl, BepuH(HKalyus Ha OCHOBE MOIEIMPOBAHHS,
TECTOBAsl CHCTEMa, aBTOHOMHas BepU(HKALMs, CHCTeMHast BepuduKartis

Jnsi untupoBanusi: Oponos I1.B. Pazpaborka yHHBEpCalIbHBIX TECTOBBIX MPOIPaMM JJIsi aBTOHOMHOH U
CHCTEMHOI! JIOTHYecKol Bepu(UKanuy nporpaMMupyeMsx koHTpoiiepos. Tpyast UCIT PAH, Tom 31, Bbm.
3,2019 ., ctp. 59-66 (Ha anrnuiickoMm si3bike). DOIL: 10.15514/ISPRAS-2019-31(3)-5

1. Introduction

Typical test scenarios for programmable standalone units (peripherals and commutators) are based
on estimated work patterns of the designed chip operating. Such test scenarios are an indispensable
part of a standalone verification testplan. They also must be included in a device integration test
suite for system-level verification to check considered device interaction with other units.

This paper describes an approach to test development for verification of programmable standalone
units which allows using the same test both for standalone and system-level verification. The
presented approach also enables tests run in different execution environments (via an RTL simulator,
an FPGA-based prototype or a manufactured chip).

The rest of paper is organized as follows. Section 2 reviews the existing techniques considering the
same tests reuse for different execution environments. Section 3 introduces the structure of the
framework for test development, implementing presented approach. Section 4 describes API
provided by the framework for tests use. Sections 5 and 6 present test transformation for system-
level and standalone verification respectively. In Section 7, results are presented and in Section 8,
possible/planned future work is mentioned.

2. Related work

The main target of the presented approach is to reduce verification effort through the unit-level tests
reuse for system-level simulation.

Review works on SoC verification suppose high level of the verification components reuse [1][2],
but there is not much information about practical approaches for the test programs reuse. The
problem of the stimulus reuse for different execution targets and environments is targeted by The
Portable Test and Stimulus Standard (PSS) [3], but this standard provides only language for a test
intent description [4].

Typical approach to unit-level verification is transaction-based verification, implemented, for
example, in UVM (Universal Verification Methodoly) standard [5]. Such tests are written in
SystemVerilog and commonly use constraint-random stimuli generation, implemented via external
tools (RTL-simulator, for example). The reuse of such a test for system-level verification requires
its additional adaptation. For example, the work [6] describes an approach which allows to get a
system-level test based on the unit-level one for the separate IP-block (GPU) of the heterogeneous
SoC. A trace of DUT interactions with the testbench is logged during unit-level simulation and then
is compiled into assembly, ready for execution on the CPU at SoC level. The approach copes with
register polling through the test driver library instumentation but DUT interrupts handling isn't
described.
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3. Test development framework

In the presented approach, a test is written in C++, so it can be translated to different host CPU
architectures:

e to a PLI-application [7] (PLI is for Program Language Interface) interacting with a simulator
modeling the RTL description of the standalone unit (or the block of controllers including this
unit);

e for system-level execution on one of the general-purpose cores of the verified SoC.
The system-level test runs without an operating system and this restricts usage of standard C++/C
library: no explicit usage of externally linked functions is allowed. Instead, the test development
framework provides a common standard API for different test execution environments. The API is
described in header files as a list of C++ function prototypes. For every supported test execution
environment the framework provides a corresponding environment library implementing these
functions.

Advantages of C++ as a test implementation language mainly address system-level test execution.

Firstly, C++ allows to transfer some calculations to the compilation stage via contexpr specifier

(since C++11 [8] version of language standard). Secondly, C++-templates allow wrap of specific

assembly instructions into inline functions to avoid function call overhead while preserving test

portability. Besides, parts of device drivers or BIOS, commonly written in C, can be relatively
simply ported for test use and vice-versa.

4. Environment library API

A typical programmable controller implements three kinds of interaction with a system: it provides
access to the internal registers and memory for configuration (PIO, programmed input/output), can
initiate DM A-transactions (Direct Memory Access) to the system memory and send interrupt
messages. Thus the environment library API must provide means to perform, control and observe
these interactions.

The API contains a description of typical operations:

e access to the registers and the internal memory of the device under test,

e  system memory handling operations (allocation, pattern filling, data comparison),

e device interrupts handling,

e address translation for DM A-transactions programming,

e  simulated time measuring and timeout setup,

e  debug test output,

e other auxiliary procedures.

5. System-level verification

For system-level verification the test program is translated for execution on a general-purpose core
of the verified SoC as well as the standard environment library. The framework also provides a
bootstrap program for basic system initialization required for the test to run. The test and the library
are linked into a single executable image (the system-level test). To run the test the execution
environment places this image in the memory of the SoC (DRAM and/or NVRAM) and transfers
control to the entry point of the environment library, which in turn calls the test function. After the
test execution the environment library handles the exit code and provides diagnostic information
(fig. 1).

The framework allows executing the same unit test with different system settings, providing
comprehensive unit integration check. System settings programming is performed by the bootstrap
part of the environment library; their values are described in additional files and are transmitted to
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the system-level test either via compilation macro definitions or as object files with initialized C-
structures during linkage.

[ Test start ]

v

| System initialization |

v

| DUT task setup |

v

| Registration of handlers for DUT-initiated interrupts |

v

| Timeout setup |

v

| DUT task start |

v

| Waiting for the DUT to finish |

v

yes
Interrupted by timeout?

Check results (status registers and DMA-transferred data) |

no yes

[ TestPassed ] | Test Failed =~

Fig. 1. The framework for system-level verification

Examples of system settings to vary range from separate bits in different control registers of the
verified SoC to modes which require additional nontrivial setup. For example, DM A-transactions
from the tested device can work directly with system physical addresses or can be additionally
redirected via the IOMMU (Input/Output Memory Management Unit).

The environment library implements the API with functions executed in super-user mode.
Read/write access to the device registers is implemented with load/store instructions with specific
attributes (memory type specifiers). In microprocessors of the Elbrus family registers of external
programmable devices are placed within PCI-address spaces: memory, I/O and PCI-configuration
space. The test defines a target device address in a PCI-configuration space and allocates necessary
address ranges in PCI I/O or memory spaces via appropriate API functions.

The environment library provides a simple heap manager without deallocation implementation. The
test program allocates data arrays in the heap for use as RAM regions accessed from the tested device
by DMA-transactions.

Virtual addresses for DM A-transactions are written to the device registers and/or to descriptor tables
in RAM. In the simplest case the virtual address is equal to the physical address: so-called
transparent translation, but DMA-transactions from the tested device can be redirected via the
IOMMU, so the environment library provides functions for IOMMU configuration and in-test

62



®ponos I1.B. Pa3paboTka yHHBEpCaNIbHBIX TECTOBBIX IIPOTPAMM JUIsi aBTOHOMHOH M CHCTEMHO#1 JTOTH4ecKO#i BeprpuKaimu
nporpaMMupyeMbIxX KonTposiepos. Tpyast UCIT PAH, Tom 31, Bbim. 3, 2019 1., c1p. 59-66

Frolov P.V. Approach to test program development for multilevel verification. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 59-66

address translation functions. The test uses that functions for getting virtual addresses from physical
ones, which are returned from the heap allocation-function.

The environment library implements functions for the system interrupt controller configuration and
test-defined interrupt handling. The test configures interrupts to be sent by the tested unit and
registers callback functions handling those interrupts. During the test execution the environment
library catches interrupts from the device and calls registered handlers.

Simulated time measuring is implemented via reading of the clock-counting register or programming
local timer to send interrupts in defined time intervals.

The system-level test can be compiled for different execution environments: a functional model, a
simulated RTL-description of the tested SoC, an FPGA-based emulator or a manufactured chip. The
target execution environment determines the bootstrap procedure and the debug print support linked
to the test.

The functional model allows fast execution with high observability (instruction execution trace,
units programming trace), so it is used for the test and the environment library debug.

6. Unit-level verification

The structure of the unit-level testbench is presented on fig. 2. The testbench consists of the
environment library and the test linked to the testbench as a PLI-application, an adapter for the DUT-
system bus interface and, possibly, a specific imitator of an external device.

1
> Interrupt < »
manager interrupts

i handler
calls
library Test
@ functions
o
o 2 ! )
@ Memory | liprary functions
= manager [ calls
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Y
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Fig. 2. The structure of the unit-level testbench
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The interface of the device-under-test which connects it to the rest of the SoC requires an appropriate
adapter for interaction with the testbench. It provides an interface-specific implementation for DUT
registers access operations and redirects DUT-initiated transactions to the environment library.
There are two separate address spaces in the test: "internal" for direct access from the test and
"external" for DMA-transactions. Memory manager returns to the test pointers with "internal"
addresses for memory allocation requests and all library functions for on-core memory processing
work with "internal" addresses. Addresses to be targeted by DMA-transactions are wrapped by
translation functions that convert internal pointers to external ones and record this translation. DMA-
requests are transferred by the adapter to the memory manager that checks DMA destination
addresses against previously recorded translations. If there is an appropriate record of translation,
the memory manager writes data from DMA-transactions or reads it for return to the adapter.
Otherwise an error is detected.

Interrupt messages issued by the device are registered within the environment library; when the test
calls library functions, pending interrupts are handled and a user-defined callback is executed.
Simulated time measuring is implemented by means of functions DPI-exported from the part of the
library written in SystemVerilog.

Different devices with one programming interface can be tested by the same test program even if
they have different bus interfaces; different bus interfaces require different adapters to be
implemented. The tested controller can be connected to the adapter not directly, but through the root
commutator of the block of controllers including the unit in consideration (fig. 3).

That variant of the DUT allows verification of interaction between system commutator and the tested
controller (intermediate-level verification). Test scenarios with simultaneous work of several
controllers can be implemented.

peripheral controller 1 pe&—3»

Commutator €—»{ |0 Link controller p€———
to adapter

VIP (€= peripheral controller N e——

Fig. 2. Indirect connection through the root commutator

7. Results and use experience

The described approach to test development has been applied to verification of peripheral interfaces
controllers of standalone southbridge ASICs developed in MCST [9], such as HD Audio, SATA,
USB 2.0, PCI and PCI-e bridges, and multiple low-speed controllers. Now it is used for verification
of embedded IOHubs being developed for a new generation of the Elbrus microprocessors.
Standalone and embedded southbridges have different in-house interfaces to transfer packets based
on PCI Express transaction layer packets [10], therefore different adapters have been implemented
in order to reuse the same set of tests.

MCST designs computing systems based on CPU of Elbrus and SPARC instruction set architectures,
thus the environment library for system-level tests is implemented for both architectures and for
different microprocessor models (starting from Elbrus-4C [13] for Elbrus-based microprocessors
and R-1000 [14] for SPARC-based ones).
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The typical test development and use flow consists of the following subsequent stages:

e  system-level build for functional model execution and test logic debug;

e unit-level build for standalone unit verification;

e unit-level build for verification of the unit as a part of the southbridge;

e system-level build for test execution on full system-on-chip (RTL or FPGA-based
prototype [11]).

The system-level environment library supports simultaneous execution of several tests for different

controllers on multi-core systems. Tests are executed on different cores; shared resources are
distributed between tests based on static planning [12].

8. Future work

The described approach for unit-level verification was implemented mainly for southbridge
controllers of MCST projects. The future work is supposed to embrace adaptation of system-level
tests for north-bridge integrated graphics cores to unit-level verification. It requires further
development of internal system bus interface adapters for different target CPU models.

There is also an endeavor to use already developed system-level tests for verification of hardware
/O virtualization support in new microprocessors of Elbrus family. The test program is supposed to
run as a simple guest OS while the environment library functions are executed in hypervisor mode.
Different modes of virtual I/O support are to be implemented: emulation mode and direct device
assignment.
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