Tpyovt UCIT PAH, mom 31, soin. 3, 2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-2

Graphic DSL for Mobile Development

A. Gudiev, ORCID: 0000-0002-0674-8621 <arturgudiev93@gmail.com>
A. Grazhevskaya, ORCID: 0000-0002-5069-443X <sagrapro7@gmail.com>
Saint Petersburg State University,

7/9 University Embankment, 199034, Russia.

Abstract. Due to the increase in the number of platforms, languages and methods which are used in mobile
development, the general technology elaboration problem is quite relevant nowadays. Graphic languages
simplify software development, allowing to present program structure in terms of visual diagrams. Besides,
graphic languages allow software engineers to avoid a lot of mistakes at the initial stages of design and
development. Graphic domain-specific languages (DSL) facilitate application development by use of concrete
domain abstractions. In this approach the mobile application structure will be presented in the form of various
controllers connected among themselves through ports and corresponding to some complete fragments of logic.
Controllers in turn consist of various states which allow to describe a data flow in the controller using various
element connections. In each state the UI form which contains the graphic primitives and events connected with
primitives can be described. Besides, code generator for UbigMobile platform is implemented which will allow
to generate UbigMobile applications by the visual diagrams. At the end of the article demonstration examples
on which the implemented DSL language was tested are given. The application allowing the user to get the
trains schedule is provided in the first example. In the second application the user can log in to receive a check-
in code.

Keywords: dsl; mobile development

For citation: Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc.
ISP RAS, vol. 31, issue 3, 2019. pp. 29-34. DOI: 10.15514/ISPRAS-2019-31(3)-2

Mpadmueckun DSL ansa pa3paboTkm MOOGUMBbHLIX NPUNOXEHUN

A.B. I'voues, ORCID: 0000-0002-0674-8621 <arturgudiev93@gmail.com>
A.C. I'paxcesckas, ORCID: 0000-0002-5069-443X <sagrapro7@gmail.com>
Canxm-Ilemep6ypacxuii ['ocyoapcmeennviii Ynusepcumem,

199034, Poccus, e. Canxkm-Ilemepoype, Ynueepcumemckas nabepesicnas 7-9

AnHoTanusi. B cBsi3u Cc yBenuueHHeM KONMYECTBA IUIAT(OPM, S3BIKOB M METOJOB, HCIONB3YIONIUXCA B
pa3paboTke MOOWJIBHBIX TNPWIOKEHHH, 3a1ada BbIPAOOTKM OOIICH TEXHOJOTMHM JIOBOJBHO AaKTyaslbHA.
I'paduueckue s36IKU YIPOIIAIOT Pa3paboTKy, HO3BOJISLS IIPEACTABUTE CTPYKTYPY IIPOrPaMMHOT0 00ecIIedeHus
B BHie rpadudeckux quarpamM. Kpome Toro, rpadudeckne s3bIKM IOMOIaIOT H30€KaTh MHOKECTBA OLMIMO0K
ele Ha HAYalnbHBIX JTalaX NPOEKTHPOBAHUA M pa3paboTku. I'paduueckue mpeaMeTHO-OPHEHTUPOBAHHBIE
s3pikd (DSL) oGneruaror pa3paboTky Hporpamm IyTeM IPUMEHEHUs aOCTpaKIUil KOHKPETHOI mpeMeTHON
obnacty. B nanHol paboTe IpeAcTaBIeH apXUTEKTYPHBIH MIa0JI0H MOOMIBHOTO IPHIIOXKEHNS X CO3JaHHBIH Ha
ero ocHoBe rpaduueckuii DSL, no3Bosstomuid ONMChIBaTh OCHOBHYIO CTPYKTYPY MOOMIIBHOTO NMPUIIOKEHUS B
TepMHHAX KOTHPOJJIEPOB, COCTOSHMIT M IEPEX00B MeX Ty HUMH. IIpu TakoM 1o1xoe CTPyKTYpa MOOHIBHOTO
MPIIOKEHUs OyNeT Ipe/ICTaBIeHa B BUJE Pa3INIHbIX KOHTPOILIEPOB, CBA3aHHBIX MEXK/y COO0I IIpH IIOMOIIU
NOPTOB M COOTBETCTBYIOIIMX HEKOTOPHIM LEIOCTHBIM (pparMeHTaM JIorukd. CaMi KOHTPOJUIEPHI B CBOIO
odepenb COCTOAT M3 PA3THYHBIX COCTOSIHHM, KOTOPBIE MO3BOJIAIOT OMHCATh MOTOK JAaHHBIX B KOHTPOJIEpe
IyTeM COEJMHEHHS NpU TOMOIIM IEMEHTa-CBA3U. B KaXIOM COCTOSHHH MOXKET OBITH ONHCAHA DKPaHHAS
(dopma, B KOTOpOH cozepikaTcs rpauuecKue IPUMUTUBBL U CBS3aHHBIC C HUMH COOBITHS, CpadaThIBAIONIUE
npu ux mMeHeHun. Kpome toro, uist paspaboranHoro DSL peann3oBaHa aBTOMAaTHYECKYIO FeHepanus Kojia

29

Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 29-34

quist wiatdopmbl UbigMobile. B koHIe ctaThy MPUBOAATCS 1EMOHCTPALMOHHBIE IPUMEPBI, HA KOTOPBIX ObLI
anpobupoBan DSL s3pik. B KkauecTBe mnepBoro mnpuMmepa NIPHBOAUTCS HPHIOKEHHE, HNO3BOJSIONIEE
I0JIE30BATEII0 IOCMOTPETh PACIIHCAHNE IEKTPHYeK. BO BTOPOM IIPHIIOXKEHHH [10JI30BATEIb MOXET BOUTH B
CHCTEMY IS TOro, 4ToOBI Momy4nTh check-in ko.

KuroueBrbie cioBa: TIPEAMETHO-OPUECHTUPOBAHHBIE SA3BIKU; MOOHJIBHAS pa3pa60TKa

Jsi umrupoBanmsi: I'ynueB A.B., I'paxesckas A.C. I'paduuecknit DSL nns pa3paboTkn MOOMIBHBIX
npunoxxennit. Tpynst UCIT PAH, Tom 31, Bbim. 3, 2019 1., ctp. 29-34 (Ha anrnmiickom s3bike). DOI:
10.15514/ISPRAS-2019-31(3)-2

1. Introduction

A large number of platforms, languages, and methods are used in mobile application development.
Existing mobile development tools significantly differ from each other, and the common technology
implementation problem is still relevant.

There are various ways of the high-level description of mobile application — architectural patterns
mvc, pac, microkernel, etc [1]. All these patterns were borrowed from other software areas, are quite
actively applied during mobile application development, but not quite correspond to their nature.
Mobile applications differ from desktop and web programs [2]. Mobile applications are commonly
used for short sessions, more focused on specific objectives performance.

Use of a suitable architectural pattern allows to increase considerably application development
efficiency, but a bigger result can be achieved by graphic languages usage. DSL is the programming
language in terms of the concrete subject domain which is applied to the solution of concrete type
tasks [3], [4], [5]. Graphic DSL languages help to represent applications using visual diagrams. The
result code will be generated according to these diagrams.

The purpose of this article is to develop an architectural template for mobile applications and to
create graphic DSL based on it. DSL should allow describing the main logical application structure
in terms of states, controllers and transition conditions between them.

2. Tools

The Modeling SDK technology is used for the graphic DSL implementation [6]. Modeling SDK is
the plugin for Visual Studio intended for visual domain-specific languages development. Visual
DSL development happens in the following order. At first, the metamodel (the set of all syntactically
correct diagrams) is developed and edited, the implemented classes are generated. Then a DSL
package compilation and debugging take place in an experimental instance of Visual Studio.

For metamodel programming, the graphic editor of Modeling SDK is used, but also it is possible to
redefine or add new methods to the generated partial classes of the C\# language. The T4 language
is used for code generation [7]. The Dsl and DslPackage projects are automatically created in the
new solution of Visual Studio. In the Dsl project, various metamodel artifacts of the created DSL
are stored. DslPackage project contains the user interface settings.

3. Controllers and states model

An application state corresponds to some complete logic fragment. The result of state change is data
transfer which is logically finished and clear to other states.

It is convenient to group states and transition conditions into controllers by their logical connectivity,
data community, Ul forms, transition frequency and data transfer between states. Grouping states
into controllers gives an opportunity to define more strong transition logic, allowing transitions
between states in the controller and forbidding them between conditions of unconnected controllers.
The main application cycle is run by the special mechanism starting and switching controllers of
states. Each controller has an entry point and an opportunity to set input parameters when an
application switches to it. There can be several exits in a state. An application can return to the
caused controller, switch to the next controller, etc. Execution logic is implemented in terms of the
30

T'yanes A.B., I'paxesckas A.C. I'padraeckuit DSL st pa3paboTkn MOOHIBHBIX mpuioxenuit. Tpyowt UCIT PAH, Tom 31, Bbim. 3, 2019 1.,
crp. 29-34

Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 29-34

finite-state machine in the controller. Each controller has a set of the predefined states (in particular,
initial and final states), and it is possible to add new states.

Mobile application implementation by means of controllers and states model allows to centralize its
logical basis, the structure of the code becomes evident. When using controllers, the aim of the
mobile application developer comes down to describing the necessary logical controllers, state and
conditions of transition.

4. Graphic DSL Description

The model of controllers and states was tested on mobile applications of different classes and proved
the efficiency. But the best results can be achieved, having taken this model as a basis of graphic
DSL for mobile applications (see fig.1)

#3 Controller
DomainClass

= Domain Properties = Domain Properties

F Kind: String &= Decorators

K isFirst : Boolean B Name
B

Generalization

subdasses | pomamststonsnip A7 || SUperdass Y s "
L o1 Domair
= Domain Properties
ControllerHasPorts o
— - Decorators
Ports | pomainselstionship g [COntroller S o acntrort
[01 {7 oo
A
ControllerHasStates o StateShape A
states [o ? Controller %3 state it
or 01 Domainclass = Domain Properties

= Domain Properties = Decorators
J isFirstState : Boolean ® Name
i ~

% InPortShape A
PreviousStates DemainRsiationship A | NextStates %5 state v Port
o 0 DomainClass =
= Domain Properties Domain Properties
& condition : St = Decorators
® Image

Fig. 1. Language implementation in Modelling SDK

Basic elements of the language are controllers and its states. States are placed on the controller, can
connect among themselves and also to ports of the controller for the conditions description of an
entrance and an exit from it. Each state opens in the separate diagram on which conditions of an
entrance, an exit from a state and its internal logic are described. The logic of states includes a
display of UI forms, processing of their events, services calls, conditions checking, etc. There is a
display of a UI form for each state in the language. To connect the existing screen form with a state
the ShowForm element is used.

5. Code generation

The language of T4 templates is used for code generation. The main components of the T4 language
are directives, blocks of the text and control units. For a generation of the unchangeable code, text
blocks are used, and dynamic parts are implemented by means of control units.
As aresult of generation, the controllers' classes appear. Each controller has several states presented
in the transfer type form. Process of work is implemented in terms of the finite-state machine. On
links between states, the template of transitions are implemented. Controllers can also have ports.
Ports are used for transitions between controllers.
The resulting code is applied to UbigMobile platform [8]. UbiqMobile platform is aimed to cross-
platform mobile development. The main features of the platform are that the business logic of all
applications is executed on the server. And mobile devices have only thick clients to represent the
result of application work.

31

6. Samples

The purpose of the first sample is to display the train schedule for the user. The application consists
of a single controller and two states. In start state, the user can choose departure and destination
stations (see fig.2). After clicking on the button, the application will switch the current state from
the first state to the second one (see fig.3).

el

MainController

StartState tJD} ShowsState

ChooseStationForm

ShowScheduleForm
ShowState
ShowButtonClicked StartState | =
g ok tartStaty

[} BackButtonClicked
FromLabel -
ToLabel Title
LeftComboBox

. R N ListBox

RightComboBox /’E):l EG:I . BackButton
LabelPanel
StackPanel2
ShowButton

Fig. 2. Schedule application scheme

Application0 Application0

Cankr-lNerepbypr : YHusepcurer

Otkyna Kyna 06:00 EXeIHEBHO
0620 no pabounm
06:40 EXeIHEBHO
07:00 no pabounm
07:30 EXeIHeBHO
08.00 EXeIHeBHO
08:30 Xe/IHeBHO
YHuBepCHTET Crpensia 09:13 Xe/IHeBHO
09:45 EXEeAHEBHO
1030 no pabounm
13:10 eXeIHeBHO
1340 eXe/IHeBHO
1440 EXeIHeBHO
1540 EXeIHeBHO
1600 no paboumum
16:30 eXeNHEeBHO

Fig. 3. Schedule application Ul forms

32

T'ymues A.B., I'paxenckas A.C. I'papuaecknit DSL s paspabotku MoOUIBHBIX npunoxenuit. Tpyost UCIT PAH, Tom 31, Bemm. 3, 2019 1.,
crp. 29-34

Gudiev A.V., Grazhevskaya A.S. Graphic DSL for mobile development. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 29-34

The second sample allows the user to log in and receive the code which then can be used later (see
fig. 4) There are two controllers in the application: LoginController and MainController. There is
also a switching between controllers implemented by means of ports. In LoginController there is
only one state. At MainController there are two states: a state with option selection and a state where
a user can receive the necessary code. The UbigMobile Ul forms, corresponding to states of the
application are given below (see fig. 5).

o}

= Il
ol } ‘
LoginState - StartSute =l CheckinState

LoginForm

MainControlier

StantState

') i Creckinsart]

LoginContrdlier

Fig. 4. Application with authorization scheme

Application0 Application0 Application0

Volunteer Id 23678 Generated key:

Password 1 3303

« « «

Fig. 5. UbigMobile screens

7. Conclusion

Within this work, the following results were achieved. The graphic DSL for mobile application
development is implemented. The code generation for UbigMobile platform feature is added.
Demonstration samples are represented.

References / Cnucok nutepaTtypbl

[1]. Plakalovic D and Simic D. Applying MVC and PAC patterns in mobile applications. arXiv preprint
arXiv:1001.3489, 2010.

33

[2]. Flora Harleen K and Wang Xiaofeng and Chande Swati V. An investigation on the characteristics of
mobile applications: A survey study. International Journal of Information Technology and Computer
Science, vol. 6, issue 11, 2014, pp. 21-27.

[3]. Koznov D. Methodology and tools for domain-specific modeling. Thesis for the degree of Doctor of
Technical Sciences, St. Petersburg State University, 2016 (in Russian) / Ko3uos I.B. Metononorus u
HHCTPYMEHTAPUH IIPeIMETHO-OPUEHTHPOBAHHOI0 MOIeINpoBaHysL. JiccepTanus Ha COUCKaHHe YIEHOMH
CTEINeHH JIOKTOpa TeXHH4Yeckux Hayk, CII6I'Y, 2016.

[4]. Bryksin T.A. The platform for creation of specialized visual development environments of the software,
PhD Thesis, St. Petersburg State University, 2016 (in Russian) / bpsixcun T.A. Ilnardopma st co3nanus
CIICNUAIM3UPOBAHHBIX BU3YaIBHBIX Cpell pa3pabOTKU IporpaMMHOro obecredeHus. Jluccepramus Ha
CoMCKaHUe YU&HOI CTerneHn KaHauaara Texunaeckux Hayk, CII6I'Y, (2016).

[5]. Bryksin T.A. and Litvinov Yu.V. Environment of visual programming of QReal : Robots. In Proc. of the
international conference on Information technologies in science and education, 2011, pp. 332-334 (in
Russian) / Bpsixenn T.A., 10.B. JIutBunos. Cpeja BH3yaIbHOro mporpaMMHpOBaHHS po6oroB QReal:
Robots. Matepuanbsl MexgyHapogHol koHdpepenmn «HpopMamoHHbIe TEXHOIOTHH B 00pa30BaHUM 1
Hayke», 2011, ctp. 332-334.

[6]. Modeling SDK for Visual Studio - Domain-Specific ~Languages. Available at:
https://docs.microsoft.com/ru-ru/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-
languages, accessed 14.07.2019.

[7]. Code Generation and T4 Text Templates. Available at: https:/docs.microsoft.com/ru-
ru/visualstudio/modeling/code-generation-and-t4-text-templates?view=vs-2015, accessed 14.07.2019.

[8]. Onossovski V.V. and Terekhov A.N. Ubiq Mobile — a new universal platform for mobile online services.
In Proc. of the 6th seminar of FRUCT Program, 2009, pp. 96-105.

UHgpopmayusi 06 aemopax / Information about authors

Apryp Bmamgumupouu I'YJAMEB — wmarucrp, BBIIYCKHHK — KadeOpsl — CUCTEMHOTO
NIPOrpaMMHPOBAaHHUA MaTeMaTuKo-MexaHuueckoro Qakynsrera CIIOI'Y. Cdepa HayuHBIX
HHTEpecOB: MOOHIbHAS pPa3paboTKa, IPEAMETHO-OPHEHTUPOBAHHOE MOJICTUPOBAHHUE.

Artur Vladimirovich GUDIEV is a graduate of software engineering department of Mathematics
and Mechanics faculty, St.Petersburg State University. Research interests: mobile development,
domain-specific modelling.

Anekcannpa Cepreesaa [PAJKEBCKAS — BbIlTycKHUIIA MaTEMAaTHKO-MEXaHHYECKOTO (haKysbTera
CII6I'Y. Ee nHay4HbIe HHTEpPECHI BKIFOYAIOT MPEAMETHO-OPHEHTHPOBAHHBIC SI3BIKH.

Alexandra Sergeevna Grazhevskaya is a graduate of the Mathematics and Mechanics faculty, St.
Petersburg State University. Her research interests include domain-specific languages.

34

