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Abstract. Vehicle Routing Problem (VRP) is concerned with the optimal design of routes to be used by a fleet
of vehicles to serve a set of customers. In this study we analyze constructive heuristics for a subcase of VRP,
where the vehicles have a limited capacity — Capacitated Vehicle Routing Problem (CVRP). The problem is
NP-hard, therefore heuristic algorithms which provide near-optimal polynomial-time solutions are still actual.
The aim of this work is to make a comparison of constructive heuristics as there were not found any such
classification. Finally, the leader by a criterion of quality is admitted being a Clarke and Wright Savings
heuristic; however, this algorithm cannot find the solution for all used instances. This fact and other ones are
discussed in the paper. Our future goal is to make an experimental comparison of the most common and state-
of-the-art metaheuristics using well suited constructive heuristic to build a suboptimal solution.
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AnHoTanus. 3a5ada MapIIpyTH3aUy — OfHA U3 IIMPOKO M3BECTHBIX 33a1a4 KOMOMHATOPHOH ONTUMU3AIINH.
OHa COCTOUT B OTBHICKAHWU ONTHMAJBHOTO MHOXKECTBA MapIIPYTOB UISl TPAHCIOPTHBIX CPEACTB C IENBIO
OJIHOKPATHOTO 00CITYKHUBaHHU ONPE/IEICHHOTO MHOXKECTBA KJINCHTOB. B naHHO# paboTe nccnenayercs MoABHA
3a/[a4d MapLIpyTH3alUy — 3aja4a MapLIPyTU3alid C OTPAaHUYCHHEM II0 T'PY30MOJBEMHOCTH, B KOTOPOM
KaX110€ TPAHCIOPTHOE CPEJCTBO MMEET CBOIO IPY30MOABEMHOCTh. 3ajada sipisiercst NP-TpyaHoii, mosromy
BMECTO TOYHBIX aJITOPUTMOB PEIICHUS HCCICAYIOTCS TOJNBKO 3BPUCTHYECKHE AITOPHTMBI, MO3BOJISAIOIINE
HOTy4HTh NPUOIMKECHHBIC pELICHHUS 3a IOJMHOMHANbHOE BpeMs. 3ajada pabOThl — MHPOBECTH
9KCIICPUMEHTAJIBHOE HCCIICAOBAHNE TOYHOCTH PEIICHHUs PAa3JIMYHbIX KOHCTPYKTHBHBIX 3BPHCTHK, TaK Kak B
JPYrux HCTOYHHKAaX He ObLIO HaiiIeHO MOJAOOHBIX CpaBHEHHil. B GONBLUIMHCTBE CiTydaeB, TMIEPOM MOKHO
npusHath 3BpUcTHKY «Clarke and Wright Savings», ofHaKO CyLIECTBYIOT OTAENbHbIE HAOOPHI JIAHHBIX,
ONHCAaHHbIC B TEKCTE, HAa KOTOPBIX Jydile paboTaloT Apyrue anroput™bl. Takke B CTaThe PaCCMOTPEHBI H
Ipyrue uHrepecHsle (akTel. B neioM paboTa npojenana ¢ Helbo JaTbHEHIIEro HCIOIb30BaHMsI OTY4CHHBIX
3HAHUH B 3KCHEPHMEHTAIBHOM HCCIICIOBAHUM HauOONee M3BECTHBIX M COBPEMCHHBIX METa’BPHCTHYCCKUX
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aJIrOPUTMOB PELICHHs 3a7aul MapIIPYTH3alMH C OTPAHUYECHHEM II0 TPY30IOJbeMHOCTH, ISl KOTOPBIX OyIyT
HOTy4YeHbl TIPE/[BAPUTENbHBIE pEUIeHHs HAa OCHOBE BBIBICHHBIX JYYIIMX 3BPUCTHYECKHX METOOB
KOHCTPYUPOBAHHUS MapIIpyTa.

KtioueBslIe ci10Ba: 33/1a4a MapIIPYTU3AIUH C OTPAaHHYEHUEM 110 TPY30I0bEMHOCTH; IBPHCTUYESCKHE METOIBI
KOHCTPYHUPOBAHMS MapIIpyTa

Jns untupoBanus: Asgomus C.M., bepecHesa E.H. DBpucTuueckue MeToibl KOHCTPYHPOBAHHS MaplIpyTa
JUIs PELeHNs 3aa4i MapLIPyTU3aLlUy ¢ OrpaHudYeHureM 1o rpyzonogbemHoctd. Tpyasl MUCII PAH, Tom 31,
BbIIL 3, 2019 1., ctp. 145-156 (Ha anrnuiickoMm s3bike). DOIL: 10.15514/ISPRAS-2019-31(3)-12

1. Introduction

The Vehicle Routing Problem (VRP) is one of the most widely known questions in a class of
combinatorial optimization problems. VRP is directly related to Logistics transportation problem
and it is meant to be a generalization of the Travelling Salesman Problem (TSP). In contrast to TSP,
VRP produces solutions containing some (usually, more than one) looped cycles, which are started
and finished at the same point called «depot». The objective is to minimize the cost (time or distance)
for all tours. For the identical type of input data, VRP has higher solving complexity than TSP. Both
problems belong to the class of NP-hard tasks.

This work is aimed at analysis of VRP subcase, which is called Capacitated Vehicle Routing
Problem (Capacitated VRP, CVRP), where the vehicles have a limited capacity. It means that there
is a physical restriction on transportation more than determined amount of weight for each machine.
Capacitated vehicle routing problems form the core of logistics planning and are hence of great
practical and theoretical interest.

There are three types of algorithms that are used to solve any subcase of CVRP.

e Exact algorithms. These algorithms find an optimal solution but take a great time for solving
large instances. Such methods include Branch-and-Bound, Branch-and-Cut, cutting plane,
column generation, cut and solve, Branch-and-Cut-and-Price, Branch-and-Price, and dynamic
programming techniques. It was shown in [1] that Branch-and-Bound algorithm was able to
solve random CVRP instances with up to 300 customers and four vehicles within 1000 CPU
seconds in 2002. However, according to the same source some real-world CVRP instances with
up to 47 vertices only were successfully solved within 1000 CPU seconds. Current situation
does not differ a lot. State-of-the-art exact methods can provide optimal solution for some
SCVRP instances with up to 100 nodes, but it takes 30-40 minutes at average [2]. Due to these
restrictions, researchers all over the world concentrate on heuristic methods.

e Classical heuristics. These algorithms build an approximate solution iteratively, but they do not
include further improvement stage. Different scientific works reveal that, in comparison to exact
methods, classical heuristics work much faster. For example, an instance of 100-150 nodes can
be solved up to a few (1-2) seconds [2]. Heuristics are divided into two groups that include
constructive heuristics and improvement heuristics.

e Metaheuristics. Such type of algorithms is also called a framework for building heuristics.
According to [3], metaheuristics either explore the solution space by moving at each iteration
from a solution to another solution in its neighbourhood (metaheuristics based on local search)
or evolve a population of solutions which may be combined together in the hope of generating
better ones (metaheuristics based on population, natural inspired).

Actuality of research and development of heuristics algorithms for solving VRP is on its top, because

such approximate algorithms can produce near-optimal solutions in a polynomial time. It is

especially important in real-world tasks when there are more than one hundred clients in a delivery
net. Among the best-known algorithms for CVRP there are metaheuristic proposed by Pisinger and

Ropke [4], Nagata and Braysy [5], and Vidal et al [6].
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There are a lot of articles related to CVRP heuristics, but no works were found which compare
solution quality, or gap, of classical heuristics using the same data bases. Solution quality is
calculated as the percentage of difference in the obtained value of the solution with the optimal (or
best-known) solution for the problem.

It is important to analyze classical heuristics since constructive heuristics are usually used in order
to provide an initial (suboptimal) solution to improvement methods and to metaheuristics that allow
to iteratively get near optimal solutions. So, we will discuss only algorithms from the first group.
The paper is structured as follows. In the second part a mathematical formulation of CVRP is given.
In the third section, some notes on a classification of most popular constructive heuristics are
provided, including description of chosen algorithms. The fourth part consists of design of
experiments and their results. And, finally, in the fifth part conclusions and future goals are given.

2. Classical CYRP mathematical model

In the paper we will use CVRP abbreviation having in mind the mathematical formulation that was
described in a previous work of authors [7].

Let a complete weighted oriented graph G =<V, VXV > is given. Let
1={0,1,..,N}, where N +1=|V|. Graph vertices are indexed as ind=V -1,
Vv eWN)(Yw eV) v+w = ind(v) # ind(w). Thus, V = {vy, vy, ..., vy} is the set of vertices,
here i = ind(v;),i € I. Let v, be the depot, where vehicles are located, and v; be the destination
points of a delivery, i # 0.

The distance between two vertices v; and v; is calculated using a distance function C(Ui, vj). Here a
real-valued function c(:,-) on V X V satisfies Vi, j, g € I [8]:

. c(vi, v]-) > 0 (non-negativity axiom);

. c(vi, v]-) = 0 if and only if v; = v; (identity axiom);

. c(vi,v]-) = c(vj,vi) (symmetry axiom);

. c(vi, vg) < c(vi,vj) + c(vj,vg) (triangle inequality axiom).

Each destination point v;, Vi € I, is associated with a known nonnegative demand, d;, to be
delivered, and the depot has a fictitious demand d, = 0. The total demand of the set V' S V is
calculated as d(V') = Zil,lzll d;r.

Let K be a number of available vehicles at the depot v,. Each vehicle has the same capacity — C. Let
us assume that every vehicle may perform at most one route and K > K,,;,, where K,,,;,, is a minimal
number of vehicles needed to serve all the customers due to restriction on C. Clearly, next condition

must be fulfilled — (Vv; € V) d; < C,Vi € I, which prohibits goods transportation that exceed
maximum vehicle capacity.

Let introduce VO ={v,},where wvy€V. Let wus divide V in K+1 sets:
S ={V° V1, .., VE}, each subset, except for V°, represent a set of customers to be served for one
vehicle. S* = {S} is a set of all possible partitions of V. Let /] = {0, 1, ..., K} be a set that keeps
indexes. Then (Vj €] ) |Vj | > 1. There should be no duplicates in any of subsets from
S:(VgeNWEN(g #j=VInV/=0). Also, all subsets from S must form set V. Thus, V =
Uﬂ'(:o VJ. In this notation, V% = V° U V¥, vk € J\{0}. It is obvious that d(V°F) < C.

Let introduce M* = {1,N*..,N*}, N* = |V¥|, ¥X_ N* = N. Then let M% = {0} u M*. Let
1* = UX_,{i|i = ind(v), Vv € V*} be a set of vertex indices from V*. Then I°% = {0} U I*, Vk €
J\{0}.

Let H* = {p*: M°* - [°%| p*(0) = 0 & (Vx € M*¥)(Vy € M*®) x # y = p*(x) # p*(y)} be a
set of codes of all possible permutations h* = (Upk(o), k(1) s 'Upk(Nk)) of V. These
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permutations represent all possible Hamiltonian cycles of graph Gk < V(0K y(0k) 5 7 (0k)
vk € J\{0}.
Weight of k¥ € H¥ can be found according to the formula 1:
Nk-1
fh)=c (Vp"(O)'”p"(N")) + Z c(Vpk(qy Vpk(qen) @
q=0
Let S’ be a set of {V°1,V92, ., VOX} In this notation the weight of S’ is calculated as F(S') =
Y=t f(h9), Vk € J\{0}.
Overall, the formulation of CVRP is to find:
SO F(§% = min F(S) )
se sall

3. Constructive heuristics
In this section the most popular constructive heuristics are described.

3.1 Sequential Insertion algorithm (SI)

Sequential Insertion algorithm [9] constructs routes subsequently, one after another.

In the first step, a new tour toury, k < K, is initialized with a random unrouted node v;, i # 0, and
the depot v,. Thus, a tour (vy, v;, V) is obtained.

In the second step, another unrouted vertex vj,j # 0, is chosen, such that its incorporation in the
current tour gives the least increase in a tour length and demand of a potential node v; does not
exceed vehicle capacity. So, the next two formulae must be hold:

. argmin c(va, v]-) + c(v]-, va+1) — c(Vg, Vg41);
vq € toury,
Vg1 € toury,

vj € toury
®  Diour, +d; < C, where D4y, is a total demand of current toury.
If all conditions hold then this unrouted vertex v;, j # 0 is inserted in a tour toury between v, and
Va+1-
The second step is repeated until no more unrouted vertex v;, j # 0, can be feasibly inserted. In this
case a new tour toury, k < K, is initialized, and the procedure starts from the first step.

3.2 Improved Parallel Insertion algorithm

Parallel Insertion Improved algorithm [10] builds routes simultaneously. This method is a
modification of Sequential Insertion algorithm.

In the first step, the minimum number K,,,;, of feasible routes is defined as Ky;, = Yiep d; /C. All
these routes tour;, € Tours are initialized with K,,;,, different closest to v, unrouted nodes v;, i #
0. Thus, K;p;,, tours (vg, v;, V) are obtained.

In the second step, a random unrouted node v;, j # 0, is inserted in some route toury at its best
insertion position. The next two conditions must be hold — incorporation of v; in this tour gives the
least increase in a tour length among all other tours and demand of a potential node v; does not
exceed vehicle capacity. So:

. argmin c(va, v]-) + c(v]-, va+1) — (Vg Vas1)s
vgEtoUury,
Vg+1€Etoury,

vjgtoury

®  Diour, + d; < C, where Dygyy, is a total demand of current toury,.

148



Asnonma C.M., bepechepa E.H. DBpuctHueckre MeTOIbI KOHCTPYHPOBAHHS MapIIpyTa [T PEIICHHS 3a/[a4 MapIIPyTH3aIMU C
OrpaHHYCHHUEM TIO Tpy30noabeMHocTH. Tpyost UCII PAH, Tom 31, BBin. 3, 2019 1., c1p. 145-156

If all conditions hold then this unrouted vertex v;, j # 0 is inserted in a tour toury between v, and
Va+1:

The second step is repeated until no more unrouted vertex v;, j # 0, can be feasibly inserted in some
route toury. In this case a new tour toury, k < K, is initialized as (v, vj, V) and adds to set of all
tours Tours, and the procedure continues.

3.3 Nearest Neighbor heuristic (NN)

Nearest Neighbor heuristic constructs routes subsequently, one after another, in a greedy way.

In the first step, an unrouted node v;, i # 0, which is closest to the depot vy, is chosen. A new open
tour toury, k < K, is initialized with v; and v,. Thus, a tour (vy, v;) is obtained.

In the second step, another unrouted vertex v}, j # 0, is chosen, which is the nearest to the last added
vertex and a demand of a potential node v; does not exceed vehicle capacity. So, the next two
formulae must be hold:

. argmin C(Ui, v]-);
vj Etoury, vj¢tourg

®  Dioy , +d; < C, where Doy, is a total demand of current tour.
If all conditions hold then this unrouted vertex v; is added in the end of toury, after v;, and since that
time it turns to be the last added vertex.

The second step is repeated until no more unrouted vertex v;, j # 0, can be feasibly inserted. In this
case a new tour toury, k < K, is initialized, and the procedure starts from the first step.

3.4 Clarke and Wright Savings heuristic (CWS)

In the first step, all vertices v; € V,i # 0, must form |V — 1| routes. Thus, |V — 1| tours (vg, v;, Vo)
are obtained.

In the second step, Vv; € V,Vv; € V,i # 0,j # 0,i # j, saving S(vi,vj) is calculated as s(vi,vj) =
c(v;,vy) + c(vo, v]-) —¢(v;,v;). All savings are put in a list of S, § must be sorted in a non-
increasing order.

In the third step, the first unused saving in a list is taken. Then, existence of two routes tour, and
toury,, x # y, having the next conditions, is checked:

e there is an edge (v;, Vo) in route x and edge (v, v;) in tour tour,;

*  Diour, + Dioy , = C.

If there are such routes then tour, and tour, are combined by removing edges (v;, vo), (vo, v;) and
introducing edge (v;, v;). After that, despite of ability or absence these routes, the current saving is
skipped and the next one in the list is checked.

The last step works until K tours are left.

3.5 Variant of Clarke and Wright Savings heuristic (CWS_2)

Classical variant of Clarke and Wright Savings algorithm forms good tours in the first part of its
work mostly. However, it was noticed that it tends to produce less competitive tours towards the end
because of periphery nodes addition. Thus, Yellow [11] and Gaskell [ 12] suggested improved form
of savings calculation. It is s(vi,vj) = c(v;,vp) + c(vo,vj) — Ac(v;,v;). Here A is a parameter
which responds for measuring the distance between the vertices to be joint. In one report [13] it was
mentioned that the best value of 4 is 0.4.
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3.6 Subgroup of Cluster-First-Route-Second heuristics

Subgroup of Cluster-First-Route-Second heuristics belongs to two-phase methods, which are based
on the decomposition of the CVRP solution process into two separate stages — clustering and routing.
In the clustering stage, a partition of the customers into routes is made, and in the routing stage, the
sequence of the customers on each subset is obtained.

In Cluster-First-Route-Second methods, nodes are first partitioned into different subsets called
clusters and then routes are determined by sequencing the customers within each subset.

3.6.1 Sweep
This Cluster-First-Route-Second method can be applied only for planar instances [9].

Clustering stage
Let us define v; € V as v; = (x;; y;), where x; and y; are the Cartesian coordinates of point v;.

In the first step, new normalized vertices v; = (x{;y;") = (x; — Xo; Vi — ¥o) are introduced, where
the depot v," has new Cartesian coordinates (0; 0), Vi € |V].

Let v, = (8;,11) be a vertex with polar coordinate of v;’, where ; = x;% + /2 and 6; is calculated
using formula 3:

arctg (%),xi >0,y,=20
i

arctg (%) +2m,x; >0,y <0
i

0; = arctg (&) +m,x; <0 3)
T L
E,xi = O'yi >0
T
T,Xi = O,yi <0

In the second step, a list V of all v," = (6;,7;), Vi € |V|,i # 0, is calculated and is sorted in increasing
order by parameter 6;.

In the next step, a new cluster is initialized with {v,} and maximum number of first L vertices from
7, such that Y= d; < C. Parameter L is not a constant, it can be other for different clusters
depending on weights of demands and total capacity. Then these used vertices are removed from 7/,
and the procedure is repeated until V = @.

Routing stage

At this stage for each cluster TSP Cheapest Insertion heuristic is applied which forms a cycle.

3.6.2 Fisher and Jaikumar algorithm

In contrast to Sweep algorithm, this Cluster-First-Route-Second method can be applied not only for
planar instances. Instead of using a geometric method to form the clusters, it solves a Generalized
Assignment Problem (GAP).

Clustering stage

In the first step Vk = 1.. K a vertex Vseeatk) € V\{V,} is chosen. These K vertices form K clusters.
In the second step the cost cost,’,‘i of allocating each node v; € V,i # 0, to each cluster k is calculated
as costl, = c(v5, V) + ¢(Vi, Vseeaty) — €(Vseeatr Vo)

In the third step the algorithm solves GAP with costf,‘i, d; and C, which determines a minimum cost

assignment of items to a given set of bins of capacity C. The GAP can be solved using either exact
or heuristic techniques.
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Routing stage

The final routes are determined by solving a TSP on each defined cluster.

According to this work [15], this algorithm gives way to the algorithms described above and
provides solutions with more solution quality. That is why it will not be considered in later
comparison study as it was already done.

3.7 Subgroup of Route-First-Cluster-Second heuristics

Subgroup of Route-First-Cluster-Second heuristics also belongs to two-phase methods. However, in
contrast to Cluster-First-Route-Second methods, these constructive heuristics at first solve TSP for
all nodes and only then break built cycle to K routes. Unfortunately, many studies showed than these
heuristics are applicable only if there is no constraint on the number of vehicles. In addition, they
are not competitive with other constructive heuristics in general [9].

4. Experiments and results

All algorithms are implemented as sequential algorithms in C++. The computational testing of the
solution methods for CVRP has been carried out by considering eight sets of test instances from the
next well-known database [ 16]. Total number of instances in sets A, B, E, F, G, M, P, X is 211. All
instances inside one set have its own characteristics and a way of generation: cluster-based / uniform
/ geometric distribution of clients, real-world / imitative cases etc. The integer Euclidean metric is
used for all instances. The naming scheme and data format for each instance is described here [17].
Shortly, the first letter in names shows the name of used set, the figure after letter ‘n’ shows the
number of nodes and the figure which stands after letter ‘k’ presents the number of vehicles.
Experiment starts with the choice of a constructive heuristic H from the set {SI, FI, NN, CWS,
CWS 2, Sweep}. After that one dataset D is selected from the list of all benchmark datasets. Then
an instance file F from the chosen dataset D is taken as input for the algorithm H and the heuristic
is executed (only 1 time because all these algorithms do not use random generations, so all obtained
solutions are the same). After that we report solution quality £(H, F) found for the algorithm H on
the test F. Solution quality € (or percent above best-known, or gap) is calculated using formula 4
[18]:

F(So) - Fopt(S)

F opt (S )

where F(S°) is a length of obtained solution and Fope(S) is a length of optimal solution or best-
known one. And finally, among all €(H,F) from one dataset sample mean X,(H,D) =

-100%, 4)

DI ZlDl €(H, F) is calculated which shows average gap for the algorithm H on the dataset D, where

|D| is a number of input files in dataset D.

The plan of experiments on constructive heuristics described in Fig. 1.
Input: constructive heuristics, datasets

foreach constructive heuristic H

foreach dataset D from datasets

foreach instance file F from D

solution = run H on F

calculate &(H,F)

calculate X.(H,D) // average gap on dataset

AUV hA WNER

Fig.1. Plan of experiment on constructive heuristics

It should be mentioned that each algorithm is subsequently launched on all 211 instances from 8
datasets, so no input file is missed.
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A criterion of running time was not considered because all instances were solved in a time which
does not exceed 1 second. It is thought to be insignificant in comparison with time-consuming
metaheuristic work.

Fig. 2, 3 and 4 represent the results of experiments conducted over algorithms using sets B, P and G
of widely different types. The horizontal axis represents the name of instance data. The vertical axis
shows the solution quality.

Solution quality of constructive heuristics (set B), %
140%
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0%

R A N R AR R AR A A AR AR AR AR AR A AR A AR AP A
—Sequential Insertion—Parallel insertion = ——Nearest Neighbour
—CWS_2 CWS —Sweep
Fig. 2. Solution quality of constructive heuristics, set B
Solution quality of constructive heuristics (set P), %
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0% o
7 QT QT QT RT QT QT QT QTR QT QT R QT QT oK a0 QT QTR
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Fig. 3. Solution quality of constructive heuristics, set P
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Solution quality of constructive heuristics (set G), %
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Fig. 4. Solution quality of constructive heuristics, set G.

Average gaps X, (H, D) of each algorithm on different data sets are presented in Table 1 and fig. 5.
These general figures can show an approximate overall effectiveness of algorithms. On the basis of
Table 1, all fig. 2, 3, 4, 5 and other results which cannot be shown here because of their large volume,
it can be easily seen that CWS algorithm (its column is made bold in the table) is a leader for all
input files, except some instances from dataset G. Its average gap varies from 3,4% till 11,0%. The
closest competitor is its variant CWS_2, which has average solution quality in a range [9,8%;
20,6%]. CWS_2 algorithm is able to construct the best solutions only for some instances in set B. In
all other cases this algorithm nearly always takes second place and goes behind classical CWS.

Table 1. Average gaps of all heuristics for every set, %.

Average gap X, (H, D) Constructive heuristic

in the dataset SI PI NN CWS CWS 2 Sweep

A (26) 68,7% 33,2% 39,7% 5,0% 12,7% 40,2%

B (23) 82,3% 34,0% 41,2% 4,3% 9,8% 31,7%

g E(1]) 70,4% 30,0% 41,5% 6,4% 17,5% 36,4%
- F(@3) 42,5% 48,5% 74,6% 4,4% 20,6% 71,9%
< G (20) 24,8% 15,6% 16,3% 11,0% 18,4% 142,4%
;,5) M#4) 83,0% 35,5% 44,6% 3,4% 12,0% 89,2%

P (24) 66,0% 25,6% 32.2% 6,9% 11,3% 31,4%

X (100) 99,7% 23,3% 27,4% 5,9% 11,9% 82,9%

Table 2. Percentage of unsolved instances for every set, %.

Percentage of Constructive heuristic
““S"lvegl;“:;?“ces n SI PI NN CWS CWS 2 Sweep
A (26) 0% 0% 0% 0% 0% 69,0%
B (23) 0% 0% 0% 0% 0% 50,0%
0 E(1D) 0% 0% 0% 0% 0% 43,5%
» F(3) 0% 0% 0% 0% 0% 63,6%
E G (20) 0% 0% 0% 0% 0% 66,7%
3 M (4) 0% 0% 0% 0% 0% 90,0%
P (24) 0% 0% 0% 0% 0% 50,0%
X (100) 0% 0% 0% 0% 0% 58,3%
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There is only one algorithm that have a problem with finding an answer to the given problems — it
is Sweep. This heuristic is not able to construct a set of routes without exceeding the number of
vehicles for some input files. All the others coped with the task — they are NN, SI, PI, CWS and
CWS_2. Table 2 shows the percentage and the number of unsolved instances for all sets. In average,
Sweep algorithm cannot solve the instance without over limit in more than 50% cases. It can be
explained by the fact that the next vertex to be added is chosen by criteria of distance (polar angle,
for real) but not the capacity.

Average gap of constructive heuristics in the datasets, %
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—Sequential Insertion—Parallel insertion = ——Nearest Neighbour
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Fig. 5. Average gap of constructive heuristics in the datasets
Golden_5 (n=200, Q=900)
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0 —
-250
-300 -150 0 150 300
Fig. 6. Solution for instance G-n200-k5
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It was mentioned earlier that CWS is not a leader for some instances from dataset G. There are 8
instances when NN finds the best solutions but not CWS (fig. 4). This interesting change of the
leader is connected with the type of customers’ distribution — these instances have a form of rays
going from the center. If we look at fig. 6, where a solution for the instance is presented, we can see
that the idea of nearest neighbor works here the best way.

5. Conclusions

Overall, the next recommendation should be given to the problem which has described variant of
mathematical model of CVRP. In general, for all types of clients’ distribution the best algorithm to
be applied is Clarke and Wright Savings, however, in case of having input data in form of concentric
rays (like in fig. 6) it is better to use Nearest Neighbor algorithm. Also, a few instances were solved
best of all by Clarke and Wright Savings 2 algorithm, so it is important to have this algorithm in
mind, however the difference between it and CWS is not very significant (no more than 1%). One
more conclusion is that it is unreasonable to use Sweep heuristic as it is not able to construct a set
of routes without exceeding the number of vehicles for more than 50% of input files. Finally, for
our research it means that for all instances, except those 8 from set G, CWS heuristic will be used
as initial algorithm for metaheuristic, otherwise — we will apply NN.
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