
Труды ИСП РАН, том 31, вып. 3, 2019 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

145

DOI: 10.15514/ISPRAS-2019-31(3)-12

Constructive heuristics for Capacitated Vehicle
Routing Problem: a comparative study

S.M. Avdoshin, ORCID: 0000-0001-8473-8077 <savdoshin@hse.ru>
E.N. Beresneva, ORCID: 0000-0001-6710-2843 <eberesneva@hse.ru>

Department of Software Engineering,
National Research University Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. Vehicle Routing Problem (VRP) is concerned with the optimal design of routes to be used by a fleet
of vehicles to serve a set of customers. In this study we analyze constructive heuristics for a subcase of VRP,
where the vehicles have a limited capacity – Capacitated Vehicle Routing Problem (CVRP). The problem is
NP-hard, therefore heuristic algorithms which provide near-optimal polynomial-time solutions are still actual.
The aim of this work is to make a comparison of constructive heuristics as there were not found any such
classification. Finally, the leader by a criterion of quality is admitted being a Clarke and Wright Savings
heuristic; however, this algorithm cannot find the solution for all used instances. This fact and other ones are
discussed in the paper. Our future goal is to make an experimental comparison of the most common and state-
of-the-art metaheuristics using well suited constructive heuristic to build a suboptimal solution.

Keywords: capacitated vehicle routing problem; classical heuristics; constructive heuristics

For citation: Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing
Problem: a comparative study. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156. DOI:
10.15514/ISPRAS-2019-31(3)-12

Эвристические методы конструирования маршрута для решения
задачи маршрутизации с ограничением по грузоподъемности

С.М. Авдошин, ORCID: 0000-0001-8473-8077 <savdoshin@hse.ru>
Е.Н. Береснева, ORCID: 0000-0001-6710-2843 <eberesneva@hse.ru>

Департамент программной инженерии,
Национальный исследовательский университет “Высшая школа экономики”, 101000,

Россия, г. Москва, ул. Мясницкая, д. 20

Аннотация. Задача маршрутизации – одна из широко известных задач комбинаторной оптимизации.
Она состоит в отыскании оптимального множества маршрутов для транспортных средств с целью
однократного обслуживания определенного множества клиентов. В данной работе исследуется подвид
задачи маршрутизации – задача маршрутизации с ограничением по грузоподъемности, в которой
каждое транспортное средство имеет свою грузоподъемность. Задача является NP-трудной, поэтому
вместо точных алгоритмов решения исследуются только эвристические алгоритмы, позволяющие
получить приближенные решения за полиномиальное время. Задача работы – провести
экспериментальное исследование точности решения различных конструктивных эвристик, так как в
других источниках не было найдено подобных сравнений. В большинстве случаев, лидером можно
признать эвристику «Clarke and Wright Savings», однако существуют отдельные наборы данных,
описанные в тексте, на которых лучше работают другие алгоритмы. Также в статье рассмотрены и
другие интересные факты. В целом работа проделана с целью дальнейшего использования полученных
знаний в экспериментальном исследовании наиболее известных и современных метаэвристических

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

146

алгоритмов решения задачи маршрутизации с ограничением по грузоподъемности, для которых будут
получены предварительные решения на основе выявленных лучших эвристических методов
конструирования маршрута.

Ключевые слова: задача маршрутизации с ограничением по грузоподъемности; эвристические методы
конструирования маршрута

Для цитирования: Авдошин С.М., Береснева Е.Н. Эвристические методы конструирования маршрута
для решения задачи маршрутизации с ограничением по грузоподъемности. Труды ИСП РАН, том 31,
вып. 3, 2019 г., стр. 145-156 (на английском языке). DOI: 10.15514/ISPRAS-2019-31(3)-12

1. Introduction
The Vehicle Routing Problem (VRP) is one of the most widely known questions in a class of
combinatorial optimization problems. VRP is directly related to Logistics transportation problem
and it is meant to be a generalization of the Travelling Salesman Problem (TSP). In contrast to TSP,
VRP produces solutions containing some (usually, more than one) looped cycles, which are started
and finished at the same point called «depot». The objective is to minimize the cost (time or distance)
for all tours. For the identical type of input data, VRP has higher solving complexity than TSP. Both
problems belong to the class of NP-hard tasks.
This work is aimed at analysis of VRP subcase, which is called Capacitated Vehicle Routing
Problem (Capacitated VRP, CVRP), where the vehicles have a limited capacity. It means that there
is a physical restriction on transportation more than determined amount of weight for each machine.
Capacitated vehicle routing problems form the core of logistics planning and are hence of great
practical and theoretical interest.
There are three types of algorithms that are used to solve any subcase of CVRP.

 Exact algorithms. These algorithms find an optimal solution but take a great time for solving
large instances. Such methods include Branch-and-Bound, Branch-and-Cut, cutting plane,
column generation, cut and solve, Branch-and-Cut-and-Price, Branch-and-Price, and dynamic
programming techniques. It was shown in [1] that Branch-and-Bound algorithm was able to
solve random CVRP instances with up to 300 customers and four vehicles within 1000 CPU
seconds in 2002. However, according to the same source some real-world CVRP instances with
up to 47 vertices only were successfully solved within 1000 CPU seconds. Current situation
does not differ a lot. State-of-the-art exact methods can provide optimal solution for some
SCVRP instances with up to 100 nodes, but it takes 30-40 minutes at average [2]. Due to these
restrictions, researchers all over the world concentrate on heuristic methods.

 Classical heuristics. These algorithms build an approximate solution iteratively, but they do not
include further improvement stage. Different scientific works reveal that, in comparison to exact
methods, classical heuristics work much faster. For example, an instance of 100-150 nodes can
be solved up to a few (1-2) seconds [2]. Heuristics are divided into two groups that include
constructive heuristics and improvement heuristics.

 Metaheuristics. Such type of algorithms is also called a framework for building heuristics.
According to [3], metaheuristics either explore the solution space by moving at each iteration
from a solution to another solution in its neighbourhood (metaheuristics based on local search)
or evolve a population of solutions which may be combined together in the hope of generating
better ones (metaheuristics based on population, natural inspired).

Actuality of research and development of heuristics algorithms for solving VRP is on its top, because
such approximate algorithms can produce near-optimal solutions in a polynomial time. It is
especially important in real-world tasks when there are more than one hundred clients in a delivery
net. Among the best-known algorithms for CVRP there are metaheuristic proposed by Pisinger and
Ropke [4], Nagata and Braysy [5], and Vidal et al [6].

Авдошин С.М., Береснева Е.Н. Эвристические методы конструирования маршрута для решения задачи маршрутизации с
ограничением по грузоподъемности. Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 145-156

147

There are a lot of articles related to CVRP heuristics, but no works were found which compare
solution quality, or gap, of classical heuristics using the same data bases. Solution quality is
calculated as the percentage of difference in the obtained value of the solution with the optimal (or
best-known) solution for the problem.
It is important to analyze classical heuristics since constructive heuristics are usually used in order
to provide an initial (suboptimal) solution to improvement methods and to metaheuristics that allow
to iteratively get near optimal solutions. So, we will discuss only algorithms from the first group.
The paper is structured as follows. In the second part a mathematical formulation of CVRP is given.
In the third section, some notes on a classification of most popular constructive heuristics are
provided, including description of chosen algorithms. The fourth part consists of design of
experiments and their results. And, finally, in the fifth part conclusions and future goals are given.

2. Classical CVRP mathematical model
In the paper we will use CVRP abbreviation having in mind the mathematical formulation that was
described in a previous work of authors [7].
Let a complete weighted oriented graph 𝐺 =< 𝑉, 𝑉 × 𝑉 > is given. Let
𝐼 = {0, 1, … , 𝑁}, where 𝑁 + 1 = |𝑉|. Graph vertices are indexed as 𝑖𝑛𝑑 = 𝑉 → 𝐼,
(∀𝑣 ∈ 𝑉)(∀𝑤 ∈ 𝑉) 𝑣 ≠ 𝑤 ⟹ 𝑖𝑛𝑑(𝑣) ≠ 𝑖𝑛𝑑(𝑤). Thus, 𝑉 = {𝑣଴ , 𝑣ଵ, … , 𝑣ே} is the set of vertices,
here 𝑖 = 𝑖𝑛𝑑(𝑣௜), 𝑖 ∈ 𝐼. Let 𝑣଴ be the depot, where vehicles are located, and 𝑣௜ be the destination
points of a delivery, 𝑖 ≠ 0.

The distance between two vertices 𝑣௜ and 𝑣௝ is calculated using a distance function 𝑐൫𝑣௜ , 𝑣௝൯. Here a
real-valued function 𝑐(∙,∙) on 𝑉 × 𝑉 satisfies ∀𝑖, 𝑗, 𝑔 ∈ 𝐼 [8]:

 𝑐൫𝑣௜, 𝑣௝൯ ≥ 0 (non-negativity axiom);

 𝑐൫𝑣௜, 𝑣௝൯ = 0 if and only if 𝑣௜ = 𝑣௝ (identity axiom);

 𝑐൫𝑣௜, 𝑣௝൯ = 𝑐൫𝑣௝, 𝑣௜൯ (symmetry axiom);

 𝑐൫𝑣௜, 𝑣௚൯ ≤ 𝑐൫𝑣௜, 𝑣௝൯ + 𝑐൫𝑣௝, 𝑣௚൯ (triangle inequality axiom).

Each destination point 𝑣௜, ∀𝑖 ∈ 𝐼, is associated with a known nonnegative demand, 𝑑௜, to be
delivered, and the depot has a fictitious demand 𝑑଴ = 0. The total demand of the set 𝑉′ ⊆ 𝑉 is

calculated as 𝑑(𝑉′) = ∑ 𝑑௜ᇲ
|௏ᇲ|
௜ᇲୀଵ

.

Let 𝐾 be a number of available vehicles at the depot 𝑣଴ . Each vehicle has the same capacity – 𝐶. Let
us assume that every vehicle may perform at most one route and 𝐾 ≥ 𝐾௠௜௡, where 𝐾௠௜௡ is a minimal
number of vehicles needed to serve all the customers due to restriction on 𝐶. Clearly, next condition
must be fulfilled – (∀𝑣௜ ∈ 𝑉) 𝑑௜ ≤ 𝐶, ∀𝑖 ∈ 𝐼, which prohibits goods transportation that exceed
maximum vehicle capacity.
Let introduce 𝑉଴ = {𝑣଴}, where 𝑣଴ ∈ 𝑉. Let us divide 𝑉 in 𝐾 + 1 sets:
𝑆 = {𝑉଴, 𝑉ଵ, … , 𝑉௄}, each subset, except for 𝑉଴, represent a set of customers to be served for one
vehicle. 𝑆௔௟௟ = {𝑆} is a set of all possible partitions of 𝑉. Let 𝐽 = {0, 1, … , 𝐾} be a set that keeps
indexes. Then ൫∀𝑗 ∈ 𝐽൯ ห𝑉௝ห ≥ 1. There should be no duplicates in any of subsets from
𝑆: (∀𝑔 ∈ 𝐽)(∀𝑗 ∈ 𝐽)(𝑔 ≠ 𝑗 ⇒ 𝑉௚ ∩ 𝑉௝ = ∅). Also, all subsets from 𝑆 must form set 𝑉. Thus, 𝑉 =

⋃ 𝑉௝௄
௝ୀ଴ . In this notation, 𝑉଴௞ = 𝑉଴ ∪ 𝑉௞, ∀𝑘 ∈ 𝐽\{0}. It is obvious that 𝑑(𝑉௢௞) ≤ 𝐶.

Let introduce 𝑀௞ = {1, 𝑁ଵ … , 𝑁௞}, 𝑁௞ = |𝑉௞|, ∑ 𝑁௞௄
௞ୀଵ = 𝑁. Then let 𝑀଴௞ = {0} ∪ 𝑀௞ . Let

𝐼௞ = ⋃ {𝑖 | 𝑖 = 𝑖𝑛𝑑(𝑣), ∀𝑣 ∈ 𝑉௞}௄
௞ୀଵ be a set of vertex indices from 𝑉௞. Then 𝐼଴௞ = {0} ∪ 𝐼௞, ∀𝑘 ∈

𝐽\{0}.
Let 𝐻௞ = {𝑝௞: 𝑀଴௞ → 𝐼଴௞| 𝑝௞(0) = 0 & (∀𝑥 ∈ 𝑀଴௞)(∀𝑦 ∈ 𝑀଴௞) 𝑥 ≠ 𝑦 ⟹ 𝑝௞(𝑥) ≠ 𝑝௞(𝑦)} be a

set of codes of all possible permutations ℎ௞ = ቀ𝑣௣ೖ(଴), 𝑣௣ೖ(ଵ), … , 𝑣௣ೖ൫ேೖ൯ቁ of 𝑉଴௞. These

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

148

permutations represent all possible Hamiltonian cycles of graph 𝐺଴௞ < 𝑉(଴௞), 𝑉(଴௞) × 𝑉(଴௞) >,
∀𝑘 ∈ 𝐽\{0}.
Weight of ℎ௞ ∈ 𝐻௞ can be found according to the formula 1:

𝑓(ℎ௞) = 𝑐 ቀ𝑣௣ೖ(଴), 𝑣௣ೖ൫ேೖ൯ቁ + ෍ 𝑐൫𝑣௣ೖ(௤), 𝑣௣ೖ(௤ାଵ)൯

ேೖିଵ

௤ୀ଴

 (1)

Let 𝑆′ be a set of {𝑉଴ଵ, 𝑉଴ଶ, … , 𝑉଴௄}. In this notation the weight of 𝑆′ is calculated as 𝐹(𝑆 ᇱ) =
∑ 𝑓(ℎ௞)௞ୀଵ..௄തതതതത , ∀𝑘 ∈ 𝐽\{0}.
Overall, the formulation of CVRP is to find:

𝑆଴: 𝐹(𝑆଴) = min
ௌ∈ ௌೌ೗೗

𝐹(𝑆) (2)

3. Constructive heuristics
In this section the most popular constructive heuristics are described.

3.1 Sequential Insertion algorithm (SI)
Sequential Insertion algorithm [9] constructs routes subsequently, one after another.
In the first step, a new tour 𝑡𝑜𝑢𝑟௞, 𝑘 ≤ 𝐾, is initialized with a random unrouted node 𝑣௜, 𝑖 ≠ 0, and
the depot 𝑣଴. Thus, a tour (𝑣଴, 𝑣௜ , 𝑣଴) is obtained.
In the second step, another unrouted vertex 𝑣௝ , 𝑗 ≠ 0, is chosen, such that its incorporation in the
current tour gives the least increase in a tour length and demand of a potential node 𝑣௝ does not
exceed vehicle capacity. So, the next two formulae must be hold:

 argmin
௩ೌ ∈ ௧௢௨௥ೖ,

௩ೌశభ ∈ ௧௢௨௥ೖ,
 ௩ೕ ∉ ௧௢௨௥ೖ

𝑐൫𝑣௔, 𝑣௝൯ + 𝑐൫𝑣௝ , 𝑣௔ାଵ൯ − 𝑐(𝑣௔, 𝑣௔ାଵ);

 𝐷௧௢௨௥ೖ
+ 𝑑௝ ≤ 𝐶, where 𝐷௧௢௨௥ೖ

 is a total demand of current 𝑡𝑜𝑢𝑟௞.

If all conditions hold then this unrouted vertex 𝑣௝ , 𝑗 ≠ 0 is inserted in a tour 𝑡𝑜𝑢𝑟௞ between 𝑣௔ and
𝑣௔ାଵ.
The second step is repeated until no more unrouted vertex 𝑣௝ , 𝑗 ≠ 0, can be feasibly inserted. In this
case a new tour 𝑡𝑜𝑢𝑟௞, 𝑘 ≤ 𝐾, is initialized, and the procedure starts from the first step.

3.2 Improved Parallel Insertion algorithm
Parallel Insertion Improved algorithm [10] builds routes simultaneously. This method is a
modification of Sequential Insertion algorithm.
In the first step, the minimum number 𝐾௠௜௡ of feasible routes is defined as 𝐾௠௜௡ = ∑ 𝑑௜௜∈|௏| /𝐶. All
these routes 𝑡𝑜𝑢𝑟௞ ∈ 𝑇𝑜𝑢𝑟𝑠 are initialized with 𝐾௠௜௡ different closest to 𝑣଴ unrouted nodes 𝑣௜, 𝑖 ≠
0. Thus, 𝐾௠௜௡ tours (𝑣଴ , 𝑣௜ , 𝑣଴) are obtained.
In the second step, a random unrouted node 𝑣௝, 𝑗 ≠ 0, is inserted in some route 𝑡𝑜𝑢𝑟௞ at its best
insertion position. The next two conditions must be hold – incorporation of 𝑣௝ in this tour gives the
least increase in a tour length among all other tours and demand of a potential node 𝑣௝ does not
exceed vehicle capacity. So:

 argmin
௩ೌ∈௧௢௨௥ೖ,

௩ೌశభ∈௧௢௨௥ೖ ,
 ௩ೕ∉௧௢௨௥ೖ

𝑐൫𝑣௔, 𝑣௝൯ + 𝑐൫𝑣௝, 𝑣௔ାଵ൯ − 𝑐(𝑣௔, 𝑣௔ାଵ);

 𝐷௧௢௨௥ೖ
+ 𝑑௝ ≤ 𝐶, where 𝐷௧௢௨௥ೖ

 is a total demand of current 𝑡𝑜𝑢𝑟௞.

Авдошин С.М., Береснева Е.Н. Эвристические методы конструирования маршрута для решения задачи маршрутизации с
ограничением по грузоподъемности. Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 145-156

149

If all conditions hold then this unrouted vertex 𝑣௝ , 𝑗 ≠ 0 is inserted in a tour 𝑡𝑜𝑢𝑟௞ between 𝑣௔ and
𝑣௔ାଵ.
The second step is repeated until no more unrouted vertex 𝑣௝ , 𝑗 ≠ 0, can be feasibly inserted in some
route 𝑡𝑜𝑢𝑟௞. In this case a new tour 𝑡𝑜𝑢𝑟௞, 𝑘 ≤ 𝐾, is initialized as (𝑣଴, 𝑣௝ , 𝑣଴) and adds to set of all
tours 𝑇𝑜𝑢𝑟𝑠, and the procedure continues.

3.3 Nearest Neighbor heuristic (NN)
Nearest Neighbor heuristic constructs routes subsequently, one after another, in a greedy way.
In the first step, an unrouted node 𝑣௜ , 𝑖 ≠ 0, which is closest to the depot 𝑣଴, is chosen. A new open
tour 𝑡𝑜𝑢𝑟௞, 𝑘 ≤ 𝐾, is initialized with 𝑣௜ and 𝑣଴. Thus, a tour (𝑣଴ , 𝑣௜) is obtained.
In the second step, another unrouted vertex 𝑣௝, 𝑗 ≠ 0, is chosen, which is the nearest to the last added
vertex and a demand of a potential node 𝑣௝ does not exceed vehicle capacity. So, the next two
formulae must be hold:

 argmin
௩೔ ∈ ௧௢௨௥ೖ, ௩ೕ ∉ ௧௢௨௥ೖ

𝑐൫𝑣௜, 𝑣௝൯;

 𝐷௧௢௨ ೖ
+ 𝑑௝ ≤ 𝐶, where 𝐷௧௢௨௥ೖ

 is a total demand of current 𝑡𝑜𝑢𝑟௞.

If all conditions hold then this unrouted vertex 𝑣௝ is added in the end of 𝑡𝑜𝑢𝑟௞ after 𝑣௜, and since that
time it turns to be the last added vertex.
The second step is repeated until no more unrouted vertex 𝑣௝ , 𝑗 ≠ 0, can be feasibly inserted. In this
case a new tour 𝑡𝑜𝑢𝑟௞, 𝑘 ≤ 𝐾, is initialized, and the procedure starts from the first step.

3.4 Clarke and Wright Savings heuristic (CWS)
In the first step, all vertices 𝑣௜ ∈ 𝑉, 𝑖 ≠ 0, must form |𝑉 − 1| routes. Thus, |𝑉 − 1| tours (𝑣଴, 𝑣௜ , 𝑣଴)
are obtained.

In the second step, ∀𝑣௜ ∈ 𝑉, ∀𝑣௝ ∈ 𝑉, 𝑖 ≠ 0, 𝑗 ≠ 0, 𝑖 ≠ 𝑗, saving 𝑠൫𝑣௜ , 𝑣௝൯ is calculated as 𝑠൫𝑣௜, 𝑣௝൯ =

𝑐(𝑣௜, 𝑣଴) + 𝑐൫𝑣଴, 𝑣௝൯ − 𝑐(𝑣௜ , 𝑣௝). All savings are put in a list of 𝑆̅, 𝑆̅ must be sorted in a non-
increasing order.
In the third step, the first unused saving in a list is taken. Then, existence of two routes 𝑡𝑜𝑢𝑟௫ and
𝑡𝑜𝑢𝑟௬, 𝑥 ≠ 𝑦, having the next conditions, is checked:

 there is an edge (𝑣௜ , 𝑣଴) in route 𝑥 and edge (𝑣଴, 𝑣௝) in tour 𝑡𝑜𝑢𝑟௬;

 𝐷௧௢௨௥ೣ + 𝐷௧௢௨ ೤
≤ 𝐶.

If there are such routes then 𝑡𝑜𝑢𝑟௫ and 𝑡𝑜𝑢𝑟௬ are combined by removing edges (𝑣௜ , 𝑣଴), (𝑣଴ , 𝑣௝) and
introducing edge (𝑣௜, 𝑣௝). After that, despite of ability or absence these routes, the current saving is
skipped and the next one in the list is checked.
The last step works until 𝐾 tours are left.

3.5 Variant of Clarke and Wright Savings heuristic (CWS_2)
Classical variant of Clarke and Wright Savings algorithm forms good tours in the first part of its
work mostly. However, it was noticed that it tends to produce less competitive tours towards the end
because of periphery nodes addition. Thus, Yellow [11] and Gaskell [12] suggested improved form
of savings calculation. It is 𝑠൫𝑣௜ , 𝑣௝൯ = 𝑐(𝑣௜ , 𝑣଴) + 𝑐൫𝑣଴, 𝑣௝൯ − 𝜆𝑐(𝑣௜ , 𝑣௝). Here 𝜆 is a parameter
which responds for measuring the distance between the vertices to be joint. In one report [13] it was
mentioned that the best value of 𝜆 is 0.4.

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

150

3.6 Subgroup of Cluster-First-Route-Second heuristics
Subgroup of Cluster-First-Route-Second heuristics belongs to two-phase methods, which are based
on the decomposition of the CVRP solution process into two separate stages – clustering and routing.
In the clustering stage, a partition of the customers into routes is made, and in the routing stage, the
sequence of the customers on each subset is obtained.
In Cluster-First-Route-Second methods, nodes are first partitioned into different subsets called
clusters and then routes are determined by sequencing the customers within each subset.

3.6.1 Sweep

This Cluster-First-Route-Second method can be applied only for planar instances [9].

Clustering stage
Let us define 𝑣௜ ∈ 𝑉 as 𝑣௜ = (𝑥௜; 𝑦௜), where 𝑥௜ and 𝑦௜ are the Cartesian coordinates of point 𝑣௜.
In the first step, new normalized vertices 𝑣௜

ᇱ = (𝑥௜
ᇱ; 𝑦௜ ′) = (𝑥௜ − 𝑥଴; 𝑦௜ − 𝑦଴) are introduced, where

the depot 𝑣଴′ has new Cartesian coordinates (0; 0), ∀𝑖 ∈ |𝑉|.

Let 𝑣ప′തതത = (𝜃௜ , 𝑟௜) be a vertex with polar coordinate of 𝑣௜′, where 𝑟௜ = 𝑥௜
ᇱଶ + 𝑦௜

ᇱଶ and 𝜃௜ is calculated
using formula 3:

𝜃௜ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑎𝑟𝑐𝑡𝑔 ൬

𝑦௜

𝑥௜

൰ , 𝑥௜ > 0, 𝑦௜ ≥ 0

𝑎𝑟𝑐𝑡𝑔 ൬
𝑦௜

𝑥௜

൰ + 2𝜋, 𝑥௜ > 0, 𝑦௜ < 0

𝑎𝑟𝑐𝑡𝑔 ൬
𝑦௜

𝑥௜

൰ + 𝜋, 𝑥௜ < 0

𝜋

2
, 𝑥௜ = 0, 𝑦௜ > 0

3𝜋

2
, 𝑥௜ = 0, 𝑦௜ < 0

 (3)

In the second step, a list 𝑉ത of all 𝑣ప′തതത = (𝜃௜ , 𝑟௜), ∀𝑖 ∈ |𝑉|, 𝑖 ≠ 0, is calculated and is sorted in increasing
order by parameter 𝜃௜ .
In the next step, a new cluster is initialized with {𝑣଴} and maximum number of first 𝐿 vertices from
𝑉ത , such that ∑ 𝑑௜

௅ିଵ
௜ୀ଴ ≤ 𝐶. Parameter 𝐿 is not a constant, it can be other for different clusters

depending on weights of demands and total capacity. Then these used vertices are removed from 𝑉ത ,
and the procedure is repeated until 𝑉ത = ∅.

Routing stage
At this stage for each cluster TSP Cheapest Insertion heuristic is applied which forms a cycle.

3.6.2 Fisher and Jaikumar algorithm

In contrast to Sweep algorithm, this Cluster-First-Route-Second method can be applied not only for
planar instances. Instead of using a geometric method to form the clusters, it solves a Generalized
Assignment Problem (GAP).

Clustering stage
In the first step ∀𝑘 = 1. . 𝐾തതതതതത a vertex 𝑣௦௘௘ௗ(௞) ∈ 𝑉\{𝑣௢} is chosen. These 𝐾 vertices form 𝐾 clusters.

In the second step the cost 𝑐𝑜𝑠𝑡௩೔
௞ of allocating each node 𝑣௜ ∈ 𝑉, 𝑖 ≠ 0, to each cluster k is calculated

as 𝑐𝑜𝑠𝑡௩೔
௞ = 𝑐(𝑣௢, 𝑣௜) + 𝑐൫𝑣௜ , 𝑣௦௘௘ௗ(௞)൯ − 𝑐൫𝑣௦௘௘ௗ(௞), 𝑣଴൯.

In the third step the algorithm solves GAP with 𝑐𝑜𝑠𝑡௩೔
௞ , 𝑑௜ and 𝐶, which determines a minimum cost

assignment of items to a given set of bins of capacity 𝐶. The GAP can be solved using either exact
or heuristic techniques.

Авдошин С.М., Береснева Е.Н. Эвристические методы конструирования маршрута для решения задачи маршрутизации с
ограничением по грузоподъемности. Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 145-156

151

Routing stage
The final routes are determined by solving a TSP on each defined cluster.
According to this work [15], this algorithm gives way to the algorithms described above and
provides solutions with more solution quality. That is why it will not be considered in later
comparison study as it was already done.

3.7 Subgroup of Route-First-Cluster-Second heuristics
Subgroup of Route-First-Cluster-Second heuristics also belongs to two-phase methods. However, in
contrast to Cluster-First-Route-Second methods, these constructive heuristics at first solve TSP for
all nodes and only then break built cycle to 𝐾 routes. Unfortunately, many studies showed than these
heuristics are applicable only if there is no constraint on the number of vehicles. In addition, they
are not competitive with other constructive heuristics in general [9].

4. Experiments and results
All algorithms are implemented as sequential algorithms in C++. The computational testing of the
solution methods for CVRP has been carried out by considering eight sets of test instances from the
next well-known database [16]. Total number of instances in sets A, B, E, F, G, M, P, X is 211. All
instances inside one set have its own characteristics and a way of generation: cluster-based / uniform
/ geometric distribution of clients, real-world / imitative cases etc. The integer Euclidean metric is
used for all instances. The naming scheme and data format for each instance is described here [17].
Shortly, the first letter in names shows the name of used set, the figure after letter ‘n’ shows the
number of nodes and the figure which stands after letter ‘k’ presents the number of vehicles.
Experiment starts with the choice of a constructive heuristic H from the set {SI, FI, NN, CWS,
CWS_2, Sweep}. After that one dataset D is selected from the list of all benchmark datasets. Then
an instance file F from the chosen dataset D is taken as input for the algorithm H and the heuristic
is executed (only 1 time because all these algorithms do not use random generations, so all obtained
solutions are the same). After that we report solution quality ε(H, F) found for the algorithm H on
the test F. Solution quality 𝜀 (or percent above best-known, or gap) is calculated using formula 4
[18]:

𝐹(𝑆଴) − 𝐹௢௣௧(𝑆)

𝐹௢௣௧(𝑆)
∙ 100%, (4)

where 𝐹(𝑆଴) is a length of obtained solution and 𝐹௢௣௧(𝑆) is a length of optimal solution or best-
known one. And finally, among all ε(H, F) from one dataset sample mean 𝑋തఌ(H, D) =
ଵ

|஽|
∑ ε(H, F)|஽|

ிୀଵ is calculated which shows average gap for the algorithm H on the dataset D, where

|𝐷| is a number of input files in dataset D.
The plan of experiments on constructive heuristics described in Fig. 1.
Input: constructive heuristics, datasets

1: foreach constructive heuristic H
2: foreach dataset D from datasets
3: foreach instance file F from D
4: solution = run H on F
5: calculate ε(H, F)
6: calculate 𝑋തఌ(H, D) // average gap on dataset

Fig.1. Plan of experiment on constructive heuristics

It should be mentioned that each algorithm is subsequently launched on all 211 instances from 8
datasets, so no input file is missed.

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

152

A criterion of running time was not considered because all instances were solved in a time which
does not exceed 1 second. It is thought to be insignificant in comparison with time-consuming
metaheuristic work.
Fig. 2, 3 and 4 represent the results of experiments conducted over algorithms using sets B, P and G
of widely different types. The horizontal axis represents the name of instance data. The vertical axis
shows the solution quality.

Fig. 2. Solution quality of constructive heuristics, set B

 Fig. 3. Solution quality of constructive heuristics, set P

Авдошин С.М., Береснева Е.Н. Эвристические методы конструирования маршрута для решения задачи маршрутизации с
ограничением по грузоподъемности. Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 145-156

153

Fig. 4. Solution quality of constructive heuristics, set G.

Average gaps 𝑋തఌ(H, D) of each algorithm on different data sets are presented in Table 1 and fig. 5.
These general figures can show an approximate overall effectiveness of algorithms. On the basis of
Table 1, all fig. 2, 3, 4, 5 and other results which cannot be shown here because of their large volume,
it can be easily seen that CWS algorithm (its column is made bold in the table) is a leader for all
input files, except some instances from dataset G. Its average gap varies from 3,4% till 11,0%. The
closest competitor is its variant CWS_2, which has average solution quality in a range [9,8%;
20,6%]. CWS_2 algorithm is able to construct the best solutions only for some instances in set B. In
all other cases this algorithm nearly always takes second place and goes behind classical CWS.

Table 1. Average gaps of all heuristics for every set, %.

Average gap 𝑋തఌ(H, D)
in the dataset

Constructive heuristic
SI PI NN CWS CWS_2 Sweep

S
et

 (
its

 s
iz

e)

A (26) 68,7% 33,2% 39,7% 5,0% 12,7% 40,2%
B (23) 82,3% 34,0% 41,2% 4,3% 9,8% 31,7%
E (11) 70,4% 30,0% 41,5% 6,4% 17,5% 36,4%
F (3) 42,5% 48,5% 74,6% 4,4% 20,6% 71,9%

G (20) 24,8% 15,6% 16,3% 11,0% 18,4% 142,4%
M (4) 83,0% 35,5% 44,6% 3,4% 12,0% 89,2%
P (24) 66,0% 25,6% 32,2% 6,9% 11,3% 31,4%

X (100) 99,7% 23,3% 27,4% 5,9% 11,9% 82,9%

Table 2. Percentage of unsolved instances for every set, %.

Percentage of
unsolved instances in

the set

Constructive heuristic

SI PI NN CWS CWS_2 Sweep

S
et

 (
its

 s
iz

e)

A (26) 0% 0% 0% 0% 0% 69,0%
B (23) 0% 0% 0% 0% 0% 50,0%
E (11) 0% 0% 0% 0% 0% 43,5%
F (3) 0% 0% 0% 0% 0% 63,6%

G (20) 0% 0% 0% 0% 0% 66,7%
M (4) 0% 0% 0% 0% 0% 90,0%
P (24) 0% 0% 0% 0% 0% 50,0%

X (100) 0% 0% 0% 0% 0% 58,3%

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

154

There is only one algorithm that have a problem with finding an answer to the given problems – it
is Sweep. This heuristic is not able to construct a set of routes without exceeding the number of
vehicles for some input files. All the others coped with the task – they are NN, SI, PI, CWS and
CWS_2. Table 2 shows the percentage and the number of unsolved instances for all sets. In average,
Sweep algorithm cannot solve the instance without over limit in more than 50% cases. It can be
explained by the fact that the next vertex to be added is chosen by criteria of distance (polar angle,
for real) but not the capacity.

Fig. 5. Average gap of constructive heuristics in the datasets

Fig. 6. Solution for instance G-n200-k5

Авдошин С.М., Береснева Е.Н. Эвристические методы конструирования маршрута для решения задачи маршрутизации с
ограничением по грузоподъемности. Труды ИСП РАН, том 31, вып. 3, 2019 г., стр. 145-156

155

It was mentioned earlier that CWS is not a leader for some instances from dataset G. There are 8
instances when NN finds the best solutions but not CWS (fig. 4). This interesting change of the
leader is connected with the type of customers’ distribution – these instances have a form of rays
going from the center. If we look at fig. 6, where a solution for the instance is presented, we can see
that the idea of nearest neighbor works here the best way.

5. Conclusions
Overall, the next recommendation should be given to the problem which has described variant of
mathematical model of CVRP. In general, for all types of clients’ distribution the best algorithm to
be applied is Clarke and Wright Savings, however, in case of having input data in form of concentric
rays (like in fig. 6) it is better to use Nearest Neighbor algorithm. Also, a few instances were solved
best of all by Clarke and Wright Savings 2 algorithm, so it is important to have this algorithm in
mind, however the difference between it and CWS is not very significant (no more than 1%). One
more conclusion is that it is unreasonable to use Sweep heuristic as it is not able to construct a set
of routes without exceeding the number of vehicles for more than 50% of input files. Finally, for
our research it means that for all instances, except those 8 from set G, CWS heuristic will be used
as initial algorithm for metaheuristic, otherwise – we will apply NN.

References
[1] P. Toth and D. Vigo, "Branch-and-Bound algorithms for the capacitated VRP," in The Vehicle Routing

Problem, Philadelphia, SIAM, 2002, pp. 29-51.
[2] K. Braekers, K. Ramaekers, and I. Nieuwenhuyse. The vehicle routing problem: State of the art

classification and review. Computers & Industrial Engineering, vol. 99, 2016, pp. 300-313.
[3] B. Golden, S. Raghavan and E. Wasil. The vehicle routing problem: latest advances and new challenges.

New York: Springer, 2008.
[4] P. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations

Research, vol. 34, no. 8, 2007, pp. 2403-2435.
[5] Y. Nagata and O. Braysy. Edge assembly-based memetic algorithm for the capacitated vehicle routing

problem. Networks, vol. 54, no. 4, 2009, pp. 205-215.
[6] T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm for multi-depot

and periodic vehicle routing problems. Operations Research, vol. 60, no. 3, 2012, pp. 611-624.
[7] E. Beresneva and S. Avdoshin. Analysis of mathematical formulations of Capacitated Vehicle Routing

Problem and methods for their solution. Trudy ISP RAN/Proc. ISP RAS, vol. 30, no. 3, 2018, pp. 233-
250. DOI: 10.15514/ISPRAS-2018-30(3)-17.

[8] M. Reed and B. Simon. Methods of modern mathematical physics. London: Academic Press, 1972.
[9] G. Laporte and F. Demet. Classical heuristics for the Capacitated VRP. In The Vehicle Routing Problem,

SIAM, 2002, pp. 109-128.
[10] G. Laporte, Y. Nobert, and M. Desrochers. Optimal routing under capacity and distance restrictions.

Operations Research, vol. 33, no. 5, 1985, pp. 1050–1073.
[11] P. Yellow. A computational modification to the savings method of vehicle scheduling, Operational

Research Quarterly, no. 21, 1970, pp. 281-283.
[12] T. Gaskell. Bases for vehicle fleet scheduling. Operational Research Quarterly, no. 18, 1967, pp. 281-295.
[13] B. Golden, T. Magnanti, and H. Nguyen. Implementing vehicle routing algorithms. Networks, no. 7, 1977,

pp. 113-148.
[14] M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle routing. Networks, vol. 11,

no. 3, 1981, pp. 109-124.
[15] T. Sultana, M. Akhand and M. Rahman. A variant Fisher and Jaikuamr algorithm to solve capacitated

vehicle routing problem. In Proc. of the 8th International Conference on Information Technology (ICIT),
2017, pp. 710-716.

[16] I. Xavier. CVRPLIB. [Online]. Available: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/. [Accessed 09 07
2019].

[17] Heidelberg University. TSPLIB. [Online]. Available: https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. [Accessed 09 07 2019].

Avdoshin S.M., Beresneva E.N. Constructive heuristics for Capacitated Vehicle Routing Problem: a comparative study. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 145-156

156

[18] P. Toth and D. Vigo. An overview of vehicle routing problems. In The Vehicle Routing Problem, SIAM,
2002.

Информация об авторах / Information about authors
Екатерина Николаевна БЕРЕСНЕВА – с 2017 года преподаватель департамента программной
инженерии НИУ ВШЭ, с 2019 года – аспирант НИУ ВШЭ. Профессиональные интересы –
дискретная математика, задача маршрутизации транспорта, задача коммивояжера.

Ekaterina BERESNEVA – lecturer at School of Software Engineering, Faculty of Computer
Science, National Research University Higher School of Economics since 2017. Her research
interests include discrete mathematics, the vehicle routing problem and the travelling salesman
problem.

Сергей Михайлович АВДОШИН – профессор, руководитель департамента программной
инженерии факультета компьютерных наук НИУ ВШЭ с 2005 года. Сфера научных
интересов: разработка и анализ компьютерных алгоритмов, имитация и моделирование,
параллельные и распределенные процессы, теневой интернет, технология блокчейн.

Sergey AVDOSHIN – Professor, Head of School of Software Engineering in National Research
University Higher School of Economics since 2005. Research interests are design and analysis of
computer algorithms, simulation and modeling, parallel and distributed processing, deep Web,
blockchain technology.

