
Труды ИСП РАН, том 31, вып. 3, 2019 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

7

DOI: 10.15514/ISPRAS-2019-31(3)-1

Tolerant parsing using modified LR(1) and LL(1)
algorithms with embedded “Any” symbol

A.V. Goloveshkin, ORCID: 0000-0001-6947-0594 <alexeyvale@gmail.com>
Vorovich Institute for Mathematics, Mechanics and Computer Science,

Southern Federal University,
8a, Milchakova st., Rostov-on-Don, 344090, Russia

Abstract. Tolerant parsing is a form of syntax analysis aimed at capturing the structure of certain points of
interest presented in a source code. While these points should be well-described in a tolerant grammar of the
language, other parts of the program are allowed to be described coarse-grained, thereby parser remains tolerant
to the possible variations of the irrelevant area. Island grammars are one of the basic tolerant parsing techniques.
“Islands” term is used as the relevant code alias, the irrelevant code is called “water”. Efforts required to write
water rules are supposed to be as small as possible. Previously, we extended island grammars theory and
introduced a novel formal concept of a simplified grammar based on the idea of eliminating water description
by replacing it with a special “Any” symbol. To work with this concept, a standard LL(1) parsing algorithm
was modified and LanD parser generator was developed. In the paper, “Any”-based modification is described
for LR(1) parsing algorithm. In comparison with LL(1) tolerant grammars, LR(1) tolerant grammars are easier
to develop and explore due to solid island rules. Supplementary “Any” processing techniques are introduced to
make this symbol easier to use while staying in the boundaries of the given simplified grammar definition.
Specific error recovery algorithms are presented both for LL and LR tolerant parsing. They allow one to further
minimize the number and complexity of water rules and make tolerant grammars extendible. In the experiments
section, results of a large-scale LL and LR tolerant parsers testing on the basis of 9 open-source project
repositories are presented.

Keywords: tolerant parsing; robust parsing; lightweight parsing; partial parsing; island grammars; simplified
grammar; LanD parser generator

For citation: Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded
“Any” symbol. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 7-28. DOI: 10.15514/ISPRAS-2019-
31(3)-1

Толерантный синтаксический анализ с использованием
модифицированных алгоритмов LL(1) и LR(1) со встроенной

обработкой символа «Any»

А.В. Головешкин, ORCID: 0000-0001-6947-0594 <alexeyvale@gmail.com>
Институт математики, механики и компьютерных наук им. И.И. Воровича,

Южный федеральный университет
344090, Россия, г. Ростов-на-Дону, ул. Мильчакова, д. 8а

Аннотация. Толерантный синтаксический анализ используется для разбора структуры областей
программы, представляющих интерес в контексте определённой задачи. В то время как эти области
должны быть подробно описаны в толерантной грамматике языка, описание остальных частей
программы может быть менее детальным, в результате парсер толерантен по отношению к возможным
вариациям нерелевантных областей. Островные грамматики — один из основных способов реализации
толерантного парсинга. Термином «остров» обозначаются релевантные области кода, нерелевантный

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

8

код обозначается термином «вода». Предполагается, что на написание водных правил грамматики
должно тратиться как можно меньше усилий. Ранее автором настоящей работы была введена
формальная концепция упрощённой грамматики, расширяющая теорию островных грамматик. Данная
концепция основана на идее устранения описаний воды в грамматике путём замены их на специальный
символ «Any». Для работы с упрощёнными грамматиками был модифицирован стандартный LL(1)
алгоритм синтаксического анализа и разработан генератор толерантных парсеров LanD. В настоящей
статье модификация, встраивающая обработку «Any», описывается для LR(1) алгоритма
синтаксического анализа. В сравнении с толерантными LL(1) грамматиками, толерантные LR(1)
грамматики являются более простыми для разработки и исследования ввиду того, что в них каждый
остров может быть описан одним непрерывным правилом. Предложены дополнительные механизмы
обработки символа «Any», приводящие ряд интуитивно корректных сценариев его использования в
соответствие с формальным определением упрощённой грамматики. Для LL и LR толерантного
синтаксического анализа описаны специфические механизмы восстановления от ошибок, позволяющие
ещё больше сократить количество водных правил, понизить их сложность и сделать толерантную
грамматику расширяемой. В разделе экспериментов представлены результаты крупномасштабного
тестирования толерантных LL и LR парсеров на 9 репозиториях крупных проектов с открытым
исходным кодом.

Ключевые слова: толерантный парсинг; устойчивый парсинг; легковесный парсинг; частичный
парсинг; островная грамматика; упрощённая грамматика; генератор синтаксических анализаторов
LanD

Для цитирования: Головешкин А.В. Толерантный синтаксический анализ с использованием
модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой символа «Any». Труды ИСП
РАН, том 31, вып. 3, 2019 г., стр. 7-28 (на английском языке). DOI: 10.15514/ISPRAS-2019-31(3)-1

1. Introduction
Tolerant parsing is a syntax analysis technique differing from the detailed whole-language (so-called
baseline) parsing. The latter is performed by a full-featured compiler of a certain programming
language to ensure the program satisfies the grammar and to prepare an internal program
representation for some further steps. Tolerant parsing performs deep structural analysis only on
certain parts of the program, passing other parts with minimal effort. It is achieved by generating
the corresponding parser from a tolerant grammar, where these parts of interest are described in
details and some minimal description of the irrelevant area is provided. From developer's
perspective, tolerant parsing allows her to focus on the structure of the points valuable in the context
of a current task, without worrying about irrelevant code variations. Among tolerant parsing use
cases, the following ones are the most frequently mentioned:
 Baseline grammar inaccessibility: Full version of the language grammar can be inaccessible

due to proprietary issues or manual baseline parser writing [1]. Besides, physical accessibility
does not assume accessibility in terms of grammar comprehension. Baseline grammar usage
requires intensive exploration to detect rules describing constructs of interest. Tolerant
grammar structure and mapping between its entities and language constructs are transparent to
the developer, as she writes it according to her own knowledge of the task and the language.

 Language embedding: Some program artifacts assume the usage of multiple languages in one
source file. In this case, a parser for the relevant language must be tolerant to all the snippets
written in other languages [2].

 Domain-specific idioms: In a certain project, some local domain-specific patterns can be
applied [1, 3]. They represent a high-level abstraction layer which is not presented in the
language syntax and obviously is out of scope of the whole-language parser. Nevertheless,
tolerant parsers can be strictly focused on these patterns, ignoring the underlying structure.

According to the island grammars tolerant parsing paradigm [1, 3], parts of the program that are
well-described in the grammar are called islands, others are called water. Detailed grammar rules
describing islands are named patterns, water is presented with as few liberal productions as possible.

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

9

However, sometimes it is required to describe some water parts in a fine-grained island-like style to
avoid confusion with proper islands. Water parts mistaken for islands are called false positives, well-
structured water productions are called antipatterns. Island grammar development is always a finite
iterative process consisting of in-the-wild parser testing and subsequent patterns and antipatterns
refinement. Besides, some situations, when program entity can be treated as an island and as a water
at the same time, are typically solved with generalized parsing algorithms [4, 5].
The author of the current paper is interested in tolerant parsing because of the long-term goal to
develop a multi-language tool for concern-based markup of software projects. Talking about a
program as a set of functionalities, so-called concerns, we may notice that many of them are
implemented with pieces of code which are spread across solid program elements, such as classes
or methods [6, 7]. These concerns are called vertical layers [8] or crosscutting concerns [9]. To
work with this kind of concerns, it is vital to create and manipulate some meta-information about
their location, this information should be sustainable with respect to code changes, so it cannot rely
on text line and text column numbers. Abstract syntax tree is considered to be a more appropriate
structure for meta-information binding, so, there must be a set of parsers for different languages,
these parsers must build abstract syntax trees in one unified format. These trees should capture only
the structure of program entities we plan to bind to, therefore, tolerant parsing is an option. It also
should be easy to support new languages by developing additional grammars and generating tolerant
parsers. Previously, to meet the requirements for parsers and trees, we developed a tolerant parser
generator called LanD. It uses a modified LL(1) parsing algorithm which is theoretically and
experimentally proved to be correct [10].
The contributions of this paper are: 1) a modified LR(1) parsing algorithm with incorporated notion
of a special Any token allowing parser to match implicitly defined token sequences; 2)
supplementary Any processing techniques for modified LL(1) and LR(1) parsing algorithms, filling
the gap between the simplified grammar formal definition and real tolerant parsing use cases; 3)
specific Any-based LL and LR error recovery mechanisms aimed at elimination of water rules and
correct handling of possible ambiguities without parsing algorithm generalization; complexity
analysis is also carried out; 4) lightweight LL(1) and LR(1) grammars for a broad range of languages,
namely, for C#, Java, PascalABC.NET programming languages, Yacc and Lex specification
formats, XML and Markdown markup languages; 5) an experimental evidence of the applicability
of the generated tolerant parsers for large-scale software projects analysis.
The remainder of the paper is organized as follows. In Section 2, main goals of the current research
are listed. A brief overview of the previous author's research, along with closest analogues analysis,
is provided in Section 3. In Section 4, a modification of the standard LR(1) parsing algorithm aimed
at Any symbol processing is introduced, Any implementation improvements and issues addressed
are discussed, novel Any-based error recovery algorithms are described. Section 5 includes a
sufficient volume of experimental data obtained by applying generated tolerant parsers for C# and
Java languages to a number of real-world software repositories. In Section 6, a brief summary of the
contribution of the paper is provided along with future work outlining.

2. Problem statement
The first assumption of the current research is that the concept of Any, previously successfully
embedded into a top-down parsing, can be embedded in a bottom-up parsing too, making tolerant
grammars more expressive and easy-to-write. The second assumption is that ambiguities originated
in islands and water similarity can be resolved not only by adding special antipatterns or by
generalized algorithms usage, but also by a special recovery mechanism embedded in a deterministic
parsing.
The key goals of the current research are:
1) to design an LR(1) parsing algorithm with built-in notion of a special Any grammar symbol

that provides skipping the token sequences that are not explicitly described in the grammar;

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

10

2) to introduce into the LanD parser generator additional capabilities for correct Any processing
in case Any usage does not fully satisfy simplified grammar formalization;

3) to design specific error recovery mechanisms for LL(1) and LR(1) tolerant parsing, aimed at
handling ambiguities originating in water and island similarity;

4) to implement tolerant island grammars for a broad range of languages;
5) to evaluate parser’s applicability through the analysis of large-scale software projects written

in C# and Java languages.

3. Related work

3.1 «Any» implementation
The concept of Any symbol is implemented in several parser generators. Historically, the first tool
with embedded capability to match tokens from sets which are not directly specified in a grammar
is the Coco/R recursive-descent parsers generator. According to the documentation [11, p. 14],
developer can use a special symbol ANY, which denotes any token that is not an alternative to that
ANY symbol in the current production. A set of admissible tokens for the position of a particular
ANY is precomputed to make the situation when parser has to make a choice between ANY and
some explicitly specified token unambiguously solvable in favor of the explicit option. As shown in
[10], these precomputed sets are both incomplete due to the lack of nonterminal outer context
analysis and excessively restrictive due to a single restriction applied to all the elements of the
sequence corresponding to the iteration of ANY. As a result, there are grammars for which parsers
generated by Coco/R do not parse programs valid from the developer’s point of view. For example,
a parser generated by the grammar

A = a b c | {ANY} d.
is not capable to recognize the input string bad$ ($ denotes the end of the input, {ANY} denotes zero
or more ANY tokens).
Similar Any implementation is built into a tool for lightweight LALR(1) parser development, called
LightParse [12]. LightParse grammar is not directly used to generate a parser. Instead, it is
transformed to the YACC-like format supported by the standard LALR(1) parser generator GPPG.
In the transformed grammar, every entry of Any symbol is presented as a separate rule with single-
element alternatives, by an alternative for each of the admissible terminal symbols. To ensure these
rules are valid in terms of GPPG, LightParse imposes additional restrictions on Any usage. It only
deepens drawbacks inherited from Coco/R.
The most recent Any token implementation is introduced by the author of the current paper for LanD
parser generator [10] aimed at LL(1) tolerant parsers generation by island grammars. In terms of the
island grammars paradigm, Any symbol allows one not to specify the particular content of the water
area, writing Any instead. Unlike ANY symbol in Coco/R, our Any corresponds to a sequence of zero
or more tokens, not a single token. In its implementation, all the known shortcomings are eliminated.
The decision about the current token’s admissibility at Any position is made dynamically at the
parsing stage and restricts the set of admissible tokens no more than necessary to avoid ambiguities.
LanD’s Any implementation does not assume the grammar translation to the form suitable for the
standard parsing algorithm. Instead, the standard LL(1) algorithm is modified to integrate the notion
of Any and make it possible to define admissible tokens by the content of a parsing stack.
In the current paper, LanD parser generator is extended with the capability to generate LR(1) parsers
with embedded Any support.

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

11

3.2 Formal definition of a simplified grammar
In [10], through the Any token, we formulate a formal concept of the simplified grammar. We denote
by lhs(𝑝) and rhs(𝑝), respectively, the left and the right part of the production p. Notation 𝑥 ∈
rhs(𝑝) for 𝑥 ∈ 𝑁 ∪ 𝑇 means that rhs(𝑝) = 𝛼ଵ𝑥𝛼ଶ, where 𝛼ଵ ∈ (𝑁 ∪ 𝑇)∗, 𝛼ଶ ∈ (𝑁 ∪ 𝑇)∗.

SYMBOLS(𝛾) is used for the set of terminal symbols needed to compose all the 𝜔: 𝛾
∗

⇒ 𝜔, 𝛾 ∈
(𝑁 ∪ 𝑇)∗, 𝜔 ∈ 𝑇∗.
Definition 1. Let 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) be a context-free grammar, 𝐴𝑛𝑦 ∉ 𝑇. The grammar simplified
with respect to 𝐺 is a grammar 𝐺௦ = (𝑁௦ , 𝑇௦ , 𝑃௦ , 𝑆௦) defined as follows:

1) 𝑆௦ = 𝑆;
2) 𝑃௦ = {𝑝 ∈ 𝑓(𝑃) ∣ lhs(𝑝) = 𝑆௦ ∨ ∃𝑝ᇱ ∈ 𝑃௦: lhs(𝑝) ∈ rhs(𝑝ᇱ)}, where 𝑓: 𝑃 → {𝑝 = 𝐴 → 𝛼 ∣

𝐴 ∈ 𝑁, 𝛼 ∈ (𝑁 ∪ 𝑇 ∪ {𝐴𝑛𝑦})∗} is the mapping that satisfies the following criteria:
a) ∃𝑃ᇱ ⊆ 𝑃: 𝑃ᇱ = {𝑝 ∈ 𝑃 ∣ 𝑓(𝑝) ≠ 𝑝},  𝑃ᇱ ≠ ∅,
b) ∀𝑝 ∈ 𝑃 ∖ 𝑃ᇱ,  𝑓(𝑝) = 𝑝,
c) ∀𝑝 ∈ 𝑃ᇱ,  ∃𝑛 ∈ ℕ: 𝑝 is representable in the form 𝐴 → 𝛼ଵ𝛾ଵ𝛽ଵ𝛼ଶ𝛾ଶ𝛽ଶ … 𝛼௡𝛾௡𝛽௡ and

𝑓(𝑝) is representable in the form 𝐴 → 𝛼ଵ𝐴𝑛𝑦𝛽ଵ𝛼ଶ𝐴𝑛𝑦𝛽ଶ … 𝛼௡𝐴𝑛𝑦𝛽௡, where ∀𝑖 ∈
[1. . 𝑛],  𝛼௜𝛾௜𝛽௜ ∈ (𝑁 ∪ 𝑇)∗, and ∀𝑖 ∈ [1. . 𝑛],  ∀𝑎 ∈ FOLLOW(𝐴) , SYMBOLS(𝛾௜) ∩
FIRST(𝛽௜𝛼௜ାଵ𝛾௜ାଵ𝛽௜ାଵ … 𝛼௡𝛾௡𝛽௡𝑎) = ∅;

3) 𝑁௦ = {𝐴 ∈ 𝑁 ∣ ∃𝑝 ∈ 𝑃௦: lhs(𝑝) = 𝐴};
4) 𝑇௦ = {𝑎 ∈ 𝑇 ∣ ∃𝑝 ∈ 𝑃௦: 𝑎 ∈ rhs(𝑝)} ∪ {𝐴𝑛𝑦}.

Intuitively, 𝑃௦ contains productions for the start symbol of 𝐺௦ and productions for all the
nonterminals which are reachable from the start symbol. The definition of the mapping 𝑓 means that
some of the strings generated by 𝐺 contain substrings which can be replaced with Any, then we
obtain strings generated by 𝐺௦. Symbol Any can be written instead of the parts denoted by 𝛾௜ in
production’s right-hand side, in case these parts satisfy the criterion 2c of the definition 1.
Verification of this criterion is possible only when solving a direct problem: when the grammar 𝐺௦
is created on the basis of some available 𝐺. In theory, 𝐺 can correspond to the baseline language
grammar, as well as be a more tolerant version of the baseline grammar, containing all the anti-
patterns described explicitly. In practice, it is usually not available or does not exist, so direct
problem is rarely considered. Writing an island grammar for a certain programming language is
equivalent to solving an inverse problem. Developer writes an initial approximation in the form of
a simplified grammar in which Any usage allows one to minimize the efforts to describe a possible
water content. Then she performs an iterative refinement in accordance with parsing results, making
the grammar more and more corresponding to the language generated by some baseline.
Compliance with the criterion 2c is crucial for correct Any processing. At the same time, it is hard
to maintain while solving an inverse problem. In this paper, additional Any processing mechanisms
are offered. They allow grammar developers to weaken the control over the consistency with the
formalization.

3.3 LL(1) parsing algorithm modification
In fig. 1, modified algorithms from [10] are rewritten in the form more suitable for further discussion.
The delta between the standard algorithms and the modified ones is highlighted with grey. As shown
in fig. 1a, when no action can be performed with a current token, parser tries to interpret this token
as the beginning of a sequence corresponding to Any. FIRST’ set, a modified version of a standard
FIRST, is computed for the parsing stack content to get all the tokens that are explicitly allowed in
the current place. This non-static approach is inspired in some sense by full-LL(1) parsing [13, pp.
247–251]. Set construction routine is shown in fig. 1c. A modification is needed to handle the
consecutive Any problem defined in [10], this problem is explained in detail in Section 4.2.1 along

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

12

with a more general solution. M denotes a parsing table, Stack denotes a symbol stack which stores
not just the symbols that are expected to be matched, but nodes of the syntax tree being constructed.
There are grounds for an analogy between the LL(1) parsing modification given and well-known
error recovery algorithms: Any symbol looks similar to the error token denoting place in the
grammar where recovered parsing can be resumed, FIRST’ set seems like the set of synchronization
tokens. Moreover, speaking in terms of the formal definition, a tolerant parser is built by a simplified
grammar 𝐺௦, and a program from 𝐿(𝐺) is actually needed to be parsed. In terms of 𝐺௦, this program
is erroneous.
However, here also lies a fundamental difference between Any processing and error recovery.
Recovery is performed for a program which is incorrect regarding to a baseline grammar 𝐺. While
success is not guaranteed, the main goal is to resume parsing at any cost, including the loss of some
significant results of the previous analysis and skipping a significant part of the input stream,
possibly containing some points of interest. The goal of Any processing is to translate a presumably
valid 𝐿(𝐺) program into the language 𝐿(𝐺௦) by replacing some token sequences with Any. The
premise that the program under consideration is correct with respect to 𝐺, in conjunction with the
observance of the criterion 2c, makes input tokens skipping totally predictable. One can be sure that
the parts of the input stream replaced with Any belongs to the water and can be discarded without
loss of the land. Furthermore, predictable and correct replacement with Any is possible for a program
that is incorrect with respect to 𝐺, in case incorrectness is located in a water area.

4. Algorithms and modifications

4.1 LR(1) parsing
Though the modified LL(1) parsing algorithm described in Section 3.3 is enough to create reliable
tolerant parsers, describing a real programming language with LL(1) grammar is a challenge even
when this grammar is supposed to be lightweight and tolerant. Constructs of interest, such as class
members, usually have a common beginning up to a certain point, so they cannot be presented as
solid alternatives for a single nonterminal symbol in LL(1). Instead, we have to write rule sequences
in the style of taking the common factor out of the brackets and making a separate rule for a tail:
entity = attribute* keyword* (class_tail | member_tail)
member_tail = type name (method_tail | property_tail)
method_tail = arguments Any (init? ’;’ | block)

As a result, the grammar structure is not transparent enough for a newcomer because the connection
between existing island rules written in such a distributed manner and particular language constructs
is non-obvious.
This LL(1) limitation can be overcome through switching to a more complex LR(1) parsing. A
modification of the standard LR(1) algorithm is shown in fig. 2a, modified areas are highlighted
with gray. Like in a standard case, two stacks exist to keep parser state. SymbolsStack keeps the
current viable prefix [14, p. 256]. In fact, similar to LL(1) Stack, in our implementation, it keeps
not just symbols but nodes for a tree to be build. StatesStack keeps the indices of the states
parser passed through to obtain the current viable prefix. An element ACTIONS[s, t] of the
ACTIONS table keeps the knowledge of what action should be performed by the parser if token t is
met while s is the parser’s current state. There are two basic types of action in LR algorithm: Shift
and Reduce, they are shown in fig. 2c. GOTO[s, X] contains the index of a state to which parser
must go from s state after reducing some part of a viable prefix to X.

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

13

Fig. 1. Modified LL algorithms: (a) LL(1) parsing algorithm, (b) “Any” processing algorithm, (c) FIRST set
construction, (d) Auxiliary algorithms: alternative applying and FIRST set memoization

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

14

Fig. 2. Modified LR algorithms: (a) Modified LR(1) parsing algorithm, (b) “Any” processing algorithm, (c)
Shift and reduce algorithms.

The essence of the parsing algorithm modification is similar to LL(1) case: tolerant parser is
responsible not only for checking if the program can be derived from the start symbol, but also for
translating it from a baseline language into a simplified one. In case an action for some actual
combination of parser state and input token is undefined, parser tries to interpret the current token
as the beginning of the subsequence of the program from 𝐿(𝐺) that corresponds to Any in the
corresponding program from 𝐿(𝐺௦). In case there is an action available for Any, parser calls
SkipAny routine (fig. 2b), where firstly all the possible Reduce actions are performed and secondly
Any token is shifted. Note that we consider ACTIONS table to be cleared from Shift/Reduce conflicts
in favor of Shift action. Also, there is no additional checking if Shift action exists, because this
existence follows from the standard ACTIONS and GOTO construction algorithm. Having moved Any
to a viable prefix, parser looks for the first token which is explicitly expected in 𝐿(𝐺௦) program and
then continues parsing in the usual way.
In fig. 3, there is an LR(1) tolerant grammar for Java programming language written in the format
supported by LanD parser generator. As it can be seen, island entities, such as enumerables, classes,
methods, and fields, are clearly presented as solid rules. In comparison with a baseline Java

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

15

grammar, it is significantly shorter: the baseline grammar implementation for ANTLR parser
generator1 consists of 211 lines of lexer specification and 615 lines of parser description.

Fig. 3. Java LR(1) tolerant grammar

4.2 “Any” processing improvements

4.2.1 Consecutive “Any” problem

In fig. 1c, FIRST’ algorithm, which is the modified version of the standard FIRST, is presented. It
is intended to solve the problem of consecutive Any described in [10]. The problem manifests itself
when two or more Any tokens directly follow each other at the beginning of the sentence which can

1 https://github.com/antlr/grammars-v4/tree/master/java

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

16

be derived from the stack. In this case, the subsequent Any hides some stop tokens from the previous
one. Consider the following grammar 𝐺:
A = (a|b)+ B C; B = d | ; C = (e|f)? c

It can be simplified to the following 𝐺௦:
A = Any B C; B = d | ; C = Any c

The string abc$ ∈ 𝐿(𝐺) is supposed to be successfully matched by the parser built for 𝐿(𝐺௦),
because the following derivation may be performed:
𝐴 ⟹ 𝐴𝑛𝑦 𝐵 𝐶 ⟹ 𝐴𝑛𝑦 𝐶 ⟹ 𝐴𝑛𝑦 𝐴𝑛𝑦 𝑐.
Having met the token a, the tolerant parsing algorithm starts the first Any processing. If the standard
FIRST is used to find stop tokens, FIRST(Stack) set equals to {d, Any}, as a result, SkipAny
skips all the input and returns an error. Taking into account that Any is allowed to match an empty
sequence, FIRST’ modification looks beyond the second Any and, in general, beyond all the
subsequent Any symbols in searching some explicitly specified tokens which may follow a sequence
corresponding to these Any tokens. Stop token set found with FIRST’(Stack) equals to {d, c},
thus the first Any captures a and b tokens and stops on c, the second one matches an empty sequence,
and abc$ string is admitted to be correct.
This approach is proved to be enough to build working parsers for real programming languages,
such as C#, Java or PascalABC.NET. It can also be implemented for LR(1) through ACTION and
GOTO static analysis. However, on closer inspection it becomes clear that algorithms modified in this
way work correct only for a subclass of simplified grammars, satisfying an additional constraint:
Definition 2. Let 𝐺௦ = (𝑁௦, 𝑇௦ , 𝑃௦ , 𝑆௦) be a grammar simplified with respect to a context-free
grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆). Enumerate as 𝐴𝑛𝑦ଵ, 𝐴𝑛𝑦ଶ, …, 𝐴𝑛𝑦௡ all the 𝐴𝑛𝑦 entries from the right-
hand sides of productions from 𝑃௦, which appeared as a result of replacement of the corresponding
𝛾ଵ, 𝛾ଶ, …, 𝛾௡ subparts of the right-hand sides of productions from 𝑃 in compliance with Definition

1. Derivation 𝑆௦
∗

⇒ 𝛼௦𝐴𝑛𝑦௞𝐴𝑛𝑦௟ … 𝐴𝑛𝑦௧𝑏𝛽௦, where 𝑘, 𝑙, …, 𝑡 ∈ [1. . 𝑛], 𝛼௦, 𝛽௦ ∈ (𝑁௦ ∪ 𝑇௦)∗,
𝑏 ∈ 𝑇௦\{𝐴𝑛𝑦}, is not acceptable in 𝐺௦ if 𝑏 ∈ SYMBOLS(𝛾௞𝛾௟ … 𝛾௧).

Informally speaking, the token which is a stop token for the last Any in a sequence is not allowed to
appear in the area corresponding to one of the preceding Any, otherwise it will cause premature
completion of Any processing. Let 𝐺 has a different structure:
A = (a|b|c|d|e|f)+ B C; B = g | ; C = (h|i)+ a

It can be simplified to
A = Any B C; B = g | ; C = Any a

Herein, both replacements with Any are still satisfy the criterion 2c, but the restriction from
Definition 2 is not satisfied, as a may follow the second Any, and at the same time it is a valid
element of the area corresponding to the first one. As a result, while parsing abba$, the first Any is
matched with an empty token sequence because FIRST’([B, C]) equals to {a, g}, the second
Any also cannot include a, so, valid input is not accepted.
In practice, the most common case of consecutive Any appearance does not break the restriction
mentioned: in grammars we have developed, Any is often used as one of the possible variants for an
element of a list, so, all the Any tokens in the derivation of such a list originate from a single Any

entry in the grammar, therefore, derivation can be rewritten as 𝑆௦

∗
⇒ 𝛼௦𝐴𝑛𝑦௞𝐴𝑛𝑦௞ … 𝐴𝑛𝑦௞𝑏𝛽௦, and

the corresponding condition 𝑏 ∈ SYMBOLS(𝛾௞) is false in accordance with Definition 1. To cover
the general case, we introduce a mechanism for passing an additional information at Any processing
stage. Any entry can be supplemented with two options: Except and Include. For each of them, a
list of literals or token names can be passed as parameters. The concept of AnyExcept initially
appeared in LightParse parser generator [15], but there it was intended to compensate the lack of
outer context analysis while constructing the set of admissible tokens. Our intention is different:

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

17

symbols specified for Except option are supposed to compensate the lack of information in
consecutive Any problem: they are supposed to be explicitly specified tokens that may follow the
area corresponding to Any in 𝐿(𝐺). Include option allows one to approach this problem from a
different angle, specifying tokens that shouldn’t be interpreted as stop tokens despite their
appearance in FIRST’(Stack). So, for the grammar above we can use one of the following
simplified analogues:
A = AnyExcept(g,h,i) B C; B = g | ; C = Any a
A = AnyInclude(a) B C; B = g | ; C = Any a

Having renamed stopTokens sets built in fig. 1b and 2b to stopTokensBasic, we transform stop
token set construction for both LL and LR algorithms to
stopTokens := anyExceptSet.Count > 0
 ? anyExceptSet
 : stopTokensBasic.Except(anyIncludeSet);

where anyExceptSet and anyIncludeSet denote sets of tokens passed as option parameters for
Any currently being matched. For error recovery purposes discussed in Section 4.3, Any also
supports Avoid option. Its arguments are tokens the presence of which in the Any-corresponding
area signals about program incorrectness or wrong alternative choice. To take Avoid into account,
while loop condition transforms to

t ∉ stopTokens and t ∉ anyAvoidSet and t ≠ $.
In case token skipping is interrupted because current token equals to one of the Avoid arguments,
this token passes to Error routine as a second argument.
Unlike in LL(1), there can be a situation in LR(1) when we do not know for sure what particular
Any entry is being processed at the moment. This information is needed to access the corresponding
options. To add support of Any options in LR(1), we introduce an additional type of LR(1) conflict
called Any/Any conflict. It is reported when there is a state where multiple items have a dot before
Any, and is needed to be resolved for successful parser generation.

4.2.2 Nesting level checking

While writing a tolerant grammar, developer usually has to make an additional effort to determine
what bracketed areas may appear in the particular water, and if they can influence Any processing.
Intuitively, such areas are perceived as a whole, and when Any is written instead of some better-
grained water description, it may be missed that bracketed areas exist in that water in a real program.
These areas may contain something that also appears right after that Any and therefore should be
treated as a stop token. For example, being interested in fields of a C# class, we must capture a, b,
c, and d in the fragment
int a = 0, b = 1;
DateTime c = new DateTime(2019, 5, 29),
 d = new DateTime(2019, 5, 31);

At the same time, we are not interested in initializers, so, the first intention is to describe field
declaration with the rules
fields = type name init? (’,’ name init?)* ’;’
init = ’=’ Any

Unfortunately, these rules work only for the first declaration. The set {’,’, ’;’} is a stop token
set for Any, and in the second declaration, comma separates not only fields but also arguments
bordered with round brackets. Generally speaking, Any does not satisfy the formalization in this
case. At the same time, simplicity is the crucial property of the tolerant grammar, and the way in
which water is described above is more preferable than the following one:

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

18

init = ’=’ water
s_water = ’[’ (Any | s_water)+ ’]’
r_water = ’(’ (Any | r_water)+ ’)’
c_water = ’{’ (Any | c_water)+ ’}’
water = (Any | c_water | r_water | s_water)+

To return the first version of init rule to the boundaries of the simplified grammar definition, we
add to the parsing algorithms a capability to take into account nested bracketed structures. A pair of
brackets is described like
ROUND_BRACKETED : %left ’(’ %right ’)’

and nesting level is tracked by lexical analyzer. If several kinds of pairs are described, it is believed
that any pair can be nested in any pair. When Any is processed, it is allowed to end only at the same
depth at which it begins. To control this situation, SkipAny methods are modified uniformly both
for LL and LR. Firstly, at the beginning of a skip process, an additional variable is initialized:
depth := Lexer.CurrentDepth();

Secondly, in-loop Lexer.NextToken() call is replaced with Lexer.NextToken(depth).
Passing the initial nesting level to a lexer, we force it to read the input stream until the depth of the
next token equals the depth of the first token in the sequence corresponding to Any. Thus, Any-
corresponding area is allowed to include stop tokens in nested structures because these nested
structures are invisible to the parsing algorithm. Third modification is an additional checking to
prevent moving through the upper nesting level. In fig. 4, there are two cases allowed by the first
two modifications. Token a is the beginning of Any area, and b is a stop token. Obviously, the way
Any symbol is matched on the right breaks the semantic integrity of a bracketed area. We consider
such Any usage to be a bad practice, so, if lexer returns a token denoting the end of some pair and
rise to the level above the initial, and this token is not a stop token, parser reports an error which
means that grammar should be refined.

Fig. 4. Possible “Any” matching supported by nesting level tracking.

4.3 Error recovery

4.3.1 Algorithms

As noted in Section 1, in case water entities look similar to islands, developer has to refine patterns
and to add some antipatterns to avoid false positives. For a deterministic parsing, the problem of
water and island similarity may have unpleasant consequences not only when there is a full match
between island pattern and water entity, but even if a water entity and an island have a number of
common starting tokens. In this case, parser starts analyzing a water entity as an island, finds a
mismatch and fails to proceed analysis. It is important to note that this parsing failure indicates not
the incorrect 𝐿(𝐺) program but misinterpretation of the program in terms of 𝐺௦. Generalized parsing
algorithms are able to process such a situation exploring both ways an entity can be interpreted in
and rejecting the failed one. To get a similar benefit from our modified deterministic parsing while
preserving mostly linear complexity, we add special Any-based error recovery routines in both LL(1)
and LR(1) algorithms. These routines are shown in fig. 5.

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

19

Fig. 5. “Any”-based error recovery algorithms: (a) LL(1) algorithm, (b) LR(1) algorithm.

In the modified parsing algorithms, two types of error can occur. The first one happens when LL(1)
parser cannot match the current token or apply some alternative and Any is not acceptable at the
point, or when LR(1) parser has no shift or reduce action for the current token as well as for Any.
The second type occurs when Any processing starts and no stop tokens are found till the end of the
input or a token specified as Avoid argument is met. Recovery initiated for the first type does not
influence the algorithm linearity as parsing is resumed at the token where the error occurred. Acting
the same way for the second type is meaningless, especially when the end of the input is reached,
because significant part of islands might be uncontrollably skipped. Instead, a limited backtracking
is performed. In fig. 1b and 2b, Lexer.MoveTo(idx) call shifts a token stream pointer to the token
that triggered Any processing, at this point recovery is tried to be carried out. In Section 4.3.2, the
influence of this backtracking on parsing algorithm time complexity is analyzed. In both LL(1) and
LR(1) error processing algorithms, RecoveredIn set stores all the indices of tokens at which
recovery was once performed, so, it is guaranteed that from one recovery to another parsing process
moves at least one token forward.
Like in standard recovery algorithms [16, pp. 283–285], a set of nonterminals at which recovery can
be performed is defined. These nonterminals are called recovery symbols. Possible recovery symbols
can be revealed through the static grammar analysis. Given the grammar 𝐺௦ = (𝑁௦, 𝑇௦, 𝑃௦, 𝑆௦), we
formally define 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑆𝑦𝑚𝑏𝑜𝑙𝑠 set as follows:

ቄ𝑛 ∈ 𝑁௦ | 𝑛
∗

⇒ 𝐴𝑛𝑦 𝛼, ∄𝑛ᇱ ∈ 𝑁௦: ቀ𝑛
∗

⇒ 𝑛ᇱ𝐴𝑛𝑦 𝛼 ∧ 𝑛ᇱ
∗

⇒ 𝜀ቁቅ , 𝛼 ∈ (𝑁௦ ∪ 𝑇௦)∗.

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

20

Recovery symbols are pre-computed at parser construction stage. Developer can disable recovery at
all or specify particular nonterminals from this set which should be used for recovery, otherwise, all
the elements of the set are taken into consideration when Error routine is called.
In the context of a deterministic tolerant parsing problem, recovery symbols have specific semantics.
They represent decision points at which parser may choose the wrong alternative, try to match a
water entity as an island, and provoke an error. Recovery itself means returning to a decision point
through the grammar ancestors of the currently unmatched token or unparsed nonterminal and
changing the interpretation of the part of the input that is already associated with a recovery symbol’s
subtree to water. More precisely, the part of the input from the first token mistaken for an island part
to the first token at which the difference between an island pattern and an actual water entity
manifests itself is supposed to be the beginning of the sequence corresponding to Any from which
the water alternative starts. Backtracking to the token a wrong decision was made at is not needed
in this interpretation. The end of an Any-corresponding sequence is looked for with a usual SkipAny
call, then parsing continues in an ordinary way. In fig. 3, entity is one of the recovery symbols. It
allows the parser to recognize classes, enumerables, methods, and fields as islands, while annotation
definitions, constructors, initialization blocks, etc. are skipped as the water, sometimes with the
involvement of recovery mechanisms.
LL(1) error recovery algorithm is presented in fig. 5a. We take advantage of the fact that at any stage
of the top-down parsing a partially built syntax tree is available, and blank nodes for what is expected
are on the stack. Knowing the tree node corresponding to the unparsed symbol, we may find a
recovery symbol node by moving through its ancestors. The higher we go, the wider area will be
reinterpreted. Simultaneously with walking up the syntax tree, right siblings of the currentNode
should be removed from parsing stack as they are unparsed parts of the interpretation being rejected.
The appropriate recovery symbol is considered to be found if it satisfies two additional conditions.
Firstly, the water alternative should not be the alternative in favor of which the decision was
originally made, otherwise no reinterpreting takes place as error actually occurred in the water. To
check it, GetDerivation is called. It takes the built part of recovery symbol’s subtree and returns
a leaf sequence which is a partially revealed part of the 𝐿(𝐺௦) program, derived from this symbol.
This sequence must not start with Any. Secondly, in case error took place at Any skipping,
IsUnsafeAny prevents parsing resumption on Any from the recovery symbol alternative if new
skipping leads to the same erroneous situation. The decision is made on the basis of old and new
stop token sets comparison and Avoid options analysis.
For LR(1) algorithm, recovery is more complex and heuristic due to the nature of a bottom-up
parsing. Unlike in LL case, we do not know for sure what are the exact entities that are currently
being analyzed, so, we try to build a set of possible candidates basing on the information stored on
the stacks. In fig. 5b, there is an LR(1) error recovery routine. On each iteration of do-while loop,
one of the symbols already matched is popped along with the state parser went to after this successful
matching, then basePDI set is constructed. It consists of the current state items having the dot before
the last popped symbol. Productions of the items added to this set are possible participants of the
erroneous area derivation. Basing on basePDI, PDI set is constructed in a way that looks like
inverted CLOSURE [16, pp. 243–245] algorithm. Additional PDI items capture the higher-level
grammar entities from which the area that is needed to be reinterpreted may be derived.
Recovery algorithms presented simplify the process of grammar extension and reduction. Recovery
symbol alternatives become grammar building blocks: in case we are not interested in some Java
island, its alternative can be excluded from entity rule, then program areas previously
corresponding to that alternative are recognized as the water, possibly through recovery algorithm
application. Inversely, to add a support for class constructors in the grammar in fig. 3, we have to
write only one constructor rule and add this symbol in entry alternatives list, then constructors
stop being interpreted as the water, because the rule appears allowing the parser to analyze them
from beginning to the end with no error occurred.

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

21

4.3.2 Complexity analysis

As noted, errors happening on Any processing require limited backtracking. The particular increase
in running time of the algorithm depends on number and length of backtracked sequences. From the
prohibition of multiple recovery at the same token, it follows that there can be only one backtracking
to a particular position, so, the worst case is when the following situation repeats sequentially for
each token except the first one: Any processing starts on the token, fails by reaching the end of the
input and backtracks to that token, then recovery starts, the token matches successfully with the help
of the water alternative, and the next token becomes the token under consideration. In this scenario,
a number of times the token is examined equals to its sequential number counting from one. For the
𝑖௧௛ token, 𝑖 − 1 examinations are occurred on Any skipping started at previous tokens and at the
current one, and 1 examination is for some final match. As backtracking itself consists of a simple
index reassignment, it does not increase this counter. It can be shown that this worst-case scenario
takes place for inputs ac$, aac$, aaac$, etc. and a parser generated by the following LL(1)
grammar:
S = a Any b | Any S |

Fig. 6. Fragment of the C# tolerant grammar.

The total number of token examinations equals to
ଵ

ଶ
𝑛ଶ +

ଵ

ଶ
𝑛, it means that our algorithms are 𝑂(𝑛ଶ)

in the worst case. However, experiments show that the percentage of recoveries required
backtracking is insignificant in comparison with the total number of recoveries and tokens: for
example, in all the Java projects from subsection 5.2 taken together, there are 27393 files splitting

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

22

at 26255589 tokens, while total number of recoveries is 32683 for LL(1) and 31861 for LR(1), and
only 20 recoveries for each type of parsing are performed after on-Any error.

5. Experiments
To test the algorithms described in Section 4, tolerant grammars for the following programming
languages, markup languages and specification formats are developed: C#, Java, PascalABC.NET,
XML, Markdown, YACC, and Lex. All the sources are available on GitHub2. For a large-scale
testing, C# and Java are chosen as the languages complex enough and having a large number of
well-known open-source repositories. For both languages, LL(1) and LR(1) tolerant parsers are
generated with LanD parser generator on the basis of the corresponding tolerant grammars.
As tolerant parsers are created to capture particular islands, the purpose of the experiment is to
evaluate precision and recall of this capturing. Stages of the experiment are the same for both
languages. For each of the projects under consideration, tolerant parser is firstly applied to parse all
the project files written in the corresponding language. By traversing syntax trees built, types and
names of the islands are extracted in report files, per report for each island type. This extraction does
not require some severe postprocessing: island type is actually a node type, and name is stored in
one of this node’s children. Secondly, the same files are parsed by a baseline parser. Roslyn is used
as a baseline parser for C#, and Java parser is generated with ANTLR from the full grammar of the
language3. Then information about program entities that are specified as islands for our tolerant
parsers is extracted from trees built by these baseline parsers, so the second group of reports is
obtained. At the third stage, two reports for the same type are compared in an automated way to
eliminate the human factor. Matches are excluded, so only the information about entities found by
one parser and not found by another one remains. It is then explored manually.
For each of the languages, there is a table whose rows correspond to projects parsed and columns
correspond to island types. There is also an additional “Total files” column allowing to estimate the
scale of the project. In a table cell, there is a number of islands of the corresponding type found by
our tolerant parser for the corresponding project. We have obtained that these numbers are the same
for LL(1) and LR(1) parser, so we do not need two separate tables for a single language. In case
tolerant parser finds less island entities than the baseline one, the number of entities missed is
specified in parentheses with a minus sign. In addition to the tables, a detailed analysis of
mismatches is provided.

5.1 C# tolerant parsing
For C# programming language, five open-source projects from different domains are considered:
 Roslyn project includes C# and Visual Basic compiler sources and lots of test files capturing

different complex and uncommon variants of a C# program;
 PascalABC.NET consists of the corresponding language compiler and IDE sources, it has a

relatively long history reflected in the legacy code written by differently experienced
contributors;

 ASP.NET Core refers to the web development domain: it is a cross-platform .NET-based web
framework;

 Entity Framework Core is an object-relational mapper allowing one to work with a database
using .NET objects;

 Mono is an open source third-party implementation of Microsoft’s .NET Framework including
C# compiler, Common Language Runtime virtual machine, lots of core libraries and, again, a
great number of test files.

2 https://github.com/alexeyvale/SYRCoSE-2019
3 https://github.com/antlr/grammars-v4/tree/master/java

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

23

Parsing results are presented in Table 1, a fragment of the tolerant LR(1) C# grammar is presented
in fig. 6. Note that classes, structures, and interfaces correspond to a single grammar entity, so their
total number presented in a single “Classes” column of the table. In the discussion below, footnotes
contain paths to files relative to the root directory of the corresponding project.
For Roslyn sources, there are 5 methods found by Roslyn and missed by LanD. Four of them are
local4 methods5 (methods declared inside other methods), this feature recently appeared in C# 7.0.
In case this kind of methods is important for a particular task, it is trivial to add their support in the
grammar. One needs to modify the grammar above by adding method symbol as an alternative to
Any inside the block. It is worth noting, that Roslyn project is the only project where the usage of
this feature is revealed. The 5th lost method is from a test file where the text of the program is saved
in Japanese Shift-JIS encoding6. The class name written in Japanese provokes an error which does
not affect the detection of the class itself but stops parser from further class content analysis. We
consider the usage of national alphabets for entity naming to be a rare case, but, if necessary, ID
token can be adopted as needed.
Two properties from different files are not found by LanD, in both cases it is caused by missing
expression for expression-bodied property preceding the uncaptured one. The expression depends
on external conditional compilation symbols and is not substituted at all in case the isolated file is
analyzed. In the following code, IsWindows is not recognized by LanD, because it is interpreted as
a part of expression for Configuration:
public static ExecutionConfiguration Configuration =>
#if DEBUG
 ExecutionConfiguration.Debug;
#elif RELEASE
 ExecutionConfiguration.Release;
#else
 #error Unsupported Configuration
#endif
public static bool IsWindows =>
 Path.DirectorySeparatorChar == ’\\’;

This kind of inconsistency can be partially handled by using AnyAvoid(MODIFIER) instead of Any
in init_expression grammar rule. For the example above, this handling leads to loss of the
information about Configuration property, as it will be treated as water, but protect the following
entities starting with the one that starts with the keyword.
For PascalABC.NET and ASP.NET Core, all the entities found by Roslyn are also found by LanD.
For Entity Framework Core, the difference in number of fields and methods is caused by the
situation7 similar to the one presented in the code above, and the difference in number of properties
is provoked by property types containing Greek letters8. The latter refers us again to the national
alphabets problem.
Voluminous results are obtained for Mono sources. Most losses are concentrated in files that are
incorrect in terms of a full C# grammar: as an example, 26 files9 contain unclosed conditional
compilation directives and mismatch in the number and type of opening and closing brackets, half

4 src/Compilers/CSharp/Test/Emit/Emit/EndToEndTests.cs
5 src/Compilers/CSharp/Portable/FlowAnalysis/NullableWalker.cs
6 src/Compilers/Test/Resources/Core/Encoding/sjis.cs
7 test/EFCore.SqlServer.FunctionalTests/Query/SimpleQuerySqlServerTest.Where.cs
8 test/EFCore.Tests/ModelBuilding/ModelBuilder.Other.cs
9 mcs/errors

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

24

of the 122 missed classes belongs to a group of files10 containing LINQ to SQL code written in
accordance with Visual Basic syntax, there are also files with .cs extension written in a specific
format, such as a skeleton file11 for jay parser generator, where each line starts with a point.
However, there is also a group of missed entities that illustrates a real LanD drawback. These entities
are contained in test-async12 and test-partial13 groups of Mono test files.

Table 1. Number of entities found in C# projects.

Project Total files Enums Classes Fields Properties Methods

Roslyn 8759 482 23705 20265 23127
(-2)

116312
(-5)

PABC.NET 2802 359 5522 16739 12023 37027

ASP.NET
Core

7356 333 12604 10214 16301 44163

EF Core 2997 101 7783 4687
(-1)

16941
(-2)

26421
(-135)

Mono 37224 4928
(-1)

60187
(-122)

166958
(-67)

99167
(-36)

309580
(-670)

At grammar design and refinement stage, we did not take into consideration, that there are some
keywords in C# that appeared recently and were implemented as contextual keywords to protect
legacy code. It means that they still can be names for classes, methods, etc. For example, the
following code is valid in C# (method bodies are omitted):
namespace async
{
 partial class async
 { partial void partial(); }
 partial class partial
 {
 // async method named ’async’
 async Task<async> async() { ... }
 // method named ’async’ returning an object of type ’async’
 async async(async async) { ... }
 }
}

Proper interpretation of a contextual keyword depends on a heavy context analysis going far beyond
LL(1) or LR(1) parsing. In Roslyn sources, there is a special
ShouldAsyncBeTreatedAsModifier method checking lots of specific conditions, each of which
covers a particular async placement relative to non-contextual keywords, predefined types, and
partial keyword. Besides, up to 2 additional tokens are required to make a correct decision.
Fortunately, to meet contextual keywords used as identifiers seems to be almost improbable. In our
experiments, such cases were revealed only in synthetically created testing files, not in a real
production code. Moreover, using async or partial contextual keywords as public entity

10 mcs/tools/sqlmetal/src/DbLinq/Test
11 mcs/jay/skeleton.cs
12 mcs/tests/test-async-*.cs
13 mcs/tests/test-partual-*.cs

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

25

identifiers one breaks general C# naming conventions14 which are usually used as a basis for
particular code style rules being applied inside a developers team.

5.2 Java tolerant parsing
For Java programming language, the following projects are considered:
 Java Development Kit is a toolbox consisting of Java compiler, core libraries, and Java

Runtime Environment;

 Elasticsearch is an engine for a full-text search;
 Spring Framework is a Java framework used to build applications for different subject

domains;
 RxJava is a library for composing asynchronous and event-based programs.
Parsing results are presented in Table 2, and a tolerant LR(1) Java grammar is presented in fig. 3.
As it can be noted, there is the only difference between baseline and tolerant parsing results.
FIND_MASK, NEW_MASK, and RELEASE_MASK fields are missed by the tolerant parser in the
following code:
private final static int
 CREATE_MASK = 1<<CREATE,
 FIND_MASK = 1<<FIND,
 NEW_MASK = 1<<NEW,
 RELEASE_MASK = 1<<RELEASE,
 ALL_MASK = CREATE_MASK|FIND_MASK|NEW_MASK|RELEASE_MASK;

Unlike all the other types of brackets considered in Section 4.2.2, angle brackets cannot be defined
as a pair in the LanD grammar because they may appear in the program in different meanings, some
of which assume they can be used separately from each other. However, in case they bracket type
parameters, it is important to match these parameters as a whole to prevent inner commas from being
interpreted as field separators. It is hard to resolve this problem correctly staying in the tolerant
parsing boundaries and, actually, in the boundaries of a context-free parsing and lexing too [17]. To
make a correct decision, an analysis of the context angle bracket appears at is needed. Recovery
algorithm combined with Avoid-based error triggering helps to handle inputs like
private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15);

by interpreting all the angle brackets as opening for a type_parameter in fig. 3, triggering an error
on ’;’ token which is forbidden in type parameters, and reinterpreting the outermost type parameter
as Any from init_part water alternative. However, this processing cannot prevent the loss of some
middle fields from the group of fields defined simultaneously.

Table 2. Number of entities found in Java projects

Project Total files Enums Classes Fields Methods

JDK 7704 151 10590 46176 (-3) 88709

Elastic 10972 387 14914 36830 94722

Spring 7063 100 12060 18402 61515

RxJava 1654 36 2728 6258 19931

5.3 Summary
As experiments show, both C# and Java tolerant parsers using our modified LL(1) and LR(1)
algorithms are viable and allow one to find almost all the islands that can be found with a baseline

14 https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

26

parser. Mismatches cannot be considered as a tolerant parsing disadvantage: the ones occurred in
erroneous C# programs are not unexpected since our algorithms are designed to work with correct
programs, while for the most part of the valid programs containing lost islands, possible grammar
fix can be easily suggested due to grammar simplicity and extensibility. However, there is also a
tiny group of valid programs for which it is impossible to catch the missing island without
performing an additional context analysis. This problem is actually not a tolerant parsing problem
but a context-free analysis problem in general.

6. Conclusion
In the present paper, several algorithms and algorithm modifications aimed at island-grammars-
based deterministic tolerant parsing are proposed. LR(1) parsing algorithm modification is
performed in accordance with the simplified grammar formal definition previously developed by the
author of the paper. A special Any symbol is integrated into the algorithm to add a capability to
match token sequences which are not explicitly described in the grammar. LR(1) tolerant grammars
tend to be shorter and more comprehensible than their LL(1) analogues written for previously
modified LL(1) algorithm. Additional restriction defining simplified grammars subclass for which
LL(1) and LR(1) tolerant parsing algorithms are always able to correctly handle consecutive Any
problem is revealed. Any processing mechanisms are introduced to expand correct consecutive Any
processing to entire simplified grammars class. Nested bracketed structures tracking is implemented
to give the grammar developer a possibility not to take into consideration the content of in-water
bracketed areas while replacing water description with Any. Error recovery algorithms are proposed
for LL(1) and LR(1) tolerant parsing. Unlike the standard error recovery, they are designed not to
resume parsing for an incorrect program, but to find the area which was mistakenly interpreted as
an island and reinterpret it as a water. Through the series of experiments with C# and Java parsers
generated by tolerant grammars developed for LanD parser generator, modified LL(1) and LR(1)
parsing algorithms are proved to be able to successfully analyze the source codes of industrial
software products.
Though the current tolerant parsing implementation is enough to work on solution of the crosscutting
concerns markup problem mentioned in Section 1, an improvement of parsing results for
syntactically incorrect programs may broaden the markup tool application opportunities. We have
an assumption that Any-based recovery responsibility area may be explicitly specified for a
particular grammar, and outside of this area some other recovery algorithms aimed at parsing
resumption for an incorrect program can be used. Thus, our tolerant parsers will be capable to
capture constructs of interest in such a program, like baseline parser successfully does in Section
5.1, instead of totally failing or interpreting all of these constructs as a single water piece. Besides,
as performance was not the key goal until the present, we were satisfied with the generally linear
dependency between input length and running time of the algorithms. However, basing on the
knowledge of LanD implementation details, we are sure that performance can be improved (not in
terms of time complexity classes, but in terms of absolute values of the algorithm running time). So,
the algorithms and structures optimization is the second possible direction for further work on
tolerant parsing.

References / Список литературы
[1]. Moonen L. Generating robust parsers using island grammars. In Proc. of the Eighth Working Conference

on Reverse Engineering (WCRE’01). IEEE Computer Society, 2001, pp. 13–22.
[2]. Afroozeh A., Bach J.-C., van den Brand M., Johnstone A., Manders M., Moreau P.-E., Scott E. Island

grammar-based parsing using GLL and Tom. Software Language Engineering: 5th International
Conference, Revised Selected Papers. Springer Berlin Heidelberg, 2013, pp. 224–243.

[3]. Moonen L. Lightweight impact analysis using island grammars. In Proc. of the 10th International
Workshop on Program Comprehension (IWPC). IEEE Computer Society, 2002, pp. 219–228.

Головешкин А.В. Толерантный синтаксический анализ с использованием модифицированных алгоритмов LL(1) и LR(1) со встроенной обработкой
символа «Any». Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 7-28

27

[4]. Scott E., Johnstone A. GLL parsing. Electronic Notes in Theoretical Computer Science, 2010, vol. 253,
issue 7, pp. 177–189.

[5]. Tomita M. Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems. Norwell, MA,
USA: Kluwer Academic Publishers, 1985, 201 p.

[6]. Goloveshkin A.V., Mikhalkovich S.S. LanD: a framework for layer-by-layer program development, In
Proc. of the 25th conference “Modern information technologies: tendencies and perspectives of
evolution”, 2018, pp. 53–56 (in Russian) / Головешкин А.В., Михалкович С.С. LanD:
инструментальный комплекс поддержки послойной разработки программ. Труды XXV
всероссийской научной конференции «Современные информационные технологии: тенденции и
перспективы развития». Издательство Южного федерального университета, 2018, cтр. 53–56

[7]. Goloveshkin A.V. Searching and analysing crosscutting concerns in marked up programming language
grammar. University News. North-Caucasian Region. Technical Sciences Series, 2017, issue 3, pp. 29–34
(in Russian). DOI: 10.17213/0321-2653-2017-3-29-34 / Головешкин А.В. Поиск и анализ сквозных
функциональностей в размеченной грамматике языка программирования. Известия вузов. Северо-
Кавказский регион. Технические науки, 2017, вып. 3, стр. 29–34. DOI: 10.17213/0321-2653-2017-3-
29-34

[8]. Fuksman A. Technological Aspects of Program Design. Moscow: Statistika, 1979, 184 p. (in Russian) /
Фуксман А.Л. Технологические аспекты создания программных систем. Москва: Статистика, 1979,
184 стр.

[9]. Conejero J., Hernández J., Jurado E., van den Berg K. Crosscutting, what is and what is not?: A formal
definition based on a crosscutting pattern. Tech. Rep. 5/TR28/07, 2007, 30 p.

[10]. Goloveshkin A., Mikhalkovich S. Tolerant parsing with a special kind of “Any” symbol: the algorithm
and practical application. Trudy ISP RAN/Proc. ISP RAS, 2018, vol. 30, issue 4, pp. 7–28. DOI:
10.15514/ISPRAS-2018-30(4)-1.

[11]. Mössenböck H. (2014) The compiler generator Coco/R. Available at:
http://ssw.jku.at/Coco/Doc/UserManual.pdf, accessed 07.02.2019.

[12]. Malevannyy M. Lightweight parsing and its application in development environment. Informatization and
communication, 2015, issue 3, pp. 89–94 (in Russian) / Малёванный М.С. Легковесный парсинг и его
использование для функций среды разработки. Информатизация и связь, 2015, вып. 3, стр. 89–94.

[13]. Grune D., Jacobs C. J. Parsing Techniques: A Practical Guide (2nd Edition). New York, USA: Springer-
Verlag New York, 2008, 662 p.

[14]. Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, and Tools (2nd Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006, 1000 p.

[15]. Malevannyy M., Mikhalkovich S. Aspect markup of a source code for quick navigating a project. In Proc.
of the 11th Central and Eastern European Software Engineering Conference in Russia, ser. CEESECR ’15.
New York, NY, USA: ACM, 2015, pp. 4:1–4:9.

[16]. Aho A., Ullman J. Translations on a context free grammar. Information and Control, 1971, vol. 19, issue
5, pp. 439–475.

[17]. Van Wyk E.R., Schwerdfeger A.C. Context-aware scanning for parsing extensible languages. In Proc. of
the 6th International Conference on Generative Programming and Component Engineering, New York,
NY, USA: ACM, 2007, pp. 63–72.

Информация об авторе / Information about author
Алексей Валерьевич ГОЛОВЕШКИН в 2015 году получил степень магистра по направлению
«Фундаментальная информатика и информационные технологии» в Южном федеральном
университете, Ростов-на-Дону, Россия. В настоящее время проводит исследования на базе
данного университета, готовит диссертацию на соискание учёной степени кандидата
технических наук. К сфере его научных интересов относятся компиляторы, языки
программирования, программная инженерия.

Alexey Valerievitch GOLOVESHKIN obtained the master’s degree in fundamental informatics and
information technologies in 2015 at Southern Federal University, Rostov-on-Don, Russia. Currently
he does research at Southern Federal University working on the PhD thesis. His current research
interests include compilers, programming languages, and software engineering.

Goloveshkin A.V. Tolerant parsing using modified LR(1) and LL(1) algorithms with embedded “Any” symbol. Trudy ISP RAN/Proc. ISP
RAS, vol. 31, issue 3, 2019. pp. 7-28

28

