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Abstract. Software simulation is of a big importance during development of processors as they provide access 
to hardware under development. Cycle-accurate simulators allow software engineers to design and optimize 
high-performance algorithms and programs with considerations of features and characteristics of processors 
being in development. This is especially important for architectures, whose performance is mainly achieved by 
advanced compiler optimizations. One of the core aspects of a cycle-accurate simulator is the way it simulates 
the pipeline of the target processor. A pipeline model has high impact on an overall structure of a simulator and 
its potential performance and accuracy. The main goal of this paper is to develop and analyze different 
approaches to pipeline simulation of “Elbrus” microprocessors, which let us reuse functionality of existing 
instruction set simulator and achieve good balance of performance and accuracy. We briefly describe features 
of “Elbrus” microprocessors and specifics of existing instruction set simulator, relevant for cycle-accurate 
simulation. We make several simple, but general and useful observations about various aspects of pipeline 
behavior in context of accurate and efficient cycle-accurate simulation of microprocessors. These observations 
are then used as a basis for justification, development and analysis of the several approaches to the pipeline 
simulation, described in this paper. We describe four different approaches, starting from simple and obvious 
one, which is then successively transformed into more advanced ones through several iterations. We analyze 
limitations of proposed approaches and outline further work. 
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Аннотация. Программное моделирование играют важную роль в цикле разработки процессоров, так 
как они предоставляют доступ к еще не существующему оборудованию. Потактово-точные симуляторы 
позволяют разработчикам программного обеспечения создавать и оптимизировать программы с учетом 
особенностей и характеристик разрабатываемых процессоров, что особенно важно для архитектур, 
которые для достижения высокой производительности в основном опираются на агрессивные 
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оптимизации компилятора. Одним из ключевых аспектов потактово-точного симулятора является 
способ моделирования конвейера симулируемого процессора. Программная модель конвейера 
оказывает большое влияние на общую структуру симулятора и на его производительность и точность. 
Основной целью данной статьи является разработка и анализ различных подходов к моделированию 
конвейера микропроцессоров “Эльбрус”, которые бы позволяли переиспользовать функционал 
существующего функционального симулятора без его существенных изменений, и которые бы 
достигали хорошего баланса производительности и точности. Мы коротко описываем особенности 
микропроцессоров “Эльбрус” и детали существующего функционального симулятора, важные для 
потактово-точного моделирования. Мы делаем несколько простых, но достаточно общих и полезных 
наблюдений о поведении конвейера с позиции точного и эффективного потактово-точного 
моделирования микропроцессоров. Данные наблюдения используются в качестве основы для 
обоснования, разработки и анализа нескольких подходов к моделированию конвейера, описанных в 
данной статье. Всего мы описываем четыре различных подхода, начиная с простого и достаточно 
очевидного, и заканчивая более сложными, полученными после нескольких итераций 
совершенствований и усложнений на основе ранее сделанных наблюдений. Для каждого подхода мы 
анализируем его преимущества, недостатки и фундаментальные ограничения. 

Ключевые слова: программное моделирование; конвейер; потактово-точный симулятор; 
микропроцессор; Эльбрус  
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1. Introduction 
Software based simulation of hardware is a very important tool for development of computing 
systems. This tool is especially important for software design, as simulators can be used in place of 
actual still in development (or unavailable for other reasons) hardware. Also simulators can provide 
wide range of debugging facilities and other information about inner workings of a system being 
simulated. 
One of the widely used classes of simulators is simulators of microprocessors. Different tasks have 
different needs, so there are simulators with various characteristics. Ones may be oriented at 
simulation performance; others are aimed at accuracy and precision. 
Instruction set simulator (ISS) is a simulator of microprocessor that mostly models a program visible 
architecture state without considerations of microarchitecture specifics and timings. And while for 
many tasks this is enough, there is a need for simulators with much greater degree of accuracy that 
can be used for performance evaluation. 
Cycle-accurate simulators (CAS) are such simulators. They are important tools for code efficiency 
estimation during development of performance critical software and optimizing compilers. Ability 
to debug performance of code is especially crucial for microprocessor architectures, which achieve 
high performance not by invisible to programmer microarchitectural features, but mainly by static 
planning of instruction execution by smart compiler. The «Elbrus» family of microprocessor 
architectures is such type of architectures. 
Modern microprocessors achieve their high performance and clock frequency through use of 
pipelining. Every cycle-accurate simulator must somehow simulate this pipelining logic to achieve 
accuracy of its timings. The way a pipeline is represented in a simulator influences various aspects 
of a simulator, how its components interact and its overall design and characteristics. There are 
different ways to represent a pipeline and to model it. 
In this paper we describe several approaches that were considered as a basis for implementation of 
the pipeline model during development of the cycle-accurate simulator of microprocessors 
belonging to the «Elbrus» family of instruction set architectures. 
The remainder of this paper has following structure. Section 2 gives brief overview of the «Elbrus» 
instruction set architecture and describes an existing instruction set simulator used as base for the 
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cycle-accurate simulator implementation. Section 3 formulates desired properties and requirements 
for the pipeline model being developed. Section 4 describes in detail several considered approaches 
to pipeline model organization and explains its discovered advantages and drawbacks. Section 5 
gives brief evaluation of described pipeline models. Section 6 is dedicated to other approaches to 
pipeline simulation that can be found in literature. Section 7 gives concluding remarks and briefly 
describes plans for further work.  

2. Prerequisites 
In this section we give some details of the architecture being simulated and of the available 
instruction set simulator that influence some design decisions around the pipeline model 
implementation. 

2.1 «Elbrus» Family of Instruction Set Architectures 
The «Elbrus» family of instruction set architectures is VLIW (Very Long Instruction Word) type of 
architectures [1]. Performance of this type of architectures is achieved by extracting ILP (Instruction 
Level Parallelism) through packing in one instruction several sub-operations, which are executed by 
hardware in parallel. «Elbrus» microprocessors are in-order and have no support of speculative 
execution (at least in the traditional sense). 
In case of the «Elbrus», the packing format is not fixed and there are many ways several sub-
operations can be packed in an instruction. Each of these sub-operations can belong to different 
kinds of operations: arithmetic and logical operations, control flow operations, predicate 
calculations, memory accesses and so on. And, while generally sub-operations observe only effects 
of previous instructions, there are several possible interactions of sub-operations within one 
instruction, for example, in case of a predicated execution. 
Another important consideration is the way pipeline stalls work. Firstly, it is worth noting, that in 
case one sub-operation stalls (for example, because its arguments is not ready yet), the whole 
instruction stalls, which is a natural result for a VLIW architecture. Secondly, which is more specific 
for the «Elbrus» architectures, there are a mechanism of prolonged stalls. In simple terms, in some 
cases (determined by a stall cause and a current pipeline stage) an instruction is not immediately 
stopped, but effectively after several cycles its results are discarded (as invalid) and it is returned 
several stages back for its repeated execution in hopes that the original stall will not occur again. 
This process affects not only the instruction that is not ready for execution, but also several 
instructions immediately after it. There are two types of such stalls: a 2-cycle one and a 4-cycle one. 
Moreover, it is possible for several such stalls to interleave, and for such situation there is special 
pipeline control logic. 
Later in this paper we will refer to the pipeline stages of the «Elbrus» microprocessors by following 
names: F, D, B, R, E0, E1, E2 etc. 

2.2 Instruction Set Simulator 
Our cycle-accurate simulator was not developed completely from the ground up. An existing 
instruction set simulator for the «Elbrus» architecture was used as a basis and a starting point for the 
development of its cycle-accurate version. 
This instruction set simulator supports wide range of the various «Elbrus» microprocessors of 
different architecture iterations via compile time configuration. It also supports both a user mode 
simulation (with emulation of system calls) and a full system simulation (with MMU logic, 
peripheral devices etc.). All of this is implemented in a shared code base. 
An important feature of the instruction set simulator to consider is how it executes individual (wide) 
instructions. Execution is divided in two separate steps, conventionally called «read phase» and 
«write phase». The «read phase» prepares some intermediate data and is mostly side-effect free. 
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Then the «write phase» uses this intermediate data to complete instruction execution. This way of 
organization of instruction execution greatly simplifies support of precise exceptions and of some 
interactions of sub-operations. 

3. Requirements to CAS and Its Pipeline Model 
There are multiple valid ways to implement a cycle-accurate simulator and its pipeline model, and 
each design have its trade-offs. Therefore, it is important to define scope and requirements to the 
cycle-accurate simulator being developed, including its pipeline model implementation. We define 
following requirements. 
 Support of a user mode simulation. At this stage of development it is planned that the cycle-

accurate simulator will be used mainly as a tool for debugging performance problems during 
software and compiler development. For such purposes a user model simulation are used. 

 Code reuse with the instruction set simulator. The existing instruction set simulator implements 
major parts of the «Elbrus» microprocessors, and it would be wasteful to reimplement this 
functionality separately. 

 Configurability. It should be possible to configure the simulator to support the various «Elbrus» 
microprocessors (like the instruction set simulator) and to enable or disable its different 
components (for example, for the sake of performance). 

 Flexibility. It should be reasonable easy to support new features of next iterations of the 
«Elbrus» microprocessors. And also, when need arises, it should be possible to adapt the 
pipeline model for a full system simulation mode. 

 Reasonable performance. The cycle-accurate simulator should not be too slow compared to the 
instruction set simulator. We aim at no more than tenfold slowdown. 

 Reasonable accuracy. Of course, exact timing accuracy is not achievable. However, the pipeline 
model design should not prevent possibility of further accuracy improvement and support of 
various microarchitectural aspects. 

Some of these requirements are conflicting, and we do not expect to simultaneously meet all of them 
fully, but to achieve some balance between them. 

4. Pipeline Simulation of «Elbrus» Microprocessors 
In this section we explore several approaches to the pipeline simulation and describe theirs 
advantages and disadvantages. 

4.1 Naïve «Direct Correspondence» Pipeline Model 
The first approach that we tried to implement was based on the simple idea of direct and faithful 
representation of the real pipeline stages in the simulator. These stages would be responsible both 
for the timing related logic and for the purely algorithmic logic of the corresponding instruction. 
We implemented this approach by transforming the «read» and «write» phases of the instruction set 
simulator into functions representing pipeline stages. During this transformation the «read» and 
«write» phases were split in parts and the missing pipeline related logic was added to them. To meet 
the requirement of code reuse, we made code of the new cycle-accurate simulator as base, and 
implemented the original instruction set simulator by «glueing» stages together into the «read» and 
«write» phases and removing the pipeline related logic, all of this at compile time and through 
configuration. Processing of such pipeline model is straightforward. 
 Iterate through each pipeline stage. 
 For each stage determine which instruction is at this stage and execute functions corresponding 

to all of the sub-operations of this instruction. 
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 If there are no stalls - advance instruction to the next stage. Otherwise not advance and 
propagate stall as necessary. In case of the prolonged stalls simulate related pipeline control 
logic. 

 

Fig. 1. Simplified illustration of pipeline stage processing in case naïve «direct correspondence» pipeline 
model 

This pipeline model representation should facilitate direct and straightforward support of the various 
microarchitectural features, as this software model is close to the actual hardware. However, 
although this idea is conceptually simple, during its implementation we discovered its several major 
drawbacks. 
 Splitting of phases of the instruction set simulator into stages and glueing them back together 

introduce a major disturbance to the original instruction set simulator functionality. There is no 
clear way to avoid that. Attempts to fully restore original phases introduce much ad hoc logic, 
which adds fragility to the whole system. This means there is no easy way to achieve code reuse 
with this approach. 

 In the instruction set simulator there are many unobvious interactions between phases of 
different sub-operations. These interactions are not easily preserved during splitting of phases. 

 While for the most of the operations there is a clear correspondence of phases to pipeline stages, 
there are exceptions, which add complexity to the glueing process. 

 Keeping track of all pipeline stages adds considerable performance overhead, although for most 
operations only small subset of all pipeline stages are nontrivial (at least in the context of 
timings). 

 Splitting phases into multiple pipeline stage related functions also inhibits compiler 
optimizations, which impact overall simulator performance. 

 After this implementation attempt it became clear that for meeting our code reuse requirement 
we should minimize changes to the instruction set simulator. 

4.2 Smart «Direct Correspondence» Pipeline Model 
Next considered approach is a modification of previous one. Its improvements are based on the 
following key observations. 
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Fig. 2. Simplified illustration of pipeline stage processing in case smart “direct correspondence” pipeline 
model. 

1) Algorithmic behavior of an operation (which is defined by an instruction set architecture and 
is considered by an instruction set simulator) can influence only an algorithmic behavior of 
operations of later (or in some cases current) instructions. 

2) Algorithmic behavior of an operation determines its timing behavior. 
3) Algorithmic behavior of one operation does not directly influence timing behavior of other 

operation. 
4) Timing behavior has no direct influence on an algorithmic behavior (except in some limited 

number of special cases). 
5) Timing behavior of one operation can influence timing behavior of other operation (but usually 

only in specific ways). 
6) Simulator has more information about the execution process than hardware it simulates. 
7) Not all details and inner workings of hardware contribute to its timing characteristics. 
First six of these observations let us justify the separation of algorithmic and timing logic and 
moving of the algorithmic logic to the beginning of the instruction processing (right before its 
pipeline related processing). But we should uphold following conditions 
 Algorithmic simulation of the instruction must occur before the algorithmic simulation of the 

next (in program order) instruction (based on the observation 1). 
 Pipeline simulation of the instruction must occur after its algorithmic simulation (based on the 

observation 2). 
 Pipeline simulation of different instructions must occur in order determined by the pipeline 

state (based on the observation 5). 
All of these are satisfied by this approach. 
Last observation let us simplify the timing logic by removing all microarchitectural details that are 
not directly necessary for correctly calculating timing information, as we are interested not in inner 
workings of hardware, but in timing details. 
These transformations should not reduce accuracy of our simulator (except in some rare special 
cases, which are briefly considered later in this paper). 
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The algorithm to process such pipeline is very similar to the previous approach. The only difference 
is that in the beginning of the processing of the first pipeline stage of the instruction we do all 
algorithmic simulation of this instruction. 
This approach let us use functionality of the instruction set simulator (for the algorithmic simulation 
of instructions) with minimal modifications, which remedy many major drawbacks of the previous 
approach. But we still have to address the performance concerns, as in this approach the simulator 
still keeps track of all pipeline stages, even if they are trivial, and the timing logic is still split into 
multiple independent functions. 

4.3 «Fully Speculative» Pipeline Model 
The next approach to the pipeline simulation is based on the assumption of stronger the observation 
5: 
5*) Timing behavior of operation of one instruction can influence timing behavior only of 

operations of the same or next instructions. 
With this modified observation first five observations can be summarized as follows. 
 Behavior (algorithmic and timing) of an operation of an instruction cannot depend on the 

behavior (algorithmic or timing) of operations of next instructions. 
This assumption let us simulate all of the instruction's behavior in one go before even considering 
next instructions. It is just necessary to remember all effects (algorithmic and timing) of the 
instruction that can influence next instructions. And this is what we do in this approach. 
The simulation of pipeline in this approach is as follows: 

 Simulate algorithmic behavior of the instruction using the instruction set simulator 
functionality. 

 «Speculatively» simulate timing behavior of the instruction by processing each of its nontrivial 
stages one by one from first to last, remembering in the process all information about produced 
effects and their moments in time for use by next instructions (at the same time using such 
information from previous instructions). 

 Move to the next instruction. 

 

Fig. 3. Simplified illustration of pipeline stage processing in case “fully speculative” pipeline model 

Such pipeline organization is expected to be more performant, as it has less overhead related to 
keeping track of the individual pipeline stages, better processes trivial stages, and in general has 
more optimization opportunities. 
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At the same time, with this approach it is necessary to transform the pipeline representation in the 
new form that supports «speculative» accumulating of effects. This was possible in our case, but 
may be difficult to achieve in others. 
Also, such pipeline model is more complicated and unintuitive. For example, it has no reasonable 
notion of the current moment in (simulation) time. Time becomes in some sense distributed around 
the whole pipeline model. 
Pipeline is not sole contributor to timing behavior, and it must interact with other components of 
microprocessor, such as L1 and L2 caches, IB (Instruction Buffer, the component responsible for 
the fetch of instructions) and others. It may be unfeasible to simulate these components in such 
«speculative» fashion, and the only reasonable way is the cycle-by-cycle type of simulation. And 
without a clear «current moment» concept, it is not obvious, when such cycle-by-cycle simulation 
must occur. 
Let us consider L1 cache as a concrete example. Its cycle-by-cycle simulation must occur after all 
its inputs are available but before its results can influence simulation of the other components 
(including the pipeline). After careful study of possible interactions of the L1 cache model and the 
pipeline model we identified that such cycle-by-cycle simulation should occur right after the 
simulation of the stage R of the instruction. By similar reasoning the cycle-by-cycle simulation of 
the IB should be placed right after the simulating of the stage F of the instruction. Additional 
considerations must be made in case of stalls, but overall idea is the same. 
Now let us consider interactions between the IB and the L1 cache. In principle, it is possible to the 
IB request of the future instruction to interfere with the L1 cache state observed by the current 
instruction. Therefore, it is possible to the timing behavior of the future instruction to influence the 
timing behavior of the current instruction, which is a violation of our earlier assumption. It means 
that in this approach we cannot accurately simulate some interactions between various 
microprocessor components. 
Another example of violation of our assumption is the complex interactions during the interleaving 
of prolonged stalls, where stall of the next instruction can influence stall latency of the current 
instruction. 
Overall, while this approach promises performance improvement, it sacrifices accuracy and 
flexibility and introduces additional complexity. 

4.4 «Hybrid» Pipeline Model 
The last approach to the pipeline simulation considered in this paper is a combination of second and 
third approaches. This pipeline model tries to retain accuracy of the smart «direct correspondence» 
model and to achieve some of the performance benefits of the «fully speculative» model. It is based 
on the two additional observations: 
8) Pipeline behavior of an instruction interacts with pipeline behaviors of other instructions and 

other components at specific pipeline stages. 
9) There are continuous sequences of stages that executed uninterrupted (without stalls and 

influence from other instructions and components). 
For example, after the stage E2 there is no possibility of any stall and all further timing behavior of 
the instruction is predetermined. So it is possible to simulate such continuous uninterrupted 
sequences of stages speculatively in a manner similar to the «fully speculative» approach, but 
without the risk of decreasing timing accuracy. And after the instruction reached the pipeline stage 
E3, we can stop keeping track of it, as its timing behavior is completely simulated (partly normally 
and partly speculatively) at this point. This significantly decreases the pipeline simulation 
performance overhead and the overhead of dealing with trivial stages. 
Processing of such pipeline model is very similar to the smart «direct correspondence» approach: 
 Iterate through each pipeline stage. 
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 For each stage determine which instruction is at this stage. 
 If it is a new instruction, then simulate its algorithmic behavior. 

 If it is the first stage of an uninterrupted sequence, then speculatively simulate all stages of this 
sequence. 

 If there are no stalls, then advance the instruction to the next stage. Otherwise not advance and 
propagate stall as necessary. In case of prolonged stalls simulate related pipeline control logic. 

 

Fig. 4. Simplified illustration of pipeline stage processing in case “hybrid” pipeline model 

Overall, this approach let us partially get performance gain of the «fully speculative» approach 
without its major drawbacks of sacrificing accuracy. 
Unfortunately, all described approaches (except the naive one) do not cover the special case of the 
timing behavior influencing the algorithmic behavior. Example of such situation is operations that 
generate a predicate based on readiness of its arguments. Researching of ways to address this is part 
of our future work, and we hope it will be possible to implement a solution within the «hybrid» 
approach. 

5. Evaluation 
Although the cycle-accurate simulator is still in development and there is work to be done (for 
example, memory subsystems are not fully implemented yet and are greatly simplified), it is worth 
to do some preliminary evaluation of the pipeline model implementations described in this report.  
Here we will consider only the «fully speculative» and the «hybrid» models, as the «direct 
correspondence» models were abandoned much earlier in the development and it is hard to make a 
fair comparison of them to the other models. 
We compare the relative performance and the total number of the simulation cycles that were needed 
for the test completion. The instruction set simulator is used as a baseline. Individual test cases 
consist of the executing on the simulator part of one of the SPEC CPU95 benchmarks. Results 
presented in Table 1. 
At this stage of the development we do not have a reasonable cycle count reference that we can use, 
because, for example, our simulators do not do proper simulation of various memory accesses. 
Nevertheless, we hope to get rough estimate of contribution of the more detailed simulation of the 
pipeline by the “hybrid” model to the total cycle count. 
Results show that on average the «hybrid» model is slower than the «fully speculative» model by 
~20%. At the same time, average difference in total cycle count is around 0.5% with one significant 
outlier «146.wave5» with the cycle count difference of 6.1%. We expect that this is because less 
accurate simulation of the prolonged stalls in the «fully speculative» pipeline model. 
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It is possible to optimize both models and the performance difference after optimizations can change, 
but we expect that the «hybrid» model will always be slower. Despite this overall we consider the 
«hybrid» model as a better approach as it is more fully meets our requirements of accuracy and 
flexibility, and in a need of performance it should be possible to configure the «hybrid» model 
accordingly. 

Table 1. Performance and total cycle count relative to instruction set simulator. 

 
Test 

«Hybrid» CAS «Fully speculative» CAS 

Relative 
Performance 

Relative cycle 
count 

Relative 
Performance 

Relative cycle 
count 

099.go 0,192 1,747 0,218 1,747 

101.tomcatv 0,271 1,415 0,323 1,424 

102.swim 0,329 1,983 0,407 1,981 

103.su2cor 0,277 1,415 0,322 1,420 

110.applu 0,218 1,999 0,266 2,001 

124.m88ksim 0,243 1,151 0,299 1,151 

126.gcc 0,291 1,376 0,341 1,378 
129.compre
ss 0,222 1,522 0,286 1,539 

130.li 0,195 2,102 0,224 2,104 

132.ijpeg 0,218 1,738 0,261 1,749 

134.perl 0,252 1,541 0,301 1,553 

141.apsi 0,248 2,364 0,286 2,379 

146.wave5 0,328 1,734 0,398 1,840 

147.vortex 0,250 1,600 0,308 1,601 

6. Related Work 
Cycle-accurate simulation of modern microprocessors is a very active area of research. But only 
small portion of this research is focused on simulating of general purpose VLIW microprocessors, 
let alone on the «Elbrus» architecture. And many of the available approaches do not quite translate 
to the «Elbrus» specifics. 
Approaches of simulating a pipeline of VLIW microprocessors, similar to the «direct 
correspondence» approaches, are described in [2-4]. However, they do not address the issue of code 
reuse in the presence of an instruction set simulator. 
All of the approaches described in this paper are execution-driven. Trace-driven simulation is one 
of the alternatives [5-9]. The basic idea of the trace-driven approach is a separation of the whole 
simulation process in two phases: generation of some data (trace), that represents an execution path, 
and using that data as an input for a cycle-accurate simulation of some microprocessor aspect. Trace 
can be generated by real hardware or other simulator (for example, an instruction set simulator). 
This approach gives benefits, similar to ones we aim to achieve by separation of algorithmic logic 
and timing logic introduced in our second approach, but makes extremely difficult to account for a 
possible dependence of an algorithmic behavior on a timing behavior (which we are planning to 
address in future work in our approach), as these interactions cannot be captured in trace during its 
generation before cycle-accurate simulation. 
The pipeline representation, similar to our «fully speculative» approach, is used in [10]. Authors 
describe in details various aspects of the pipeline simulation (occupancy of stages, operand 
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dependencies and control flow considerations), but do not discuss limits of this approach and 
complexities of interaction of such pipeline model with other components of microprocessor. 

7. Conclusions and Future Work 
Software based simulation of microprocessors is a very important tool. There are many possible 
ways to implement such simulators, each of them with its own set of advantages and disadvantages. 
In this paper we explored several approaches to the pipeline simulation in the context of the cycle-
accurate simulation of the «Elbrus» microprocessors. We made several simple, but general and 
powerful observations, which were used as the foundation for the design of the various pipeline 
models and for the analysis of their advantages and drawbacks. We described several of such 
approaches that were considered and at least partially implemented during development of our cycle-
accurate simulator. 
The cycle-accurate simulator described in this paper is still in active development. In the future work 
we are planning to address the issue of dependence of the algorithmic behavior of the instruction on 
the timing behavior and to explore additional ways to optimize performance of the simulation. 
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