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Abstract. Data access conflicts may arise in hardware designs. One of the ways of detecting such conflicts is
static analysis of hardware descriptions in HDL. We propose a static analysis-based approach to data conflicts
extraction from HDL descriptions. This approach has been implemented in the Retrascope tool. The following
types of conflicts are considered: simultaneous reads and writes, simultaneous writes, reading of uninitialized
data, no reads between two writes. Conflict assertions are formulated as conditions on variables. HDL
descriptions are automatically translated into formal models suitable for the nuXmv model checker. The
translation process consists of the following steps: 1) preliminary processing; 2) Control Flow Graph (CFG)
building; 3) CFG transformation into a Guarded Actions Decision Diagram (GADD); 4) GADD translation into
a nuXmv format. Conflict assertions are automatically built using static analysis of the GADD model and
passed to the nuXmv model checker. Bounded model checking is used to check whether these assertions are
satisfiable. If true, counterexamples are generated and then translated to HDL testbenches by the Retrascope
tool. The proposed approach was applied to several open source HDL benchmarks like Texas-97,
Verilog2SMV, VCEGAR and mips16 modules. Potential conflicts have been detected for all of these
benchmarks. Future work includes propagation of conflict assertions to the interface level (thus getting
assertions on modules’ communication protocols) and generation of built-in HDL checkers.
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AnHoTtanus. [Ipy npoeKTUpoBaHUK MOJYIIeH 1M(pPOBOI anmaparypbl MOTYyT BOSHHKATh KOH(JIMKTHI JOCTYyIa
K AaHHBIM. OJIHHM H3 CTIOCOOOB MX BBIABICHMS HA PAHHHX CTaJHAX INPOEKTUPOBAHMUS SBISETCS CTATUYECKU
aHanu3 onucanuii nudposoil anmaparypsl (wim HDL-omucaumit). B naHHOW cTaThe ONMUCHIBACTCS METOA
MOHMCKA KOH(IUKTOB focTyna k fanHbM B HDL-onucannsx. Meroj peanu3oBaH B HHCTpyMeHTe Retrascope u
OPUEHTHPOBaH HAa KOHQIMKTBI CIEAYIONIMX THIIOB: OJHOBPEMEHHBIE UTCHHE M 3alHCh; OJHOBPEMEHHAs
3aMuCh; oOpalienne K HeMHUIIHAIH3UPOBAHHBIM JIaHHBIM; OTCYTCTBHE YTEHHUS MEXIy ABYMs aKTaMM 3aIliCH.
Kon¢uukTtel 3amat0Tcs B BUAE yCJIOBHH (assertion) Ha BHyTpeHHHE nepeMeHHble. Bxognoe HDL-onucanue
ABTOMAaTHYECKU TPAHCIUPYETCs B (QOPMAIBHYIO MOJIENb Ha S3bIKE, SIBIISIONIEMCS BXOAHBIM JUIS HHCTPyMEHTa
npoBepku Mozerneit nuXmyv. TpaHcisauus BKIIOYAET CIeAylolmue 3Tanbl: 1) npeasapurenbHas o0padorka; 2)
noctpoeHue rpada MoToka ympapieHus; 3) TpancdopMmarus rpada MOTOKA YHIPABICHHS B PEHIAIONIYIO
uarpamMmy oxpatseMsix aeiictuii (GADD-mozens); 4) Tpancisiis GADD-monenu B popMaT HHCTPYMEHTA
nuXmv. YcIoBHs BOSHUKHOBEHHS KOH(IUKTOB CTPOSTCS aBTOMATHYECKH HA OCHOBE CTAaTUYECKOTO aHAIIM3a
GADD-Monenn U mnepemaroTcss MHCTPYMEHTY NpOBepkM Mojeineil nuXmv. HaiiieHHble KOHTPIpHUMEpSI
(moCIenOBaTENbHOCTH 3HAYEHUH BXOJAHBIX CHIHAJOB, MPHBONSIIME K JOCTIDKEHHIO KOH(IIHKTA)
ABTOMAaTHYECKU TPAHCIMPYIOTCS MHCTPYMEHTOM Retrascope B TeCTbI, KOTOpbIE MOTYT OBITh HCIOIHEHBI Ha
cumyisitope. IIpemnoxeHHbl MeTox Ioucka KOH(GIMKTOB OBbUI HPUMEHEH K PSIy OTKPHITBIX TECTOBBIX
HabopoB u monyneir — Texas-97, Verilog2SMV, VCEGAR, mips16. Bbuin BbIsABICHBI HOTEHLHATbHbBIE
KOH(IMKTBL U BCEX YKa3aHHBIX Kareropuil. B kadecrBe HampaBieHHH JalbHEHIINX HCCIEXOBaHHIL
paccMaTpUBAIOTCS BBIHOC YCJIOBHII KOH(UIMKTOB Ha YpPOBEHb BXOIHBIX CHTHAIOB (M IIOJNyYEHHUE, TAKHM
00pa3oM, CBEJCHHI O NPOTOKOJAX B3aMMOJEHCTBHS MEXIYy MOTYISIMHU), a TakKe TeHEepalus BCTPOSHHBIX
nposepok B koae HDL-onucanmii.

KioueBsble ci10Ba: pa3paboTKa anmapaTypsl; sI3bIK OIUCAHHS alapaTyphl; (yHKIHOHATbEHAS BepHBHKAIS;
CTaTHYeCKUH aHaiu3; TIeHepalys TECTOB; KOH(IMKT XOCTyIma K JaHHBIM; Tpad) IIOTOKA YIIpaBICHHUS;
oxpaHseMoe JieiicTBHe; pelaronas AuarpaMMa oXpaHseMbIX IeHCTBUIl; MpoBepKa MOJEITH.

Jnst uurupoBanus: Kamkun A.C., Jle6ene M.C., Cmonos C.A. ITouck KOHGIUKTOB JOCTYIA K JaHHBIM B
HDL-onucanusx. Tpyast UCIT PAH, tom 31, Bbimn. 3, 2019 r., ctp. 135-144 (Ha anrnuiickom sseike). DOI:
10.15514/ISPRAS-2019-31(3)-11

1. Introduction

Modern hardware designs contain multiple modules and processes operating on the common set of
internal variables. In this case conflicts, i.e. illegal accesses from different processes to the same
data, may appear. Requirements on how to operate with modules and avoid conflicts in a
communication protocol can be described both in formal (machine-readable) and informal (human-
readable) ways.

In this paper, a formal verification based approach to conflict extraction is proposed. The idea is to
analyze an HDL description aimed at finding data access conflicts [1]. Both the conflicts and the
target description are then automatically translated into the input format of a model checking tool.
The tool generates counterexamples for the feasible conflicts.
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2. Related work

In [1] several categories of data conflicts are described: read after write (RAW), write after read
(WAR) and write after write (WAW). The HOL verification system [2] was used to check a RISC
processor’s pipeline. The formal specification of pipeline was implemented manually that is hard to
be done for modern processors because of their complexity.

In [3], a GoldMine methodology is presented for automatic generation of hardware assertions. The
method uses a combination of data mining and static analysis techniques. First, the HDL design is
simulated to generate data about the design's dynamic behavior. Then, the generated data are mined
for “candidate assertions” that are likely to be invariants. The data mining technique used is a
decision-tree-based supervised learning algorithm. The candidate assertions are then passed through
the Cadence Incisive Formal Verifier [4] tool to filter out the spurious candidates. The disadvantages
of GoldMine are: 1) usage of commercial tool; 2) invariants’ incompleteness because of random
simulation usage at an early stage.

3. Assertion extraction method

We propose a new approach to data access conflicts extraction in HDL descriptions. Our goal is to
detect conflicts and provide proofs that they may happen. The method is aimed at conflicts of the
following types:

e read-write (RW): on the same clock tick one process writes the variable and the other process
reads it;

o write-write (WW): on the same clock tick at least two processes write the same variable;

o write-read-write (WRW): we assume that a variable should be read between two writes;

o undefined (UNDEF): variable is read before it was written.

if (state_bank3[inst_addr] > 1) // C!
prediction[3] <=1; // B!

else
prediction[3]=0;  //B?

if (state_bank2[inst_addr] > 1) // C?
prediction[2] <=1; // B?

else
prediction[2] <=0; // B*

if (state_bankl1[inst_addr] > 1)/ C?
prediction[1] <=1; // B’

else
prediction[1] <=0; // B®

Fig. 1. Control Flow Graph Example

The method consists of the following steps: 1) Control Flow Graph (CFG) extraction; 2)
transformation to Guarded Actions Decision Diagram (GADD); 3) process invariants and conflict
assertions extraction; 4) invariants and assertions translation into an input format of a model
checking tool; 5) counterexample generation. All method steps are made automatically. The CFG
representation is built for every process of the HDL model using an abstract syntax tree traversal
compiler-like approach [5]. From the structural view, CFG is a directed graph. Nodes of the graph
contain HDL operators; edges of the graph mean control flows. On the left side of fig. 1 the fragment
of Verilog code is shown; the related CFG is shown on the right side. Branch operators are shown
as diamond nodes and called as C*. Basic block operators are shown as rectangles and called as B'.
Graph edges contain the values that the branch conditions should be equal to for edges to be passed.

137

A.S. Kamkin, M.S. Lebedev, S.A. Smolov. Extracting Assertions for Conflicts in HDL Descriptions. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 3, 2019, pp. 135-144

CFG is supposed to be acyclic: HDL loops with constant numbers of iteration are unrolled into
sequences of operators.

The next step is the transformation of the CFG to a GADD that is a labeled DAG of guarded actions.
A pair {y, 8§}, where y is a guard and & is an action, is called a guarded action (GA) [6]. The main
idea of the CFG-GADD transformation method is in extraction of branch-free sub-paths from the
CFG. Every such sub-path (GA) contains a condition (guard) and a sequence of assignment
operators (action). For action to be executed the guard should be satisfied. Actions are represented
in the static single assignment (SSA) form [7]. To connect subsequent GAs into a complete CFG
path an auxiliary phase variable is used.

To illustrate this step of the approach, let us take the previous example (see Fig. 1). The CFG model
contains the following execution path: C* - B! —» €? —» B* » (3 — BS. Path nodes are grey-
colored in the fig. 1; path edges are highlighted too. The following GAs can be extracted from the
path: {C*, B}, {C? B*}, {C3, B®}. Every GA corresponds to a unique value of the phase variable.
The phase variable changes its value upon moving from one GA to another. On Fig. 1 related values
of the phase variable are shown in brackets (the initial phase value is 0). Fig. 2 shows the example
of GADD model from the previous example:

The main advantage of GADD model is path number reduction in comparison to CFG. In worst case
(when CFG is a sequence of branch operators) the GADD has O (n) paths, where n is the number of
branches, but the CFG has 0(2").

Fig. 2. GADD example

Then the GADD is transformed into the invariants of the processes, which represent the cycle-
accurate behavior of the processes. The invariant is a logical formula and is a kind of a SSA
representation of the whole process. Every GA of the GADD contains a unique phase variable value
assignment. These unique values can be used as SSA version values of the variables. The phase
variable is removed from the resulting formula because it does not affect the process behavior.
Each variable that is defined in a GA is labeled by the corresponding phase value. Each variable that
is used in the GA is labeled by the set of phase values of the preceding GAs. For guards intermediate
variables are introduced. To determine the values of the used variables, a backward search of the
GADD is used: it is obvious that the variable value was defined in one of the preceding GAs or did
not change from the previous cycle. After that, the process invariant formula is built as a conjunction
of equality expressions representing each GA’s guards and actions.

Let us see how a process invariant is built using a small example. Fig. 3 shows a part of the GADD
and represents three guarded actions.

The guard conditions are: z == a, b and c respectively, and the actions contain definitions of
variables x, yand unique definitions of phase. A set of the preceding phase values is {i,}; z is a
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variable; a, b and care constants; f, g and h are functions defining the values of x and y; Vis a set
of process variables.

x :=f(V)
phase := k

x = h(V)
phase :=n

Fig. 3. Original part of the GADD

On the first step we label the variables by the corresponding phase values. The result of that is shown
on fig. 4.

Fig. 4. GADD part with labeled variables

The used variables are now labeled by the preceding phase values {i, j} and the defined variables are
labeled by the corresponding phase values k, m, n. Phase definitions are removed.
Then we introduce and define a variable for each guard. The guard variable definition consists of a
guard expression and a link to the preceding guards. This helps us restore the path from the beginning
of the process to the corresponding guarded action. For example:

guard®:= (z) == q) & (guard® | guard)
When all the variables in all the GAs are labeled by phases, the remaining unknown used variables’
values can be determined. Let us determine the value of z/), So we traverse the GADD backward
using the preceding phase values, starting from i and j (fig. 5). When a definition is found on some
path (denoted def on fig. 5), the traversal of this path completes and the definition value is collected.
If the beginning of the process is reached, the variable preserves its value from the previous cycle.
In the example on fig. 5 the variable z is defined on phases s and t or may not change its value. So
the value of z(/) can be determined as follows:

z0D: = guard® ? z9): guard® ? z®: z

On the final step the invariant formula is built. As it was mentioned, it is a conjunction of equality
expressions for every labeled variable of the process including the guard variables:
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x ) == f(V(iJ)) &y(m) —= g(V(iJ)) &x™ == h(V(i,j))
&guard® == ((z4) == a) & (guard® | guard))
& guard™ == ((z0) == b) & (guard® | guard))
&guard™ == ((z) == ¢) & (guard® | guard))
&zWG) == (quard® ? z): guard® ? zV:2) & ...

Fig. 5. Version value search (CFG view)

After the process invariant is built, the definition and usage conditions can be collected. They are
collected only for internal and output variables of the HDL model, because input variables can be
only used.
If a variable is defined (used) in the action of a GA, its definition (usage) condition equals the guard
variable that corresponds to this GA. If a variable is used in the guard condition of a GA, its usage
condition equals the disjunction of the corresponding guard variables of the preceding GAs. The
variable definition (usage) condition of the whole process is the disjunction of the variable definition
(usage) conditions of the GAs.
In our example, the definition conditions for variables xand y are:

def (x) = guard® | guard™

def (y) = guard™

The usage condition for variable z is:

use(z) = guard® | guard¥)
Then the conditions are transformed into the assertions of conflict types described above. The
assertions are represented as the Linear-time Temporal Logic (LTL) [8] formulas and state that the
abovementioned conflicts never happen.
If, for example, a variable v is defined and used both in processes p1 and p2, the corresponding RW
conditions are:

I'F (defpl(v) &usepz(v))
' F (defy(v) &usey (v))
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The corresponding WW condition:
IF (defy1(v) &defyz(v))
The corresponding WRW condition:
F ((defy1(v) | defpa(v))
& (F (usep, (v) | use,; (v)) U (defy1 (v) | defy2(v))))
The corresponding UNDEF condition:

G (! (usepz(v) | usep1(v)) U (defp1(v) | defp2(v)))
Invariants and assertions are then translated into the SMV model. Their translation is rather
straightforward. It is only important to define the variable value in the next state of the model using
the keyword next. This value equals the last version of the variable before the end of the process.
For example, if the final phase values of a process are k, [, m, then the next state value of a variable
v is defined as:
next(v) := p&tm

The SMV model is checked by the nuXmv[9] tool using bounded model checking. Ifan assertion is
violated, a counterexample is generated and a potential conflict is found. The counterexamples may
be later translated into test scenarios for the original HDL description.

4. Case study

The method was implemented in the Retrascope [10] tool. It was applied to arange of Verilog designs
from the Texas-97 [11], VCEGAR [12] and Verilog2SMV VIS [13] benchmarks and the 16-bit
MIPS processor [14].Table 1 contains the results of the method’s application: benchmark
descriptions and generated assertions amount. Here N means total amounts of top-level
modules.Most of the assertions denote only suspicious situations, so the results should be analyzed
by a verification engineer to filter out the real data conflicts.

Table 1. Benchmark descriptions and potential conflicts.

Assertions
Bench N LOC
RW WW |WRW |UNDEF
Texas’97 17/58 | 69539 408 26 211 | 211
VCEGAR 20/34 | 15144 315 25 167 167
Verilog2SMV | 12/20 | 4494 78 0 62 62
mips16 5/12 1007 10 0 9 9

Example of a RW situation, which is not a conflict (mipsi6/ID_stage.v):
module ID stage

wire [2:0]ir dest with bubble;
wire [2:0]write back dest;

assign ir dest with bubble = ( instruction decode en ) ?
ir dest : 0;
assign write back dest = ir dest with bubble;
Signal ir_dest with_bubble is defined in one process and is used in the other process at the same
time.

Example of a WW situation, which seems to be a real conflict (Texas97/MPEG/prefixcode.v):
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module start code_prefix(start, done..);
reg monitor;

always @ (posedge read signal) begin
monitor=start;

end
always if ( start==0) begin

monitor=0;
end

Variable monitor is defined simultaneously, if read_signal rises and at the same time start equals 0.
Example of an UNDEF situation, which is also not a conflict (mipsi6/ID_stage.v):
module ID stage

reg [15:0] dinstruction_reg;

always(@ (posedge clk or posedge rst) begin
if (rst) begin
instruction_reg<= 0;
end
else begin
if (instruction_decode_en) begin
instruction reg <= instruction;
end
end
end
assign ir op code = instruction reg[15:12];

Register instruction_reg is undefined from the start of simulation until the clk or rst rising edge.

5. Conclusion and future work

In this paper, the approach to data access conflicts extraction from HDL descriptions has been
proposed. We extract assertions from the source code and automatically translate them into the input
format of the model checker. The tool generates counterexamples that are proofs of conflicts’
reachability. We have implemented the approach in the Retrascope toolkit and applied it to several
open source HDL benchmarks.

One direction for future research is to propagate assertions from internal variables’ to interface
variables. Such assertions can be used to improve protocols of unknown third-party modules or even
to reconstruct protocols. Another direction is the generation of checkers, i.e. HDL wrappers for
target modules that check their behavior through simulation.
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