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Abstract. Cryptographic protocols are the core of any secure system. With the help of them, data is transmitted
securely and protected from third parties' negative impact. As a rule, a cryptographic protocol is developed,
analyzed using the means of formal verification and, if it is safe, gets its implementation in the programming
language on which the system is developed. However, in the practical implementation of a cryptographic
protocol, errors may occur due to the human factor, the assumptions that are necessary for the possibility of
implementing the protocol, which entail undermining its security. Thus, it turns out that the protocol itself was
initially considered to be safe, but its implementation is in fact not safe. In addition, formal verification uses
rather abstract concepts and does not allow to fully analyze the protocol. This paper presents an algorithm for
analyzing the source code of the C# programming language to extract the structure of cryptographic protocols.
The features of the implementation of protocols in practice are described. The algorithm is based on the
searching of important code sections that contain cryptographic protocol-specific constructions and finding of
a variable chain transformations from the state of sending or receiving messages to their initial initialization,
taking into account possible cryptographic transformations, to compose a tree, from which a simplified structure
of a cryptographic protocol will be extracted. The algorithm is implemented in the C# programming language
using the Roslyn parser. As an example, a cryptographic protocol is presented that contains the basic operations
and functions, namely, asymmetric and symmetric encryption, hashing, signature, random number generation,
data concatenation. The analyzer work is shown using this protocol as an example. The future work is described.
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C# napcep Ans U3Bne4veHUs CTPYKTypbl KpunTorpadguyeckux
NPOTOKOJIOB U3 UCXOQHOTO Koaa
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FOoicnwiil hedepanvuoiii ynusepcumem, Kagheopa unghopmayuonnoii 6ezonacnocmu,
Taecanpoe, Pocmosckas oonacme, 347928, Poccust

Annoranus. Kpunrorpaduueckue HDpPOTOKONBI SIBISIOTCS SAPOM JII00OH 3ammumieHHO# cucrembl. C mx
NOMOIIBIO IIEePeJAlOTCS JaHHBIE, KOTOpBIE HYXKJAIOTCS B 3al[uTe OT TpeTbux Jjmn. Kak mnpasmio,
KpunrorpagUIecKuii MpoTOKOI pa3pabaTbBacTCsl, aHAIHM3UPYETCS ¢ HCIIONB30BaHUEM CPEICTB (opManbHOI
BepuuKaIMu ¥, €cId OH Oe30maceH, peaau3yeTcs Ha A3bIKE HPOrPaMMHUPOBAHHUS, HA KOTOPOM
paspabarbiBaeTcst cucTeMa. OHAKO IPH NPAKTUYECKON pealn3aii KPUNTOrpagudeckoro IpoToKoIa MOIyT

191

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

BO3HHMKATh OIIMOKM M3-32 4YeIOBEYECKOro (aKTopa, MPENOI0KEHHH, KOTOpble HEOOXOMMMBI UL
BO3MOXKHOCTH PE€alU3allii MPOTOKONA, YTO BIEYET 3a co0O0i moaphiB ero Oe3omacHOCTH. Taxum obGpasom,
OKa3bIBACTCS, YTO CaM MPOTOKOJ W3HAYAIGHO CUMTAJICS OC30MACHBIM, HO €r0 peanu3alysi Ha CamoM Jiene
Hebe3omacHa. Kpome Toro, opmaibHasi BeprudHKaLys UCIOIb3YeT JOBOJIBHO a0CTPAKTHBIC MOHSTHS W HE
MO3BOJISET MOJIHOCTBIO MPOAHATU3UPOBATh MPOTOKON. B [JaHHOW CTaThe MPEACTAaBICH AITOPUTM aHAIM3a
HCXOJHOTO KoJa s3bIKa mnporpammupoBanus C# I H3BICUEHUS CTPYKTYPHl KpHITOrpadHIecKux
npoTokonoB. OmnucaHbl OCOOGHHOCTH peajM3allik MPOTOKOJOB HAa IPAKTHKE. AJITOPUTM OCHOBaH Ha
OIIpeICIICHAH KJIFOUYEBBIX 00JIaCTel K0/1a, COAePIKALIMX CIICHU(HIECKHE 11 KPHITOrPahHIECKHX IIPOTOKOJIOB
KOHCTPYKIMM, M ONpEICNCHUH LEMOYKH IMpeoOpa3oBaHuil MEPEMEHHBIX H3 COCTOSHHS OTIPABKH HIH
[OJIY4EHHsI COOOLICHMH O MX HAaYaJlbHOM WMHHUI[MAIN3ALMU C YYETOM BO3MOXHBIX KPUNTOrpaduuecKux
npeobpa3oBaHMil UL COCTABICHMS JEpPEBa, M3 KOTOPOro OyAeT W3BIECYEHA YIPOIICHHAs CTPYKTypa
Kpunrorpaguyeckoro IPOTOKONA. AJTOPUTM pealu3oBaH Ha s3bIke Imporpammuposanus C# ¢
HCTIONIb30BAHUEM ~ CHHTAKCHYECKOTro —aHaimmsatopa Roslyn. B kadecTBe mpumepa mpeacTaBiieH
KPHUITOrpadHIeCKuil IIPOTOKOJ, KOTOPBIA COJNECPXKHT OCHOBHBIC OIEpalud ¥ (QYHKIHH, a HMCHHO:
ACHMMETPUYHOE M CHMMETPHYHOE IIHM(POBAHUE, XCLIMPOBAHME, MOJIKCH, IEHEPALHs CIYYailHbIX YHCEll,
KOHKaTeHalysi JIaHHbIX. PaboTa aHanm3aTopa IIOKa3aHa C KCIOJIB30BAHHEM 3TOrO IIPOTOKOJNA B KAadecTBE
npumMepa. Onucana Oyaymas padora.

KmoueBsie c10Ba: kpuntorpadpuaeckue npotokoist; C#; mapcep; BepuduKarus; 1epeBo; aHaIn3; HCXOXHbII
KOJI.

Jss uurupoBanmsi: Ilucapes W.A., bBabenko JLK. C# mnapcep mansd U3BICYEHHS CTPYKTYPbI
Kpunrorpa@uIecKux MpoToKoIoB u3 ucxoxHoro xoxa. Tpynst UCIT PAH, tom 31, Bem. 3, 2019 1., crp. 191-
202 (una aurauiickom s3bike). DOL: 10.15514/ISPRAS-2019-31(3)-15

BaarogapHoctb. PaboTa BhINONHEHa NpH mojiepkke MuHHUCTEpCTBA 00pa3oBaHUs U HAyKH Poccuiickoit
Denepanun, rpant Ne 2.6264.2017/8.9.

1. Introduction

The problem of verifying the security of cryptographic protocols is relevant nowadays despite the
existence of a large number of already verified protocols. The need to use self-written protocols that
use lightweight cryptography for IoT, mobile robots, as well as the imperfection of formal
verification of protocols is a new challenge for verification methods, in particular, the possibility of
verifying the security of cryptographic protocols implementation. Nearly all protocols are changed
and supplemented during implementation, and for their initial analysis, for example, by means of
formal verification this is not taken into account. Also there can be programming mistakes and logic
flaws on source code. So we need verify cryptographic protocols on their last developing iteration -
on implementation level for more attack finding which can help make any system more secure. Due
to this fact this work is actual nowadays. The primary task in this matter is to extract the structure
of the protocol from the source code. At the moment there are works in which the problem of
extracting an abstract model from the source code of programming languages C [1-3], Java [4-6],
F# [7-12] is being considered. Most of them require a special programming style for the possibility
of use these algorithms or the use of additional annotations in the source code. The paper proposes
to analyze the source code of the C# programming language. There are no other works, in which
code analysis would be carried out, not involving the use of annotations or a special programming
style.

2. Cryptographic protocols

Cryptographic protocols are a set of cryptographic algorithms and functions, with a correct
combination of which is obtained a secure process of transferring messages between the parties.
Protocol security is defined as complying with security requirements, the main of which are mutual
authentication of the parties, protection against time attacks such as replay attacks, privacy and
integrity of the transmitted data. Below is an example of a test protocol that does not have a special
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meaning, but contains all the basic cryptographic algorithms and functions: asymmetric and
symmetric encryption, hashing, signature, random number generation.

A - B: Epp(A,Na)

B - A: Epya(Na,Nb, B)

A > B: Epp(ND, k)

B — A: Ex (M1, Epa(M2)), Hash(M1)

A - B:E,(M1,M2,M3),Signg.,(M1,M2,M3)

. B> A:E,(M3)

At the beginning of this protocol, messages 1-3 use the Needham—Schroeder public key protocol
(NSPK) [13] for mutual authentication of the parties. In message 3, in addition to the random number
Nb, the key k is also transmitted for further communication between the parties using a symmetric
cipher. In message 4, M2 data is transmitted, asymmetrically encrypted on partys' A public key, and
some M1 data. All this is encrypted symmetrically using the key k, after which the data hash M1 is
applied. In message 5, side A applies its M3 data to the previously sent data M1 and M2, encrypts
all this symmetrically on key k, applies a signature and sends this message to side B. In message 6,
B sends A M3 data encrypted symmetrically on key k.

QLA W~

3. Features of the cryptographic protocols implementation

There are a number of problems with the implementation of cryptographic protocols. One of the
problems is the dynamic size of messages. In the programming language, the transfer of messages
between the parties is implemented using sockets. In this case, the party that receives the message
must know in advance the size of the buffer to receive. For example, in the protocol described in the
previous paragraph, in the first three messages random numbers and identifiers of the parties with a
fixed length are used. In this case, everything is simple and at the reception of the message by the
party, it will expect a previously calculated static message length. However, messages 4-6 use data
M1, M2, M3, which may have different lengths. For example, in message 4, M1 data can be a video
file, the length of which can vary from 1 MB to several GB. And the question is how to tell the
receiving party the size of the receiving buffer. There are various options for how this can be done,
for example, to add information about its length to the beginning of a message, to put a mark at the
end of the message. Let us consider in more detail the option with the addition of information about
the length of the message. This option involves the use of additional data before the main message,
which will contain the size of the future message. An example of a message with additional size
information is shown in fig. 1.

Buffer size Message

Fig. 1. Additional information about the size of the message

The receiving party in this case receives a fixed array of bytes, which contains the size of the
message, after which the second portion takes the rest of the message knowing in advance its length.
A send: Buffer size, Message

B receive (4 bytes): Buffer size

B receive (Buffer size): Message

Since Message is usually encrypted and, in the context of a protocol, its transmission is protected,
the question arises of how to protect information in Buffer size. All security requirements are
important for us, except secrecy. To ensure them, you can, for example, use the signature of this
area with timestamps. Thus, the transmission, for example, message 4, will have the following form
when implementing the protocol:

B — A: Buffer size,T,Signg.g(Buffer size,T), Ex(M1, Ep,(M2)), Hash(M1)
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Another way is to get data into a fixed-length buffer until the buffer becomes empty. In this case,
problems can also arise as shown in fig. 2.

Receive in buffer 1 | Message part 1

Receive in buffer 2 | Message part 2 Intruder’s part

Fig. 2. Intruders' attack on the addition of real data

The result is that the message will be received longer than necessary and in some implementations,
in which further processing of the message by the receiving party is tied to the use of the message
length, some data may be imperceptibly corrupted when decrypting and dividing the data into the
message elements (random numbers, keys, etc.). In order to avoid this, various methods of
controlling the length of a message are also used.

4. Source code analysis algorithm

As an example for describing the operation of the algorithm, the previously considered protocol was
taken and implemented in the C# programming language in the form of a client server application.
A - B:E,p(4,Na)

B - A: Epa(Na,Nb, B)

A - B: Epg(Nb, k)

B — A: Ex (M1, Epy 4 (M2)), Hash(M1)

A - B:E,(M1,M2,M3),Signg.,(M1, M2, M3)

. B - A:E,(M3)

The analysis algorithm uses the C# Roslyn source code parser [14]. With it you can get the tree
structure of the source code, and you can use filters. We need these filters:

1) InvocationExpressionSyntax — call expressions;

2) VariableDeclarationSyntax — declaration of variables;

3) AssignmentExpressionSyntax — an assignment expression;

4) IfStatementSyntax — statement with a condition statement.

Using filters, you can get the desired expression, after which you can view the tree structure of this
expression. For example, using «AssignmentExpressionSyntax» we can find the expression
«M1lencl = RSA.Encrypt (M1,true)». The derived linear tree structure of the expression is
shown in fig. 3.

S A W~

> @ [0] AssignmentExpressionSyntax SimpleAssignmentExpression M1lencl = RSA.Encrypt(M1, true)
> @ [1] IdentifierNameSyntax IdentifierName Mlencl
b @ [2] InvocationExpressionSyntax InvocationExpression RSA.Encrypt(M1, true)

> @ [3] MemberAccessExpressionSyntax SimpleMemberAccessExpression RSA.Encrypt
(> @ [4] IdentifierNameSyntax IdentifierName RSA
> @ [5] IdentifierNameSyntax IdentifierName Encrypt

> @ [6] ArgumentListSyntax ArgumentList (M1, true)
1> @ [7] ArgumentSyntax Argument M1
(> @ [8] IdentifierNameSyntax IdentifierName M1

> @ [9] ArgumentSyntax Argument true

» @ [10] LiteralExpressionSyntax TrueLiteralExpression true

Fig. 3. Tree structure of expression in a linear form
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The main purpose of using this parser is to find the transition from one variable to another. In this 39 using (RSACryptoServiceProvider RSA = new
case, we are interested in the transition M1encl — M1. This is achieved by searching for data such 40 RSACryptoServiceProvider ())
as «ldentifierName» together with the use of a black list of expressions. For example, it uses the call 2; { RSA.T p . (
of the «Encrypt» method, as well as the previously declared object of the asymmetric encryption 43 I ﬁxlgiirtpairaimeieeés( true)) ;
class «RSA», which are present in the black list, and M1encl and M1 that we need can be obtained 44 MGe.tZ = RSA.Decrypt (MGetZEn’cr true) ;
from here, where the first element will be the variable to which the value will be assigned, and the 45 }
rest of those that are lower and not included in the black list will be the new value assigned. 46
The algorithm is based on the definition of important code sections containing constructs specific to 47 byte[] BFromServer = new byte[2];
cryptographic protocols. Ultimately, the task is to find a chains of variables transformation from the 22 byte[] NaGet = gewobyte (641 o0 2
state of sending or receiving messages (socket send/receive) to their initial initialization (static s iiizy‘gzpy Eﬁgj‘é 2’ O, Eiég?segvegé) 7 )i
initialization, load from file, etc.), while taking into account possible cryptographic transformations 51 v--opy r r !
(hash, encryption, etc.). In the course of building a chain, a tree is constructed, the nodes of which 52 if (!NaGet.SequenceEqual (Na) &
are variables with additional information about them, including data type definitions for the final 53 I1B.SequenceEqual (BFromServer) )
leaves of the tree and cryptographic algorithms in the tree nodes. The tree structure allows you to 54 {
describe all the chains of data transformations, since the data in the message is combined in various 55 socA.Shutdown (SocketShutdown.Both) ;
ways, the chains can be strongly branched and joined. Below is a fragment of the source code for 56 sochA.Close ()
the implementation of a part of the cryptographic protocol (messages 1-3) from participant A. g; ) return;
é S.o'c'ket SOCA = 9
3 new Socket (ipAddress.AddressFamily, 22 25;2;] ngyTMgivgzbygj [6;\1]11); 0, 64);
4 SocketType.Stream, ProtocolType.Tcp); 62 : ! ! ror !
5 - .
6 socA.Connect (remoteEP) ; 22 ?i;eéitgy;eze(z)}?yte[32 + 161
7 : !
8 RNGCryptoServiceProvider rng = new 22 byte[] M3 = new byte[0];
9 RNGCryptoServiceProvider () ; 67 M3 = Nb.Concat (k) ToArr:ay() .
10 . . ;
11 byte[] A = new byte[] { 132, 114 }; 22 /73
12 byte[] B = new byte[] { 15, 245 }; 70 byte[] M3enc;
13 ) ! . .
B . 71 using (RSACryptoServiceProvider RSA = new
14 byte[] Na = new byte[64]; 72 RSACryptoServiceProvider ())
15 rng.GetBytes (Na) ; 73 {
16
B X 74 RSA.ImportParameters (rsaPB.ExportParameters (false));
1; byte[] ML = new byte[2 + 64]; 75 M3enc = RSA.Encrypt (M3, true);
76 }
19 Array.Copy (A, 0, M1, 0, A.Length); .
20 Array.Copy (Na, 0, M1, 2, Na.Length); Z; soch.Send (M3enc) ;
2 i 79
23 bytel] Mlenc; First you need to define the declaration and initialization:
24 using (RSACryptoServiceProvider RSA = e objects of class Socket.
22 I{lew RSACryptoServiceProvider ()) e class objects of the standard library cryptographic algorithms, such as the
0 RSA. TmportParameters ( RSACryptoServiceProvider asymmetric encryption algorithm, the RNG CryptoServiceProvider
28 rsaPB.ExportParameters (false)); random number generator, efc.
29 Mlenc = RSA.Encrypt (M1, true); The variables of the class object Socket: [socA], classes of cryptographic algorithms are defined:
30 } [rng, RSA].
gé A Send (M1 . To find variable of the Socket class object, the sending and receiving messages is searched. In this
33 . case, there are 3 such constructions. At this stage, you can construct an interaction scheme of the
34 /)2 following form:
35 byte[] MGet2Encr = new byte[256]; 1. A- B:M1
36 socA.Receive (MGet2Encr) ; 2 B-> A:M2
37
38 byte[] MGet2; 3. A- B:M3
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To determine the structure of the message, it is necessary to build a tree, the nodes of which contain
variables with additional information. Consider an example for determining the content of the first
message. The order of the algorithm is as follows,

1. The expression of the first message socA.Send (Mlenc) is taken as the root of the tree. It is
necessary to understand the contents of the variable M1enc.

2. First you need to find the declaration of the variable Mlenc using the filter
VariableDeclarationSyntax. However, in our case, the variable is declared, but not initialized
(line 23). In this case, the filter AssignmentExpressionSyntax is used and you can find in line
29 the assignment of the value to our variable. MIenc is added as a child node with the «var»
tag, which means it is just a variable.

3. The simplest case of assignment is when the value of one variable is assigned to another. In
this case, the situation is more difficult. The variable MIenc is assigned the value of the result
of the work of the Encrypt method for an object of the asymmetric encryption class
RSACryptoServiceProvider, which takes two parameters as input: what to encrypt and flag
whether to use optimal asymmetric encryption with addition (OAEP padding). At the current
stage, we remember that the content of the variable M/ was asymmetrically encrypted and
assigned to the variable for sending message 1. In the tree structure, this is displayed as adding
a child node M1 with the note «4symENC», which means that the value of the variable M1 is
encrypted using an asymmetric cipher.

4. Similar to paragraph 2, we are looking for the initialization of the variable M. Using the first
filter, you can find out that the variable is a one-dimensional array (line 17). Using the second
filter, you must find the assignment of values to our array. These are lines 19 and 20. Two
children Na and 4 with the mark «var» are added to node M.

5. For variable 4, the final value can be found using the first VariableDeclarationSyntax filter
(line 11). This is where static initialization occurs in the source code. It is enough for a person
to simply understand that this is the initial value, but for the automated determination of this
fact it is necessary to understand that this is not a variable. One way to solve this problem is to
re-search the right side of the expression, and since more in the design code of the assignment
is not detected, this value is final. In the tree structure for node 4, the initialization leafis added
«new byte [] {132, 114};» marked «DATA», which means the presence of some semantic data
in the variable 4.

6. For the Na variable, the search is carried out further. Using filters, we look for the declaration
of the array and its initialization. The declaration occurs in line 14, and initialization occurs in
line 15 by calling some method of the rng variable, which in turn is an object of the
RNGCryptoServiceProvider class of random numbers, thus, the value of this variable is defined
as a random number. The last leaf «wng.GetBytes (NaPrev);» is added to the tree structure
marked «RANDOMp», which means generating a random number.

7.  Further search initialization for current leaves gives nothing, therefore the structure of the tree
is considered final. The output tree view is shown in fig. 4 in the «Full tree» area and it
corresponds to the following chain: Send (Mlenc) -> Mlenc = E (M1) -> M1 = {4, Na} -> 4
=new byte [] {132, 114}, Na = rand (). You can also see short tree structure and result message
from it.

5. Return data problem

At the moment there is a problem in determining the returned data. For example, in message 1, a
random number Na is sent, and then in the second message it is sent back. By default, there are
currently two data concepts: DATA and RANDOM. All that is not a random number — is considered
semantic data, for example: keys, identifiers, transferred files, etc. And at this stage, all values are
considered different. For example, for the following protocol:
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¥ ' D:\Users\llya\Desktop\Source Protocols Verifier\Analysis\Analysis\bin\Debug\net461\Analysis.exe ‘EIM

Full tree:
+- socA.Send(Mlenc):
+- : var

: AsymENC
Na: var
+- rng.GetBytes(Na): RANDOM W
A: var
+- byte[] A = new byte[] { 132, 114 }: DATA

e

Short tree:
+- socA.Send(Mienc):
+- M1: AsymENC
+- byte[] A = new byte[] { 132, 114 ): DATA
+- rng.GetBytes(Na): RANDOM

Result message:
AsymENC(DATA, RANDOM)

Fig. 4. Output for composing the structure of a single message

1. A- B:Ek(Na,A)

2. B - A:Ek(Nb,B)

The result of the work will be as follows:

1. A - B:SymENC(RANDOM, DATA)

2. B — A:SymENC(RANDOM, DATA)

And in our context, the default DATA in the first message is different from the one in the second
message. If the protocol takes the following form:

1. A- B:Ek(Na,A)

2. B - A:Ek(Nb,Na)

There is a problem. Na just comes back, and on the receiving side we need to understand that this is
the same data. For example, when processing message 2 (lines 34-58), we can trace the separated
parts. In line 50, the value of the random number Na is obtained, after which it is checked for
coincidence with what was sent in line 52. Most often in the context of cryptographic protocols,
returned values are used for mutual authentication. There can be 2 types: the return of the same
number or the return of a function from this number. In both cases, the return value is checked for a
match with the one sent earlier. In our case, this is line 53. However, another value is checked here
— identifier B. In this case, one of the solutions to this problem would be to find the situation when
the variable was sent, and then a value is checked for a match with this variable. In this case, you
can assume that this is the case of the return value. However, there may be a number of problems,
in particular, just the occurrence of an error in writing code, or simply the absence of such a check
of the return value. At the moment, the abstract notion of the type of the RETURN variable is used.
This means that a variable of this type was returned in the current message.

6. Protocol output structure

Using the algorithm presented in the preceding paragraphs, the complete output structure of the
protocol is constructed according to the messages. It is obtained both in short form for formal
verification, and in full form for dynamic verification. The full view contains the last variable, before
serving in the cryptographic function, the names of the last variables and their initial initialization,
for example, static in the code or loading data from a file. Dynamic analysis will be considered in
further work and therefore the contents of the full protocol can be changed.
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Short view:

1. A - B: AsymENC(DATA,RANDOM)

2. B — A: AsymENC(RETURN,RANDOM, DATA)

3. A - B:AsymENC(RETURN,RANDOM)

4. B - A: SYymENC(DATA, AsymENC(DATA)), HASH(DATA)

5. A — B:SymENC(RETURN,RETURN, DATA), Sign(RETURN,RETURN, DATA)
6. B — A:SymENC(RETURN)

Full view:

1) A - B: AsymENC(DATA,RANDOM)

M1 | byte[] A = new byte[] { 132, 114 } | rng.GetBytes (Na)
2) B— A: AsymENC(RETURN,RANDOM,DATA)

M2 | socB.Receive (MGetl) | rng.GetBytes (Nb) |

byte[] B = new byte[] { 15, 245 }
3) A - B: AsymENC(RETURN,RANDOM)

M3 | socA.Receive (MGet2Encr) | rng.GetBytes (k)

4) B > A: SymENC(DATA, AsymENC (DATA)), HASH (DATA)

ForEncM4 | byte[] MlforSend = File.ReadAllBytes ("Messl.txt") | M2forSend |
bytel] M2forSend = File.ReadAllBytes ("Mess2.txt") | MlforSend |

byte[] MlforSend = File.ReadAllBytes ("Messl.txt")
5) A— B:SymENC(RETURN,RETURN,DATA), Sign(RETURN,RETURN,DATA)

ConcatMess5 | socA.Receive (MGet4) | socA.Receive (MGet4) |
byte[] M3forSend = File.ReadAllBytes ("Mess3.txt") | ConcatMess5 |
socA.Receive (MGetd) | socA.Receive (MGetd) |

byte[] M3forSend = File.ReadAllBytes ("Mess3.txt")
6) B — A:SymENC(RETURN)
M3From5 | socB.Receive (MGetb)

7. Experiments

For testing parser on real project we take our previous project - e-voting system based on blinded
intermediaries [15], which implemented on C# language. It consists 3 main components: Voter
application, Authentication server, Voting server. The protocol in main voting stage is:

AS = V: Eygs(Ngs)

Vs - Wt Evvs(Nb' st)

VS g AS: EllSUS (Nasvs)

V — AS: E,us (Ngs, userData, E,,s(Nys, Ny, filledBallot))

AS - VS: Eqgs (Ngsys, Evps(Nys, Ny, filledBallot)))

VS - AS: Eusvs (Nb' Nasvs' l’QOOd")

VS — V:E,,s(N,, Ny, checkID)

Before the protocol session keys vas, vvs, asvs were generated with ECDHE (the Diffie-Hellman
protocol on elliptical curves using ephemeral keys and signing the secret parts) protocol. So at the
beginning of the main voting protocol session keys are created. It is necessary to say that Nb is a
number of blinding, a non-random random number, which is regenerated each time. It is introduced
in order to add some data before the semantic random number for making full search more
complicated (in particular, it is necessary to select two encryption keys for message 7 in order to
find userData). Randomly generated random numbers are sent to authenticate the parties as shown
in (1)-(3). The message (4) uses the principle of blind intermediaries. The voter encrypts his vote
filledBallot on the session key with VS, applies his personal data to the ciphertext, and encrypts it
on the session key with A4S. 4S hashes the sent personal data, searches for the hash in the database

199

NN N~

Pisarev I.A., Babenko L.K. C# parser for extracting cryptographic protocols structure from source code. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 191-202

and, and, if detected, redirects the message to the VS component. V'S memorizes the vote, generates
a checklID through which the user can check his vote after the end of the election, and sends it to the
user.

Code organization of cryptographic protocols in this project is simple. Message sending or receiving
located in methods' block, so there is no difficult code structure. Our parser was launched for this
project and we cad this result:

1. A - B:SymENC(RANDOM)

C - B: SymENC(RANDOM,RANDOM)

C - A:SymENC(RANDOM)

B — A: SymENC(RETURN,DATA,SymENC(RETURN,RANDOM, DATA))

A - C: SymENC(RETURN,RETURN)

C - A: SymENC(RANDOM, RETURN, DATA)

C —» B: SymENC(RETURN,RETURN,DATA)

As we can see from output cryptographic protocol structure was extracted correctly. It is necessary
to say that in message 4 A gets «SymENC(RETURN,RANDOM,DATA)», but in message 5 it sends

this like «kRETURN». So side A doesn't know key for decryption and for it this is some data that was
sent to it and it sends this data to another side so there is 1 element «RETURN» instead of 3.

NN N

7. Future work

Future work primarily includes a segmentation of DATA semantic data into classes:

1) party identifiers;

2) keys;

3) timestamps;

4) authentication Codes;

5) datareceived from the user.

It is also an important point to determine the ownership of a key by any of the parties in the case of
asymmetric encryption, and to the list of parties in the case of symmetric encryption. Support for
protocols involving more than two parties will also be needed. In addition, a complete solution to
the problem of accurately determining the returned data is necessary to make it possible to build a
complete structure of a cryptographic protocol and its further analysis using formal verification
tools. After obtaining the structure of the cryptographic protocol, it is necessary to develop an
algorithm for automated translation into the specification language of the most well-known protocol
verification tools, such as Avispa [16], Scyther [17], ProVerif [18], and others. It is also necessary
to improve the parser. At the moment, the structure can only be retrieved from areas of code where
all functions for sending and receiving messages are combined into one block, for example, into the
body of a function or class method. In the future, it is planned to improve the parser to work with
complex code structures.

8. Conclusion

An algorithm was presented for analyzing the source code of the C# programming language for
extracting the structure of cryptographic protocols, based on identifying important code sections that
contain cryptographic protocol-specific constructions and determining the chain of variable
transformations from the sending or receiving status to their initial initialization, taking into account
possible cryptographic transformations to compose a tree, from which it is possible to get simplified
structure of a cryptographic protocol. An example of a protocol containing all cryptographic
functions is given. The output structure of the cryptographic protocol is shown. Successful practical
testing on real e-voting system based on blinded intermediaries is done. For the further possibility
of the application of formal verification of protocols and dynamic analysis, it is necessary to make
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an additional classification of semantic data, determine whether the keys belong to any party or
parties, and also solve the problem with the returned values.
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