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Abstract. Software simulation is of a big importance during development of processors as they provide access
to hardware under development. Cycle-accurate simulators allow software engineers to design and optimize
high-performance algorithms and programs with considerations of features and characteristics of processors
being in development. This is especially important for architectures, whose performance is mainly achieved by
advanced compiler optimizations. One of the core aspects of a cycle-accurate simulator is the way it simulates
the pipeline of the target processor. A pipeline model has high impact on an overall structure of a simulator and
its potential performance and accuracy. The main goal of this paper is to develop and analyze different
approaches to pipeline simulation of “Elbrus” microprocessors, which let us reuse functionality of existing
instruction set simulator and achieve good balance of performance and accuracy. We briefly describe features
of “Elbrus” microprocessors and specifics of existing instruction set simulator, relevant for cycle-accurate
simulation. We make several simple, but general and useful observations about various aspects of pipeline
behavior in context of accurate and efficient cycle-accurate simulation of microprocessors. These observations
are then used as a basis for justification, development and analysis of the several approaches to the pipeline
simulation, described in this paper. We describe four different approaches, starting from simple and obvious
one, which is then successively transformed into more advanced ones through several iterations. We analyze
limitations of proposed approaches and outline further work.
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AnHoTanus. IIporpaMMHOE MOJIEITHPOBAHHE HIPAIOT BAXKHYIO POJIb B IHKJIE Pa3padOTKU MPOLECCOPOB, TAK
KaK OHH MPEIOCTABIIAIOT JOCTYII K €IIIE HE CYIIECTBYIOIIEMY 000py10BaHHIO. [I0TaKTOBO-TOUHBIC CHMYJISTOPBI
[03BOJISIFOT Pa3paboTIMKaM IIPOrPaMMHOr0 0OECIICYCHHS CO3/1aBaTh U OLTHMHU3HPOBATH IIPOrPAMMBI C Y4ETOM
0COOEHHOCTEH M XapaKTEPHCTUK Pa3padaTHIBAEMBIX IPOLECCOPOB, YTO OCOOEHHO BAXKHO TS apXHTEKTYp,
KOTOpBIE JUISl JIOCTHXKECHUS BBICOKOH IPOM3BOJUTEIBHOCTH B OCHOBHOM OIMPAIOTCS HA AarpecCHBHBIC
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ONTHMH3ALMK KOMIHIATOpPa. OMHUM M3 KIIOYEBBIX ACMEKTOB IIOTAKTOBO-TOYHOTO CHMYJIATOPA SBISAETCS
crmoco6 MOfeNMpOBaHHSA KOHBEifepa cHMynupyemoro mporeccopa. IIporpaMmuas Mozaens KoHBelepa
OKa3bIBAeT OONBIIOE BIMAHAE HA OOLIYIO CTPYKTYPY CUMYNATOPA U HA €r0 MPOU3BOAUTEIBHOCTE U TOUHOCTb.
OCHOBHOH IIeNbIO JTAaHHOH CTAaThH SIBISICTCS pa3pabOTKa U aHAIU3 Pa3IHYHBIX IOJIXOJO0B K MOJECIUPOBAHUIO
KOHBeHepa MHKpPONpPOLECCOpOB “DnpOpyc”, KOTOpble Obl MO3BOJIUIM IEPEHCHONBb30BaTh (DYHKIMOHAI
CYLIECTBYIOIIErO (DYHKIHOHATBHOTO CHMYJIATOpa 0e3 ero CyIIeCTBCHHBIX H3MEHCHHIl, M KOTOpbIe ObI
JOCTHTalIM XOPOLIEro OanaHca MPOH3BOIUTETLHOCTH M TOYHOCTH. MBI KODOTKO ONHCBHIBAEM OCOOEHHOCTH
MHKPOIPOLECCOPOB “DIBbOpyc” M AETalH CYIIECTBYIONEro (hyHKIMOHAIBHOIO CHUMYIISTOPA, BaXKHBIE JUIS
MOTaKTOBO-TOYHOTO MOJENMPOBaHKsA. MBI Jlef1aéM HECKONBKO MPOCTHIX, HO JIOCTATOYHO OOIIMX M MOJE3HBIX
HaOIIONEHUH O IIOBEJIEHWH KOHBeifepa C MO3HIMU TOYHOrO H 3(PGHEKTHBHOrO IMOTAKTOBO-TOYHOIO
MOJZICIIIPOBAHMSL MHKpOIpoNeccopoB. JlaHHbIe HAONIONEHUS HCIONB3YIOTCS B KAauecTBE OCHOBBI JUIL
000CHOBaHMSI, Pa3pabOTKU U aHAIM3a HECKOJIBKUX IIOAXOJ0B K MOIEIMPOBAHUIO KOHBeHepa, ONHMCAHHBIX B
JaHHOH cTaTbe. Bcero Mel OMHMCHIBAGM 4YeTHIPE Pa3AMUHBIX MOAXOJA, HAUMHAS C MPOCTOTO M JOCTATOYHO
OYEBH/HOrO, M 3aKaHYMBas OoJiee CIOXKHBIMH, IIONYyYCHHBIMH IIOCIE HECKOIBKUX HTepaIuii
COBEPIECHCTBOBAHUII M YCIIOXKHEHUH Ha OCHOBE paHee CleIaHHBIX HaOuoaeHni. s Kakaoro moaxona Mel
aHATHM3UPYEM €ro IPEeHMYIIECTBa, HEOCTATKU U (hyHJaMEeHTaIbHbIe OrPAHHICHHS.
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1. Introduction

Software based simulation of hardware is a very important tool for development of computing
systems. This tool is especially important for software design, as simulators can be used in place of
actual still in development (or unavailable for other reasons) hardware. Also simulators can provide
wide range of debugging facilities and other information about inner workings of a system being
simulated.

One of the widely used classes of simulators is simulators of microprocessors. Different tasks have
different needs, so there are simulators with various characteristics. Ones may be oriented at
simulation performance; others are aimed at accuracy and precision.

Instruction set simulator (ISS) is a simulator of microprocessor that mostly models a program visible
architecture state without considerations of microarchitecture specifics and timings. And while for
many tasks this is enough, there is a need for simulators with much greater degree of accuracy that
can be used for performance evaluation.

Cycle-accurate simulators (CAS) are such simulators. They are important tools for code efficiency
estimation during development of performance critical software and optimizing compilers. Ability
to debug performance of code is especially crucial for microprocessor architectures, which achieve
high performance not by invisible to programmer microarchitectural features, but mainly by static
planning of instruction execution by smart compiler. The «Elbrus» family of microprocessor
architectures is such type of architectures.

Modern microprocessors achieve their high performance and clock frequency through use of
pipelining. Every cycle-accurate simulator must somehow simulate this pipelining logic to achieve
accuracy of its timings. The way a pipeline is represented in a simulator influences various aspects
of a simulator, how its components interact and its overall design and characteristics. There are
different ways to represent a pipeline and to model it.

In this paper we describe several approaches that were considered as a basis for implementation of
the pipeline model during development of the cycle-accurate simulator of microprocessors
belonging to the «Elbrus» family of instruction set architectures.

The remainder of this paper has following structure. Section 2 gives brief overview of the «Elbrus»
instruction set architecture and describes an existing instruction set simulator used as base for the
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cycle-accurate simulator implementation. Section 3 formulates desired properties and requirements
for the pipeline model being developed. Section 4 describes in detail several considered approaches
to pipeline model organization and explains its discovered advantages and drawbacks. Section 5
gives brief evaluation of described pipeline models. Section 6 is dedicated to other approaches to
pipeline simulation that can be found in literature. Section 7 gives concluding remarks and briefly
describes plans for further work.

2. Prerequisites

In this section we give some details of the architecture being simulated and of the available
instruction set simulator that influence some design decisions around the pipeline model
implementation.

2.1 «Elbrus» Family of Instruction Set Architectures

The «Elbrusy» family of instruction set architectures is VLIW (Very Long Instruction Word) type of
architectures [ 1]. Performance of this type of architectures is achieved by extracting ILP (Instruction
Level Parallelism) through packing in one instruction several sub-operations, which are executed by
hardware in parallel. «Elbrus» microprocessors are in-order and have no support of speculative
execution (at least in the traditional sense).

In case of the «Elbrus», the packing format is not fixed and there are many ways several sub-
operations can be packed in an instruction. Each of these sub-operations can belong to different
kinds of operations: arithmetic and logical operations, control flow operations, predicate
calculations, memory accesses and so on. And, while generally sub-operations observe only effects
of previous instructions, there are several possible interactions of sub-operations within one
instruction, for example, in case of a predicated execution.

Another important consideration is the way pipeline stalls work. Firstly, it is worth noting, that in
case one sub-operation stalls (for example, because its arguments is not ready yet), the whole
instruction stalls, which is a natural result for a VLIW architecture. Secondly, which is more specific
for the «Elbrusy architectures, there are a mechanism of prolonged stalls. In simple terms, in some
cases (determined by a stall cause and a current pipeline stage) an instruction is not immediately
stopped, but effectively after several cycles its results are discarded (as invalid) and it is returned
several stages back for its repeated execution in hopes that the original stall will not occur again.
This process affects not only the instruction that is not ready for execution, but also several
instructions immediately after it. There are two types of such stalls: a 2-cycle one and a 4-cycle one.
Moreover, it is possible for several such stalls to interleave, and for such situation there is special
pipeline control logic.

Later in this paper we will refer to the pipeline stages of the «Elbrus» microprocessors by following
names: F, D, B, R, E0, E1, E2 etc.

2.2 Instruction Set Simulator

Our cycle-accurate simulator was not developed completely from the ground up. An existing
instruction set simulator for the «Elbrus» architecture was used as a basis and a starting point for the
development of its cycle-accurate version.

This instruction set simulator supports wide range of the various «Elbrus» microprocessors of
different architecture iterations via compile time configuration. It also supports both a user mode
simulation (with emulation of system calls) and a full system simulation (with MMU logic,
peripheral devices etc.). All of this is implemented in a shared code base.

An important feature of the instruction set simulator to consider is how it executes individual (wide)
instructions. Execution is divided in two separate steps, conventionally called «read phase» and
«write phase». The «read phase» prepares some intermediate data and is mostly side-effect free.
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Then the «write phase» uses this intermediate data to complete instruction execution. This way of
organization of instruction execution greatly simplifies support of precise exceptions and of some
interactions of sub-operations.

3. Requirements to CAS and Its Pipeline Model

There are multiple valid ways to implement a cycle-accurate simulator and its pipeline model, and
each design have its trade-offs. Therefore, it is important to define scope and requirements to the
cycle-accurate simulator being developed, including its pipeline model implementation. We define
following requirements.

e  Support of a user mode simulation. At this stage of development it is planned that the cycle-
accurate simulator will be used mainly as a tool for debugging performance problems during
software and compiler development. For such purposes a user model simulation are used.

e Code reuse with the instruction set simulator. The existing instruction set simulator implements
major parts of the «Elbrus» microprocessors, and it would be wasteful to reimplement this
functionality separately.

e  Configurability. It should be possible to configure the simulator to support the various «Elbrus»
microprocessors (like the instruction set simulator) and to enable or disable its different
components (for example, for the sake of performance).

e  Flexibility. It should be reasonable easy to support new features of next iterations of the
«Elbrus» microprocessors. And also, when need arises, it should be possible to adapt the
pipeline model for a full system simulation mode.

e Reasonable performance. The cycle-accurate simulator should not be too slow compared to the
instruction set simulator. We aim at no more than tenfold slowdown.

e  Reasonable accuracy. Of course, exact timing accuracy is not achievable. However, the pipeline
model design should not prevent possibility of further accuracy improvement and support of
various microarchitectural aspects.

Some of these requirements are conflicting, and we do not expect to simultaneously meet all of them

fully, but to achieve some balance between them.

4. Pipeline Simulation of «Elbrus» Microprocessors

In this section we explore several approaches to the pipeline simulation and describe theirs
advantages and disadvantages.

4.1 Naive «Direct Correspondence» Pipeline Model

The first approach that we tried to implement was based on the simple idea of direct and faithful
representation of the real pipeline stages in the simulator. These stages would be responsible both
for the timing related logic and for the purely algorithmic logic of the corresponding instruction.
We implemented this approach by transforming the «read» and «write» phases of the instruction set
simulator into functions representing pipeline stages. During this transformation the «read» and
«write» phases were split in parts and the missing pipeline related logic was added to them. To meet
the requirement of code reuse, we made code of the new cycle-accurate simulator as base, and
implemented the original instruction set simulator by «glueing» stages together into the «read» and
«write» phases and removing the pipeline related logic, all of this at compile time and through
configuration. Processing of such pipeline model is straightforward.

e  Iterate through each pipeline stage.

e  For each stage determine which instruction is at this stage and execute functions corresponding
to all of the sub-operations of this instruction.
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e If there are no stalls - advance instruction to the next stage. Otherwise not advance and
propagate stall as necessary. In case of the prolonged stalls simulate related pipeline control
logic.

time -

‘ Instruction #1

Instruction #2

Instructions . Functional actions l:l Timing actions ~ — Simulation order

Fig. 1. Simplified illustration of pipeline stage processing in case naive «direct correspondencey pipeline
model

This pipeline model representation should facilitate direct and straightforward support of the various

microarchitectural features, as this software model is close to the actual hardware. However,

although this idea is conceptually simple, during its implementation we discovered its several major
drawbacks.

e  Splitting of phases of the instruction set simulator into stages and glueing them back together
introduce a major disturbance to the original instruction set simulator functionality. There is no
clear way to avoid that. Attempts to fully restore original phases introduce much ad hoc logic,
which adds fragility to the whole system. This means there is no easy way to achieve code reuse
with this approach.

e In the instruction set simulator there are many unobvious interactions between phases of
different sub-operations. These interactions are not easily preserved during splitting of phases.

e While for the most of the operations there is a clear correspondence of phases to pipeline stages,
there are exceptions, which add complexity to the glueing process.

e Keeping track of all pipeline stages adds considerable performance overhead, although for most
operations only small subset of all pipeline stages are nontrivial (at least in the context of
timings).

e  Splitting phases into multiple pipeline stage related functions also inhibits compiler
optimizations, which impact overall simulator performance.

e After this implementation attempt it became clear that for meeting our code reuse requirement
we should minimize changes to the instruction set simulator.

4.2 Smart «Direct Correspondence» Pipeline Model

Next considered approach is a modification of previous one. Its improvements are based on the
following key observations.
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Fig. 2. Simplified illustration of pipeline stage processing in case smart “direct correspondence” pipeline
model.

1) Algorithmic behavior of an operation (which is defined by an instruction set architecture and
is considered by an instruction set simulator) can influence only an algorithmic behavior of
operations of later (or in some cases current) instructions.

2) Algorithmic behavior of an operation determines its timing behavior.

3) Algorithmic behavior of one operation does not directly influence timing behavior of other
operation.

4) Timing behavior has no direct influence on an algorithmic behavior (except in some limited
number of special cases).

5) Timing behavior of one operation can influence timing behavior of other operation (but usually
only in specific ways).

6) Simulator has more information about the execution process than hardware it simulates.

7) Not all details and inner workings of hardware contribute to its timing characteristics.

First six of these observations let us justify the separation of algorithmic and timing logic and

moving of the algorithmic logic to the beginning of the instruction processing (right before its

pipeline related processing). But we should uphold following conditions

e Algorithmic simulation of the instruction must occur before the algorithmic simulation of the
next (in program order) instruction (based on the observation 1).

e  Pipeline simulation of the instruction must occur after its algorithmic simulation (based on the
observation 2).

e  Pipeline simulation of different instructions must occur in order determined by the pipeline
state (based on the observation 5).

All of these are satisfied by this approach.

Last observation let us simplify the timing logic by removing all microarchitectural details that are

not directly necessary for correctly calculating timing information, as we are interested not in inner

workings of hardware, but in timing details.

These transformations should not reduce accuracy of our simulator (except in some rare special

cases, which are briefly considered later in this paper).
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The algorithm to process such pipeline is very similar to the previous approach. The only difference
is that in the beginning of the processing of the first pipeline stage of the instruction we do all
algorithmic simulation of this instruction.

This approach let us use functionality of the instruction set simulator (for the algorithmic simulation
of instructions) with minimal modifications, which remedy many major drawbacks of the previous
approach. But we still have to address the performance concerns, as in this approach the simulator
still keeps track of all pipeline stages, even if they are trivial, and the timing logic is still split into
multiple independent functions.

4.3 «Fully Speculative» Pipeline Model

The next approach to the pipeline simulation is based on the assumption of stronger the observation

5:

5%) Timing behavior of operation of one instruction can influence timing behavior only of
operations of the same or next instructions.

With this modified observation first five observations can be summarized as follows.

e  Behavior (algorithmic and timing) of an operation of an instruction cannot depend on the
behavior (algorithmic or timing) of operations of next instructions.

This assumption let us simulate all of the instruction's behavior in one go before even considering

next instructions. It is just necessary to remember all effects (algorithmic and timing) of the

instruction that can influence next instructions. And this is what we do in this approach.

The simulation of pipeline in this approach is as follows:

e  Simulate algorithmic behavior of the instruction using the instruction set simulator
functionality.

e «Speculatively» simulate timing behavior of the instruction by processing each of its nontrivial
stages one by one from first to last, remembering in the process all information about produced
effects and their moments in time for use by next instructions (at the same time using such
information from previous instructions).

e  Move to the next instruction.

__,|READ

_.H\ B—~ R —E0—E1 —

——

time

Bi—1R—E0—Ed

Instructions - Functional actions Timing actions —* Simulation order

Fig. 3. Simplified illustration of pipeline stage processing in case “fully speculative” pipeline model

Such pipeline organization is expected to be more performant, as it has less overhead related to
keeping track of the individual pipeline stages, better processes trivial stages, and in general has
more optimization opportunities.
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At the same time, with this approach it is necessary to transform the pipeline representation in the
new form that supports «speculative» accumulating of effects. This was possible in our case, but
may be difficult to achieve in others.

Also, such pipeline model is more complicated and unintuitive. For example, it has no reasonable
notion of the current moment in (simulation) time. Time becomes in some sense distributed around
the whole pipeline model.

Pipeline is not sole contributor to timing behavior, and it must interact with other components of
microprocessor, such as L1 and L2 caches, IB (Instruction Buffer, the component responsible for
the fetch of instructions) and others. It may be unfeasible to simulate these components in such
«speculative» fashion, and the only reasonable way is the cycle-by-cycle type of simulation. And
without a clear «current moment» concept, it is not obvious, when such cycle-by-cycle simulation
must occur.

Let us consider L1 cache as a concrete example. Its cycle-by-cycle simulation must occur after all
its inputs are available but before its results can influence simulation of the other components
(including the pipeline). After careful study of possible interactions of the L1 cache model and the
pipeline model we identified that such cycle-by-cycle simulation should occur right after the
simulation of the stage R of the instruction. By similar reasoning the cycle-by-cycle simulation of
the IB should be placed right after the simulating of the stage F of the instruction. Additional
considerations must be made in case of stalls, but overall idea is the same.

Now let us consider interactions between the IB and the L1 cache. In principle, it is possible to the
IB request of the future instruction to interfere with the L1 cache state observed by the current
instruction. Therefore, it is possible to the timing behavior of the future instruction to influence the
timing behavior of the current instruction, which is a violation of our earlier assumption. It means
that in this approach we cannot accurately simulate some interactions between various
MiCroprocessor components.

Another example of violation of our assumption is the complex interactions during the interleaving
of prolonged stalls, where stall of the next instruction can influence stall latency of the current
instruction.

Overall, while this approach promises performance improvement, it sacrifices accuracy and
flexibility and introduces additional complexity.

4.4 «Hybrid» Pipeline Model

The last approach to the pipeline simulation considered in this paper is a combination of second and

third approaches. This pipeline model tries to retain accuracy of the smart «direct correspondence»

model and to achieve some of the performance benefits of the «fully speculative» model. It is based

on the two additional observations:

8) Pipeline behavior of an instruction interacts with pipeline behaviors of other instructions and
other components at specific pipeline stages.

9) There are continuous sequences of stages that executed uninterrupted (without stalls and
influence from other instructions and components).

For example, after the stage E2 there is no possibility of any stall and all further timing behavior of

the instruction is predetermined. So it is possible to simulate such continuous uninterrupted

sequences of stages speculatively in a manner similar to the «fully speculative» approach, but

without the risk of decreasing timing accuracy. And after the instruction reached the pipeline stage

E3, we can stop keeping track of it, as its timing behavior is completely simulated (partly normally

and partly speculatively) at this point. This significantly decreases the pipeline simulation

performance overhead and the overhead of dealing with trivial stages.

Processing of such pipeline model is very similar to the smart «direct correspondence» approach:

e [terate through each pipeline stage.
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e  For each stage determine which instruction is at this stage.
e Ifitis a new instruction, then simulate its algorithmic behavior.

e Ifitis the first stage of an uninterrupted sequence, then speculatively simulate all stages of this
sequence.

e If'there are no stalls, then advance the instruction to the next stage. Otherwise not advance and
propagate stall as necessary. In case of prolonged stalls simulate related pipeline control logic.

} ﬁ time
.READ. : B H _.‘E-EH E 1 ) E2 e -Em Instruction #1
READ Al
Simulation order
Instructions Functional actions Timing actions ~~ —ooooooooos e
Il [ riiee

B~ R—E0 E1—E2 -

EN‘ iodicn

.

Fig. 4. Simplified illustration of pipeline stage processing in case “hybrid” pipeline model

Overall, this approach let us partially get performance gain of the «fully speculative» approach
without its major drawbacks of sacrificing accuracy.

Unfortunately, all described approaches (except the naive one) do not cover the special case of the
timing behavior influencing the algorithmic behavior. Example of such situation is operations that
generate a predicate based on readiness of its arguments. Researching of ways to address this is part
of our future work, and we hope it will be possible to implement a solution within the «hybrid»
approach.

5. Evaluation

Although the cycle-accurate simulator is still in development and there is work to be done (for
example, memory subsystems are not fully implemented yet and are greatly simplified), it is worth
to do some preliminary evaluation of the pipeline model implementations described in this report.
Here we will consider only the «fully speculative» and the «hybrid» models, as the «direct
correspondence» models were abandoned much earlier in the development and it is hard to make a
fair comparison of them to the other models.

We compare the relative performance and the total number of the simulation cycles that were needed
for the test completion. The instruction set simulator is used as a baseline. Individual test cases
consist of the executing on the simulator part of one of the SPEC CPU95 benchmarks. Results
presented in Table 1.

At this stage of the development we do not have a reasonable cycle count reference that we can use,
because, for example, our simulators do not do proper simulation of various memory accesses.
Nevertheless, we hope to get rough estimate of contribution of the more detailed simulation of the
pipeline by the “hybrid” model to the total cycle count.

Results show that on average the «hybrid» model is slower than the «fully speculative» model by
~20%. At the same time, average difference in total cycle count is around 0.5% with one significant
outlier «146.wave5» with the cycle count difference of 6.1%. We expect that this is because less
accurate simulation of the prolonged stalls in the «fully speculative» pipeline model.
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It is possible to optimize both models and the performance difference after optimizations can change,
but we expect that the «hybrid» model will always be slower. Despite this overall we consider the
«hybrid» model as a better approach as it is more fully meets our requirements of accuracy and
flexibility, and in a need of performance it should be possible to configure the «hybrid» model
accordingly.

Table 1. Performance and total cycle count relative to instruction set simulator.

«Hybrid» CAS «Fully speculative» CAS
Test Relative Relative cycle Relative Relative cycle

Performance count Performance count
099.go 0,192 1,747 0,218 1,747
101.tomcatv 0,271 1,415 0,323 1,424
102.swim 0,329 1,983 0,407 1,981
103.su2cor 0,277 1,415 0,322 1,420
110.applu 0,218 1,999 0,266 2,001
124.m88ksim 0,243 1,151 0,299 1,151
126.gcc 0,291 1,376 0,341 1,378

129.compre

ss 0,222 1,522 0,286 1,539
130.li 0,195 2,102 0,224 2,104
132.ijpeg 0,218 1,738 0,261 1,749
134.perl 0,252 1,541 0,301 1,553
141.apsi 0,248 2,364 0,286 2,379
146.wave5 0,328 1,734 0,398 1,840
147 .vortex 0,250 1,600 0,308 1,601

6. Related Work

Cycle-accurate simulation of modern microprocessors is a very active area of research. But only
small portion of this research is focused on simulating of general purpose VLIW microprocessors,
let alone on the «Elbrus» architecture. And many of the available approaches do not quite translate
to the «Elbrusy specifics.

Approaches of simulating a pipeline of VLIW microprocessors, similar to the «direct
correspondence» approaches, are described in [2-4]. However, they do not address the issue of code
reuse in the presence of an instruction set simulator.

All of the approaches described in this paper are execution-driven. Trace-driven simulation is one
of the alternatives [5-9]. The basic idea of the trace-driven approach is a separation of the whole
simulation process in two phases: generation of some data (trace), that represents an execution path,
and using that data as an input for a cycle-accurate simulation of some microprocessor aspect. Trace
can be generated by real hardware or other simulator (for example, an instruction set simulator).
This approach gives benefits, similar to ones we aim to achieve by separation of algorithmic logic
and timing logic introduced in our second approach, but makes extremely difficult to account for a
possible dependence of an algorithmic behavior on a timing behavior (which we are planning to
address in future work in our approach), as these interactions cannot be captured in trace during its
generation before cycle-accurate simulation.

The pipeline representation, similar to our «fully speculative» approach, is used in [10]. Authors
describe in details various aspects of the pipeline simulation (occupancy of stages, operand
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dependencies and control flow considerations), but do not discuss limits of this approach and
complexities of interaction of such pipeline model with other components of microprocessor.

7. Conclusions and Future Work

Software based simulation of microprocessors is a very important tool. There are many possible
ways to implement such simulators, each of them with its own set of advantages and disadvantages.
In this paper we explored several approaches to the pipeline simulation in the context of the cycle-
accurate simulation of the «Elbrus» microprocessors. We made several simple, but general and
powerful observations, which were used as the foundation for the design of the various pipeline
models and for the analysis of their advantages and drawbacks. We described several of such
approaches that were considered and at least partially implemented during development of our cycle-
accurate simulator.

The cycle-accurate simulator described in this paper is still in active development. In the future work
we are planning to address the issue of dependence of the algorithmic behavior of the instruction on
the timing behavior and to explore additional ways to optimize performance of the simulation.
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