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Abstract. State of the art microprocessor systems usually include complex hierarchy of a cache memory.
Coherence protocols are used to maintain memory consistency. An implementation of memory subsystem in
HDL (hardware description language) is complex and error-prone task. Ensuring the correct functioning of the
memory subsystem is one of the cornerstones of a modern microprocessor systems development. Functional
verification is used for this purpose. In this paper, we present some approaches for verification of memory
subsystem units of multi-core microprocessors. We describe characteristics of memory subsystems that need
to be taken into account in the process of verification. General structure of test environment for stand-alone
verification of memory subsystem units is presented. Classification of checking model types and their
advantages and disadvantages are described. The approach of construction of a standalone verification
environment using Universal Verification Methodology (UVM) is presented in the paper. Restrictions that
should be taken into account when verifying memory subsystem unit are listed. The generation stimulus
algorithm stages are presented. Method of using “hints” from design under verification to eliminate
nondeterminism is used in the implementation of checking module. We review several other techniques for
checking the correctness of memory subsystem units, which can be useful at different stages of project
development. A case study of applying the suggested approaches for verification of Home Memory Unit of
microprocessors with Elbrus architecture is presented. Classification of detected and corrected errors in
different submodules of verified device is provided. Further plan of the test system enhancement is presented.
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AnHoranus. CoBpeMeHHbIe MHKPOIPOIIECCOPHBIE CHCTEMBI OOBIYHO BKJIIOUAIOT CIOXKHYIO HEPApXHIO KAII-
namaTd. IIpOTOKONBI KOTEPEeHTHOCTH MCHONB3YIOTCS JUIS TOANEPKAHHS COIJIACOBAHHOCTH IaMATH.
Peanusanust moACHCTEMBI MAMATH Ha SA3bIKE ONMHCAHMS aNIapaTyphl SBISETCS CIOXKHOH M IOJABEP)KEHHOH
omnbkam 3anadeii. ObecredeHne KOPPEKTHOTO (HYHKIIMOHUPOBAHNUS IIOACHCTEMBI IIAMSITH, SIBILIETCS OJTHOMU U3
BOXHEHIINX 3a4a4 B IIpolecce pa3pabOTKH COBPEMEHHBIX MHKPONpPOIECCOPHBIX CHCTeM. Jlus 3Toro
UCHoNb3yeTcsa (yHKIMOHANbHAs BepubuKanus. B manHoi paboTe mpeACTaBlIeHbl HEKOTOPBIE MOAXOIBI K
BepuduKayy GJO0KOB MOACHCTEM NaMATH MHOTOSIEPHBIX MHKPONPOLECCOpPOoB. OMHCAaHbl XapaKTEPUCTHKH
MOJICHCTEM IIaMSTH, KOTOpble HEOOXOJUMO YYHTHIBATh B Ipouecce Bepubukanuu. IIpencrasiena obas
CTPYKTypa TECTOBOW CHCTEMBI [UIsi aBTOHOMHOH BepH(MKalUu OJOKOB IOJCHCTEeMbI maMsTH. IIpuBenena
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KnaccH(UKaIHs TUIOB NPOBEPSAIONIMX MOJENeH, UX MPEeMMYIIeCTBa U HEJOCTaTKU. B cTaThe mpencTaBieH
HOAX0J K IOCTPOEHHIO aBTOHOMHOT'O OKDY:KEHHS JUIsl BepH(HKAIMH C HCIONB30BAHUEM YHHBEPCAIbHOM
meroponorun Bepudukanun (UVM). TlepeuncneHbl OrpaHUYEHUs, KOTOPBIC CIEAYET YUUTBHIBATh IIPH
IpoBepke OJIOKOB IIOACHCTEMBI IAMATH. IIpencTaBieH anropuTM TIeHepalHy BXOIHBIX CTHMYNOB. J{ist
YCTpaHEHHs HEONPENENCHHOCTH TEKYIIETO COCTOSHUS BEpH(MHIMPYEMOro yCTPOHCTBAa B IPOBEPSIOIIEM
MOJyJie HCIONB3YeTCSl METOJ aHalM3a «IIOACKAa30K». PaccMOTpeH psii OPYrHX METOJNOB IIPOBEPKU
KOPPEKTHOCTH OJIOKOB IOICHCTEMBI TAMSITH, KOTOPBIE MOTYT OBITh MOJIE3HBI HA PA3THYHBIX ITaNax pa3paboTKH
npoekra. IlpencraBieH HpHMep IPUMEHCHHs IPEIOKEHHBIX HOIXOAOB K Bepuduxarmu 6moxa HMU
MHKPOIPOLECCOPOB € apxXuTeKTypoi Dnbopyc. [IpuBenena knaccudukaiys 0OHapy>KEHHBIX U UCIPABICHHBIX
OMIMOOK B PAa3IMYHBIX MOIMONYISX BepH(HIHpyeMoro ycrpoiicrsa. I[IpencraBieH panbHEHIME IUIaH
COBEPIIEHCTBOBAHHS TECTOBOI CHCTEMBL.

KaioueBbie ciioBa: MHOTOAICPHBIE MUKPOIIPOLIECCOPDI; KT MaMATh; IPOTOKOJIBI KOTEPEHTHOCTH; TECTOBAsA
CucTeMa, BCpI/ICbI/IKaI_II/Iﬂ Ha OCHOBE MOHeHeﬁ; aBTOHOMHasA Bepl/[(i)HKaHI/I}I

Jns uutupoBanus: JleGenes JI.A., TlerpouenkoB M.B. TecroBoe OkpyxeHHE Ul BepupHKaluu OJioKa
MoJICUCTEMBI ITaMsATH MHoronpoueccoproit cucremsl. Tpynst UCIT PAH, Tom 31, Bbim. 3, 2019 r., ctp. 67-76
(na anrnuiickoM s3bike). DOI: 10.15514/ISPRAS-2019-31(3)-6

1. Introduction

With the development of microprocessor technology and growth of the number of computational
cores and CPUs in systems processor performance increases rapidly. Unfortunately, the speed of
memory access is not growing as fast as the speed of the processor [1]. Thus, one of the biggest
bottleneck elements become the memory subsystem. To level the difference in speed, designers of
microprocessor systems implement a complex memory subsystem that includes cache hierarchy.
State of the art microprocessor systems usually include 3-4 levels of cache memory. This approach
is able to reduce the number of accesses to main memory, and, therefore, reduce memory access
instructions average execution time.

In the multicore systems if multiple cores are simultaneously allowed to contain copies of a single
memory location, the problem of maintaining memory consistency arises. A mechanism must exist
to ensure that all copies remain consistent when the contents of that memory location are modified.
Coherence protocols support such mechanism. Usually we have higher-level caches shared between
cores and lower-level caches served by a single core. Complex systems that combine several multi-
core processors may also have cache memory to speed up other processors' access to their memory.
A large number of processors and processor cores and complexity of system data exchange
organization makes coherence protocol very complicated. An implementation of cache coherence
protocol is a complex and error-prone task. Errors of this kind are critical and difficult to detect on
system-level verification. Thus, a memory subsystem and implementation of coherence protocols in
HDL (Hardware Description Languages) models must be thoroughly verified [2].

There are two main methods for verification of memory subsystem: a simulation-based verification
and formal verification [3]. Formal verification is used to mathematically prove the correctness of a
DUV (Device Under Verification) model with respect to its specification. It is widely known that
main advantage of formal methods is their exhaustiveness. Many works are devoted to this method
[4-6]. Disadvantages of these methods are complexity of development and high specification
requirements. Simulation-based methods are not exhaustive, but they can be applied at earlier stages
of development and they are much simpler.

Verification of a memory subsystem, as a part of whole microprocessor, can be provided by means
of system verification [7]. However, it is essential to mention that some of the components of a
memory subsystem are invisible from the point of view of a testing program and it is hard to recreate
necessary conditions for verification with proper quality. To overcome these drawbacks, a stand-
alone verification of the memory subsystem is usually used.

There are a number of methods to implement a standalone functional verification of a memory
subsystem. One of them is C++TESK Testing ToolKit created in ISP RAS [8]. It is an open-source
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C++ based toolkit intended for automated functional testing of RTL (HDL) models of digital
hardware (in Verilog and VHDL). The tool included a library of C++ classes and macros that define
facilities for all parts of a verification environment. Some of disadvantages of this tool are high
complexity of the application and needs documentation and checking reference model high
accuracy.

Another tool name is Alone-env created in the MCST. The Alone-env provides a wrapper-class over
Verilog description of the verified module. The Alone-env too has some disadvantages: the lack of
collecting coverage means, high requirements for the checking reference model and the inability to
reuse the test system.

Nowadays the most widespread verification methodology is Universal Verification Methodology
(UVM). This is a standard verification methodology from the Accellera Systems [9]. UVM designed
to enable creation of robust and reusable testbenches and their components. UVM is a class library
helps to bring much automation to the SystemVerilog language. Disadvantages of UVM is learning
curve is very high for new users and it takes a lot of code to create basic UVM testbench classes.
Nevertheless, our team already have a number of test systems, basic classes and libraries written and
debugged. Therefore, we choose UVM for developing the stand-alone verification environment of
memory subsystem modules.

The rest of the paper is organized as follows. Section 2 reviews the existing techniques for standalone
verification of the memory subsystem. Section 3 describes a case study suggests an approach to the
problem of developing test system. Section 4 describes additional used approaches. Section 5 reveals
results and Section 6 concludes the paper.

2. Standalone verification methods of memory subsystem

In a stand-alone verification we implement test system that allows to select a single part of the whole
system and examine its behavior in the test environment that behaves in a way similar to the “real”
system. Correct mechanisms of interaction with DUV are defined in its specification. One of the
main advantages is that it is easier to explore edge and corner cases in the verified module.

When verifying a part of the memory subsystem with included cache, we need to take into account
some features while developing the test system:

e it consists of cache lines that are fixed size blocks used to transfer data between two nodes of
the system;

e logic to locate and transfer requested data;

e cache line also hold service information;

e may be several requesters which work with different cache lines

e if two or more requesters want to refer to the same cache line such request have to be serialized
and completed in the same order as they received;

e  controller support some of implementations of a coherence protocol;

e due to the limited amount of a memory, one of the data eviction algorithms is implemented.

Test environment (or testbench) for verifying the memory subsystem usually includes:

e generator of input stimulus;

e checker of collected reactions correctness;

e module collecting coverage information.

Generator of input stimuli is responsible not only for primary requests that perform operations with

memory, it also collects reactions from verified device and generate answers from test environment

- secondary requests. Generalized scheme of test environment shown on Fig. 1. Generation of stimuli

can be simplified by using TLM [10] (Transaction Level Modeling) to communicate with DUV.

TLM allows focusing more on the functionality of the data transmission and less on its actual

implementation.
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Fig 1. Generalized scheme of test environment

If the verified device has a complex structure and many states, the easiest way to check correctness
of reactions is building the separate checking module. Checking module is based on the external to
the test environment reference model usually written in high-level language (C, C++ or some
specific languages for verification of hardware, such as SystemVerilog, SystemC or «e»). All
requests and reactions from the verified device sent to the checking module where then made a
conclusion about the correctness of the behavior.

The reference models could be divided into three types: cycle-accurate, discrete-event with time
accounting and event models [11]. First two of them require a very accurate specification. It is hard
to support design changes that happen very often on the first steps of the development. Furthermore,
the similarity of the implementations of the model and the DUV can lead to duplication of errors.
To check correctness of memory subsystem, it is reasonable to use event models because they
require less time to develop and more flexible for changes of the design. Data interchange of the test
system with reference model occurs instantly by calling appropriate functions. For some devices,
there are several correct scenarios of the operation for the same input stimuli. We call those devices
non-deterministic. There are two methods allowing using behavioral event models for verification
of these devices [12].

The first method is dynamic refinement of transaction level model. A general approach is as follows.
When a reference model gets a request and there are several possible ways to react to the request,
the model creates additional instances and executes the requests in each of them. Then the models
are waiting for the reactions from the device under verification. The reaction contents service
information (such as a response type, a direction of sending, etc) which helps to exclude impossible
states. Absence of suitable state for reaction signals about an error. The sign of a successful
completion is comparison all the reactions of the DUV and removal of all unnecessary states. The
complexity of this approach is that the number of possible states potentially grows exponentially
with a number of stimuli. However, this method can be implemented efficiently for memory
subsystem units because all requests to a single cache line are serialized and requests to different
cache lines are independent.

Second method is identification of a single correct state using hints from the verified device or a
"gray box" method. This method replaces usual “black box” method. When we cannot predict the
“real” sequence of interactions, we access inner interfaces of the verified device. Information from
these interfaces have to be transferred to the test environment and helps to determine a single
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possible execution scenario and eliminate nondeterminism. This method imposes additional
requirements to the device specification, but, as a result, it is quite simple to implement.

Coverage collection module extract information of functional code coverage. This information is
used to identify unimplemented test cases and helps to improve stimuli generation by adding new
test scenarios.

3. Using gray box approach for verification of home memory unit

Home Memory Unit (HMU) is a part of memory subsystem of 16-core “Elbrus” microprocessor
responsible for the coherent and non-coherent access to the RAM from different requesters. HMU
contains a global directory (MOSI protocol of coherence), which monitors the requests of other
processors to its memory and a DMA directory which is a full copy of the DMA caches of all
processors (supports the extended coherence protocol MOI). Total volume of the directory in HMU
is 2.5 MB, size of entry of a cache line is 80 B, number of banks — 128, bank associativity — 16.
Main functions of HMU include:

e  serialization of all requests to RAM;

e reduction of coherence traffic and access time to RAM;

e  support of interprocessor coherence.

Test system for stand-alone verification of the coherence protocol implementation and other
functionality of HMU based on UVM. UVM helps to generate pseudo-random constrained input
requests to cover possible states of the verified device.

We have to note some restrictions for generation primary, secondary stimuli and answers. The first
of them is limited amount of space in input buffers. Due to process of verification, it is important
not to lose some data. When generating random system settings, it is necessary to take into account
that some setup combinations may be incorrect and lead to errors. There are several types of
requesters in the test system. Each of them has special identifier and a set of possible operation
codes. The specific implementation of the coherence protocol also imposes restrictions on the used
operation codes. Sending an inappropriate operation code may result in undefined results. Address
generation is also a non-trivial task. The address have to fit the interleaving conditions. In addition,
each requester have to wait for the completion of previous request when working with same cache
line.

Stimuli generation is divided into several stages:

1. randomization of device configuration registers. This allows to switch different ways for
handling requests and determine request routing;

creating list of addresses for current configuration of device with respect to routing setup;
choosing random requester and cache line address;

checking cache line availability and presence of resources needed for request transfer;
choosing random operation code constrained by the current state of cache line;

sending primary request, collecting reactions from the device under verification, sending
secondary requests;

7. collecting all of necessary reactions and completion of current request;

8. transferring transaction information to checking module.

To simplify handling of requests and reactions we create models of each used cache line. Model of
cache line is an object that stores information about primary request, collected reactions, data and
some auxiliary functions. For generation of correct requests we created an associative memory
storing current states for each cache line. The choice of the next request type is made according to
the limitations imposed by the coherence protocol and the current state of the cache line. For
example, one of these rules is there cannot be two requesters in a modified (M) state for a single
cache line. Another feature, which was necessary to pay attention, is that one address tag corresponds

AR
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to two-neighbor cache lines information. This mechanism allows increasing the ratio of the directory
coverage (the ratio of the cache memory covered by the directory to the cache memory of the
directory).

As noted before, there are two ways of building checking module. The choice of «gray box» method
is determined by following sources of a nondeterminism inherent to HMU:

e HMU contains two input queues of primary requests what means exponential growth of
possible device states size (2n+m, where n, m — number of requests inside input queues);

e cache eviction algorithm in the global directory.

HMU has two cache memories responsible for different functions of a memory subsystem: the global
and DMA directories. The global directory has information only about data belonging to the own
processor and used by other processors. Along with that there is no information about presence of
this cache line in cache of own processor. Such information located in the L3 cache. DMA writes
are also coherent requests. For a fast and correct handling of DMA writes sent by DMA controllers
the special DMA cache directory is present inside HMU. This cache directory supports extended
coherence protocol MOI with substates. Its main function is processor notification about cache lines
captured by DMA controllers and storing their states.

| stimuli [+~ |
Test
environment

Input serialization

Global . | Inner
Directory N ,—{—r interfaces
] | | | adapter
5 L' | [Seramnte
] .
DA, | =
- N |
Directory | g = I | :
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F S S |
reactions =~ |

Fig 2. Simplified version of the test environment using the “gray box” method.

The device under verification connected with other parts of the system by means of network-on-
chip and has two input channels for primary requests. All generated primary requests are sent to the
DUV and the checking module simultaneously. The checking module (implemented in C++)
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receives requests and reactions from the verified device by means of DPI (Directed Programming
Interface). Using of the DPI is necessary to match the types and classes of the test environment
written in SystemVerilog hardware description language with the reference model interface
functions. Inside checking module, all requests are received into two queues. Requests to the same
cache line can get into the different queues. It is impossible to predict which of these requests will
be handled first. Getting a sequence hint from the device under test eliminates the nondeterminism
of the current state. Stable and well-described inner interfaces to the point where all request are
serialized, made it possible to build simple checking module in the short time. In a similar way, an
access to the eviction mechanism interface was obtained. In addition, the checking module and its
behavior model may be modified if it will be needed in the future projects. Structure of the test
environment with proposed “gray box” method shown in fig. 2.

4. Additional verification methodsManagement of transaction flow

To check if the verified device operates correctly, it is necessary to achieve multiple edge and corner
cases. This involves filling all input and output primary and secondary requests queues, delaying
some necessary types of answers and blocking of transactions from some modules [13]. HMU
supports the credit-exchange mechanism, which indicates the devices ability to accept certain type
of requests. We added the special configuration module that randomizes time delays of sending
requests and credits. Management of delays setup allows to create different test scenarios with
overflowing requests and responses buffers. This mechanism helps to detect livelocks and
deadlocks. These types of system behavior are hard to implement during system testing.

4.2 Applying assertions

SystemVerilog Assertions (SVA) is an important subset of SystemVerilog [14]. The assertions are
used to specify the behavior of the system. The assertions work as follows: we add some piece of
verification code to the test system that monitors a design implementation for compliance with the
specifications. In addition, the assertions can be used to flag that input stimuli do not conform to
assumed requirements. In the beginning of the project, it may help to find more bugs and locate them
faster.

In HMU verification process the assertions are used for checking for uncertain and unconnected
states of signals. Usage of coherence protocols in the DUV involves certain restrictions on the
stimuli generation and the state of the cache lines for different requesters. Thus, additional function
of the assertions, which was used in the test system, is detection of the discrepancy between
coherence protocol specification and generated requests types in the certain cache lines states. The
disadvantage of this approach is the limitation of the properties of the verified device that can be
checked by assertions.

4.3 On-the-fly ECC errors insertion

ECC bits are stored together with the state of the cache line. Special submodules of HMU encode
the data written to the RAM and decode data read from RAM. Using ECC bits allows to detect
single, double, parity errors and to correct single errors. This mechanism is a source of potential
errors in the device. The special module with flexible configuration was developed to insert single
and double errors. This module is managed by the test system. Frequency and type of error insertion
can be regulated. Detecting and correcting ECC errors additionally loaded computing logic of
verified device.
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5. Results

The approaches described in this paper were applied for standalone verification of Home Memory
Unit of 16-core and 2-core with 6 integrated graphic boosters microprocessors with “Elbrus”
architecture.

There are some difference in operating with memory subsystem in the microprocessors. The 16-core
microprocessor’s HMU has a global directory and DMA directory, sends coherent requests with
accordance to the state in the global directory, and collects short coherent answers and coherent
answers with data for write operations. For read operations, requester (DMA or L3 cache) collects
all the answers.

The 2-core microprocessor does not have a global directory in HMU but includes DMA directory.
HMU provides inter-core coherence. Coherence requests are sent broadcast to the cores and DMA.
HMU also collects all the answers for write operations and for read operations only when requester
is not DMA. Integrated graphic boosters are not snooped.

Due to the specificity of the test system construction, some part of MC controller (the MC adaptor)
was also added to the verified system. Generator of responses from MC controller with randomized
setups was also developed.

In the process of the standalone verification of the Home Memory Unit we found 28 errors that have
not been found by other means of verification. All errors were corrected. The distribution of the
number of bugs in different subsystems of the HMU are presented in Table 1. Code and functional
coverage was carried out and 94% coverage was extracted. Total result indicates about effectiveness
of the proposed methods of standalone verification.

Table 1. Types of found bugs and its quantity

Type of bugs lelllgnslber of
Coherence protocol implementation 21
Configuration registers 2

Parity checker 1
Performance improvement 2

MC adaptor 3

Total: 28

6. Conclusion and directions for future work

Memory subsystem is one of the most important parts of microprocessors. Its parts that support
coherence protocols are especially complicated and error-prone. Verification of these types of
devices is time-consuming and labor-intensive work. The stand-alone verification designed to
simplify this task. The approaches mentioned in this paper can be applied for stand-alone verification
memory subsystem parts regardless of their implementation.

The proposed approaches have been applied in the verification of the Home Memory Unit as a part
of multi-core microprocessor memory subsystem with “Elbrus” architecture developed by "MCST".
Test environment and test scenarios made it possible to detect and correct a number of logical errors
that were not detected by other verification methods.

In the future, it is planned to adapt the test environment for the forthcoming projects and possible
changes in coherence protocols.
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