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Abstract. Cryptographic protocols are the core of any secure system. With the help of them, data is transmitted 
securely and protected from third parties' negative impact. As a rule, a cryptographic protocol is developed, 
analyzed using the means of formal verification and, if it is safe, gets its implementation in the programming 
language on which the system is developed. However, in the practical implementation of a cryptographic 
protocol, errors may occur due to the human factor, the assumptions that are necessary for the possibility of 
implementing the protocol, which entail undermining its security. Thus, it turns out that the protocol itself was 
initially considered to be safe, but its implementation is in fact not safe. In addition, formal verification uses 
rather abstract concepts and does not allow to fully analyze the protocol. This paper presents an algorithm for 
analyzing the source code of the C# programming language to extract the structure of cryptographic protocols. 
The features of the implementation of protocols in practice are described. The algorithm is based on the 
searching of important code sections that contain cryptographic protocol-specific constructions and finding of 
a variable chain transformations from the state of sending or receiving messages to their initial initialization, 
taking into account possible cryptographic transformations, to compose a tree, from which a simplified structure 
of a cryptographic protocol will be extracted. The algorithm is implemented in the C# programming language 
using the Roslyn parser. As an example, a cryptographic protocol is presented that contains the basic operations 
and functions, namely, asymmetric and symmetric encryption, hashing, signature, random number generation, 
data concatenation. The analyzer work is shown using this protocol as an example. The future work is described. 
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Аннотация. Криптографические протоколы являются ядром любой защищенной системы. С их 
помощью передаются данные, которые нуждаются в защите от третьих лиц. Как правило, 
криптографический протокол разрабатывается, анализируется с использованием средств формальной 
верификации и, если он безопасен, реализуется на языке программирования, на котором 
разрабатывается система. Однако при практической реализации криптографического протокола могут 
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возникать ошибки из-за человеческого фактора, предположений, которые необходимы для 
возможности реализации протокола, что влечет за собой подрыв его безопасности. Таким образом, 
оказывается, что сам протокол изначально считался безопасным, но его реализация на самом деле 
небезопасна. Кроме того, формальная верификация использует довольно абстрактные понятия и не 
позволяет полностью проанализировать протокол. В данной статье представлен алгоритм анализа 
исходного кода языка программирования C# для извлечения структуры криптографических 
протоколов. Описаны особенности реализации протоколов на практике. Алгоритм основан на 
определении ключевых областей кода, содержащих специфические для криптографических протоколов 
конструкции, и определении цепочки преобразований переменных из состояния отправки или 
получения сообщений до их начальной инициализации с учетом возможных криптографических 
преобразований для составления дерева, из которого будет извлечена упрощенная структура 
криптографического протокола. Алгоритм реализован на языке программирования C# с 
использованием синтаксического анализатора Roslyn. В качестве примера представлен 
криптографический протокол, который содержит основные операции и функции, а именно: 
асимметричное и симметричное шифрование, хеширование, подпись, генерация случайных чисел, 
конкатенация данных. Работа анализатора показана с использованием этого протокола в качестве 
примера. Описана будущая работа. 

Ключевые слова: криптографические протоколы; C#; парсер; верификация; дерево; анализ; исходный 
код. 
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1. Introduction 
The problem of verifying the security of cryptographic protocols is relevant nowadays despite the 
existence of a large number of already verified protocols. The need to use self-written protocols that 
use lightweight cryptography for IoT, mobile robots, as well as the imperfection of formal 
verification of protocols is a new challenge for verification methods, in particular, the possibility of 
verifying the security of cryptographic protocols implementation. Nearly all protocols are changed 
and supplemented during implementation, and for their initial analysis, for example, by means of 
formal verification this is not taken into account. Also there can be programming mistakes and logic 
flaws on source code. So we need verify cryptographic protocols on their last developing iteration - 
on implementation level for more attack finding which can help make any system more secure. Due 
to this fact this work is actual nowadays. The primary task in this matter is to extract the structure 
of the protocol from the source code. At the moment there are works in which the problem of 
extracting an abstract model from the source code of programming languages C [1-3], Java [4-6], 
F# [7-12] is being considered. Most of them require a special programming style for the possibility 
of use these algorithms or the use of additional annotations in the source code. The paper proposes 
to analyze the source code of the C# programming language. There are no other works, in which 
code analysis would be carried out, not involving the use of annotations or a special programming 
style. 

2. Cryptographic protocols 
Cryptographic protocols are a set of cryptographic algorithms and functions, with a correct 
combination of which is obtained a secure process of transferring messages between the parties. 
Protocol security is defined as complying with security requirements, the main of which are mutual 
authentication of the parties, protection against time attacks such as replay attacks, privacy and 
integrity of the transmitted data. Below is an example of a test protocol that does not have a special 
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meaning, but contains all the basic cryptographic algorithms and functions: asymmetric and 
symmetric encryption, hashing, signature, random number generation. 
1. 𝐴 → 𝐵: 𝐸௣௞஻(𝐴, 𝑁𝑎) 
2. 𝐵 → 𝐴: 𝐸௣௞஺(𝑁𝑎, 𝑁𝑏, 𝐵) 
3. 𝐴 → 𝐵: 𝐸௣௞஻(𝑁𝑏, 𝑘) 
4. 𝐵 → 𝐴: 𝐸௞(𝑀1, 𝐸௣௞஺(𝑀2)), 𝐻𝑎𝑠ℎ(𝑀1) 
5. 𝐴 → 𝐵: 𝐸௞(𝑀1, 𝑀2, 𝑀3), 𝑆𝑖𝑔𝑛௦௞஺(𝑀1, 𝑀2, 𝑀3) 
6. 𝐵 → 𝐴: 𝐸௞(𝑀3) 
At the beginning of this protocol, messages 1-3 use the Needham–Schroeder public key protocol 
(NSPK) [13] for mutual authentication of the parties. In message 3, in addition to the random number 
𝑁𝑏, the key 𝑘 is also transmitted for further communication between the parties using a symmetric 
cipher. In message 4, 𝑀2 data is transmitted, asymmetrically encrypted on partys' 𝐴 public key, and 
some 𝑀1 data. All this is encrypted symmetrically using the key 𝑘, after which the data hash 𝑀1 is 
applied. In message 5, side 𝐴 applies its 𝑀3 data to the previously sent data 𝑀1 and 𝑀2, encrypts 
all this symmetrically on key 𝑘, applies a signature and sends this message to side 𝐵. In message 6, 
𝐵 sends 𝐴 𝑀3 data encrypted symmetrically on key 𝑘. 

3. Features of the cryptographic protocols implementation 
There are a number of problems with the implementation of cryptographic protocols. One of the 
problems is the dynamic size of messages. In the programming language, the transfer of messages 
between the parties is implemented using sockets. In this case, the party that receives the message 
must know in advance the size of the buffer to receive. For example, in the protocol described in the 
previous paragraph, in the first three messages random numbers and identifiers of the parties with a 
fixed length are used. In this case, everything is simple and at the reception of the message by the 
party, it will expect a previously calculated static message length. However, messages 4-6 use data 
𝑀1, 𝑀2, 𝑀3, which may have different lengths. For example, in message 4, 𝑀1 data can be a video 
file, the length of which can vary from 1 MB to several GB. And the question is how to tell the 
receiving party the size of the receiving buffer. There are various options for how this can be done, 
for example, to add information about its length to the beginning of a message, to put a mark at the 
end of the message. Let us consider in more detail the option with the addition of information about 
the length of the message. This option involves the use of additional data before the main message, 
which will contain the size of the future message. An example of a message with additional size 
information is shown in fig. 1. 

 

Fig. 1. Additional information about the size of the message 

The receiving party in this case receives a fixed array of bytes, which contains the size of the 
message, after which the second portion takes the rest of the message knowing in advance its length. 
A send: Buffer size, Message 
B receive(4 bytes): Buffer size 
B receive(Buffer size): Message 

Since Message is usually encrypted and, in the context of a protocol, its transmission is protected, 
the question arises of how to protect information in Buffer size. All security requirements are 
important for us, except secrecy. To ensure them, you can, for example, use the signature of this 
area with timestamps. Thus, the transmission, for example, message 4, will have the following form 
when implementing the protocol: 
𝐵 → 𝐴: 𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒, 𝑇, 𝑆𝑖𝑔𝑛௦௞஻(𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒, 𝑇), 𝐸௞(𝑀1, 𝐸௣௞஺(𝑀2)), 𝐻𝑎𝑠ℎ(𝑀1)  
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Another way is to get data into a fixed-length buffer until the buffer becomes empty. In this case, 
problems can also arise as shown in fig. 2. 

Message part 1

Message part 2 Intruder’s part 

Receive in buffer 1

Receive in buffer 2

 

Fig. 2. Intruders' attack on the addition of real data 

The result is that the message will be received longer than necessary and in some implementations, 
in which further processing of the message by the receiving party is tied to the use of the message 
length, some data may be imperceptibly corrupted when decrypting and dividing the data into the 
message elements (random numbers, keys, etc.). In order to avoid this, various methods of 
controlling the length of a message are also used. 

4. Source code analysis algorithm 
As an example for describing the operation of the algorithm, the previously considered protocol was 
taken and implemented in the C# programming language in the form of a client server application. 
1. 𝐴 → 𝐵: 𝐸௣௞஻(𝐴, 𝑁𝑎) 
2. 𝐵 → 𝐴: 𝐸௣௞஺(𝑁𝑎, 𝑁𝑏, 𝐵) 
3. 𝐴 → 𝐵: 𝐸௣௞஻(𝑁𝑏, 𝑘) 
4. 𝐵 → 𝐴: 𝐸௞(𝑀1, 𝐸௣௞஺(𝑀2)), 𝐻𝑎𝑠ℎ(𝑀1) 
5. 𝐴 → 𝐵: 𝐸௞(𝑀1, 𝑀2, 𝑀3), 𝑆𝑖𝑔𝑛௦௞஺(𝑀1, 𝑀2, 𝑀3) 
6. 𝐵 → 𝐴: 𝐸௞(𝑀3) 
The analysis algorithm uses the C# Roslyn source code parser [14]. With it you can get the tree 
structure of the source code, and you can use filters. We need these filters: 
1) InvocationExpressionSyntax – call expressions; 
2) VariableDeclarationSyntax – declaration of variables; 
3) AssignmentExpressionSyntax – an assignment expression; 
4) IfStatementSyntax – statement with a condition statement. 
Using filters, you can get the desired expression, after which you can view the tree structure of this 
expression. For example, using «AssignmentExpressionSyntax» we can find the expression 
«𝑀1𝑒𝑛𝑐1 =  𝑅𝑆𝐴. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑀1, 𝑡𝑟𝑢𝑒)». The derived linear tree structure of the expression is 
shown in fig. 3. 

 

Fig. 3. Tree structure of expression in a linear form 



Писарев И.А., Бабенко Л.К. C# парсер для извлечения структуры криптографических протоколов из исходного код. Труды ИСП РАН, том 31, вып. 3, 
2019 г., стр. 191-202 

195 

The main purpose of using this parser is to find the transition from one variable to another. In this 
case, we are interested in the transition 𝑀1𝑒𝑛𝑐1 →  𝑀1. This is achieved by searching for data such 
as «IdentifierName» together with the use of a black list of expressions. For example, it uses the call 
of the «Encrypt» method, as well as the previously declared object of the asymmetric encryption 
class «RSA», which are present in the black list, and 𝑀1𝑒𝑛𝑐1 and 𝑀1 that we need can be obtained 
from here, where the first element will be the variable to which the value will be assigned, and the 
rest of those that are lower and not included in the black list will be the new value assigned. 
The algorithm is based on the definition of important code sections containing constructs specific to 
cryptographic protocols. Ultimately, the task is to find a chains of variables transformation from the 
state of sending or receiving messages (socket send/receive) to their initial initialization (static 
initialization, load from file, etc.), while taking into account possible cryptographic transformations 
(hash, encryption, etc.). In the course of building a chain, a tree is constructed, the nodes of which 
are variables with additional information about them, including data type definitions for the final 
leaves of the tree and cryptographic algorithms in the tree nodes. The tree structure allows you to 
describe all the chains of data transformations, since the data in the message is combined in various 
ways, the chains can be strongly branched and joined. Below is a fragment of the source code for 
the implementation of a part of the cryptographic protocol (messages 1-3) from participant A. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

... 
Socket socA =  
new Socket(ipAddress.AddressFamily, 
SocketType.Stream, ProtocolType.Tcp); 
 
socA.Connect(remoteEP); 
 
RNGCryptoServiceProvider rng = new 
RNGCryptoServiceProvider(); 
 
byte[] A = new byte[] { 132, 114 }; 
byte[] B = new byte[] { 15, 245 }; 
 
byte[] Na = new byte[64]; 
rng.GetBytes(Na); 
 
byte[] M1 = new byte[2 + 64]; 
 
Array.Copy(A, 0, M1, 0, A.Length); 
Array.Copy(Na, 0, M1, 2, Na.Length); 
 
//1 
byte[] M1enc; 
using (RSACryptoServiceProvider RSA =  
new RSACryptoServiceProvider()) 
{ 
 RSA.ImportParameters( 
rsaPB.ExportParameters(false)); 
 M1enc = RSA.Encrypt(M1, true); 
} 
  
socA.Send(M1enc); 
 
//2 
byte[] MGet2Encr = new byte[256]; 
socA.Receive(MGet2Encr); 
 
byte[] MGet2; 
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39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

using (RSACryptoServiceProvider RSA = new 
RSACryptoServiceProvider()) 
{ 
 RSA.ImportParameters( 
rsaSA.ExportParameters(true)); 
 MGet2 = RSA.Decrypt(MGet2Encr, true); 
} 
 
byte[] BFromServer = new byte[2]; 
byte[] NaGet = new byte[64]; 
Array.Copy(MGet2, 0, BFromServer, 0, 2); 
Array.Copy(MGet2, 0, NaGet, 0, 64); 
 
if (!NaGet.SequenceEqual(Na) && 
!B.SequenceEqual(BFromServer)) 
{ 
 socA.Shutdown(SocketShutdown.Both); 
 socA.Close(); 
 return; 
} 
 
byte[] Nb = new byte[64]; 
Array.Copy(MGet2, 64, Nb, 0, 64); 
 
byte[] k = new byte[32 + 16]; 
rng.GetBytes(k); 
 
byte[] M3 = new byte[0]; 
M3 = Nb.Concat(k).ToArray(); 
 
//3 
byte[] M3enc; 
using (RSACryptoServiceProvider RSA = new 
RSACryptoServiceProvider()) 
{ 
 RSA.ImportParameters(rsaPB.ExportParameters(false)); 
 M3enc = RSA.Encrypt(M3, true); 
} 
socA.Send(M3enc); 
... 

First you need to define the declaration and initialization: 
 objects of class Socket. 

 class objects of the standard library cryptographic algorithms, such as the 
RSACryptoServiceProvider asymmetric encryption algorithm, the RNGCryptoServiceProvider 
random number generator, etc. 

The variables of the class object Socket: [socA], classes of cryptographic algorithms are defined: 
[rng, RSA]. 
To find variable of the Socket class object, the sending and receiving messages is searched. In this 
case, there are 3 such constructions. At this stage, you can construct an interaction scheme of the 
following form: 
1. 𝐴 →  𝐵: 𝑀1 
2. 𝐵 →  𝐴: 𝑀2 
3. 𝐴 →  𝐵: 𝑀3 
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To determine the structure of the message, it is necessary to build a tree, the nodes of which contain 
variables with additional information. Consider an example for determining the content of the first 
message. The order of the algorithm is as follows, 
1. The expression of the first message socA.Send (M1enc) is taken as the root of the tree. It is 

necessary to understand the contents of the variable M1enc. 
2. First you need to find the declaration of the variable M1enc using the filter 

VariableDeclarationSyntax. However, in our case, the variable is declared, but not initialized 
(line 23). In this case, the filter AssignmentExpressionSyntax is used and you can find in line 
29 the assignment of the value to our variable. M1enc is added as a child node with the «var» 
tag, which means it is just a variable. 

3. The simplest case of assignment is when the value of one variable is assigned to another. In 
this case, the situation is more difficult. The variable M1enc is assigned the value of the result 
of the work of the Encrypt method for an object of the asymmetric encryption class 
RSACryptoServiceProvider, which takes two parameters as input: what to encrypt and flag 
whether to use optimal asymmetric encryption with addition (OAEP padding). At the current 
stage, we remember that the content of the variable M1 was asymmetrically encrypted and 
assigned to the variable for sending message 1. In the tree structure, this is displayed as adding 
a child node M1 with the note «AsymENC», which means that the value of the variable M1 is 
encrypted using an asymmetric cipher. 

4. Similar to paragraph 2, we are looking for the initialization of the variable M1. Using the first 
filter, you can find out that the variable is a one-dimensional array (line 17). Using the second 
filter, you must find the assignment of values to our array. These are lines 19 and 20. Two 
children Na and A with the mark «var» are added to node M1. 

5. For variable A, the final value can be found using the first VariableDeclarationSyntax filter 
(line 11). This is where static initialization occurs in the source code. It is enough for a person 
to simply understand that this is the initial value, but for the automated determination of this 
fact it is necessary to understand that this is not a variable. One way to solve this problem is to 
re-search the right side of the expression, and since more in the design code of the assignment 
is not detected, this value is final. In the tree structure for node A, the initialization leaf is added 
«new byte [] {132, 114};» marked «DATA», which means the presence of some semantic data 
in the variable A. 

6. For the Na variable, the search is carried out further. Using filters, we look for the declaration 
of the array and its initialization. The declaration occurs in line 14, and initialization occurs in 
line 15 by calling some method of the rng variable, which in turn is an object of the 
RNGCryptoServiceProvider class of random numbers, thus, the value of this variable is defined 
as a random number. The last leaf «rng.GetBytes (NaPrev);» is added to the tree structure 
marked «RANDOM», which means generating a random number. 

7. Further search initialization for current leaves gives nothing, therefore the structure of the tree 
is considered final. The output tree view is shown in fig. 4 in the «Full tree» area and it 
corresponds to the following chain: Send (M1enc) -> M1enc = E (M1) -> M1 = {A, Na} -> A 
= new byte [] {132, 114}, Na = rand (). You can also see short tree structure and result message 
from it. 

5. Return data problem 
At the moment there is a problem in determining the returned data. For example, in message 1, a 
random number Na is sent, and then in the second message it is sent back. By default, there are 
currently two data concepts: DATA and RANDOM. All that is not a random number – is considered 
semantic data, for example: keys, identifiers, transferred files, etc. And at this stage, all values are 
considered different. For example, for the following protocol: 
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Fig. 4. Output for composing the structure of a single message 

1. 𝐴 → 𝐵: 𝐸𝑘(𝑁𝑎, 𝐴) 
2. 𝐵 → 𝐴: 𝐸𝑘(𝑁𝑏, 𝐵) 
The result of the work will be as follows: 
1. 𝐴 → 𝐵: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐴𝑁𝐷𝑂𝑀, 𝐷𝐴𝑇𝐴) 
2. 𝐵 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐴𝑁𝐷𝑂𝑀, 𝐷𝐴𝑇𝐴) 
And in our context, the default DATA in the first message is different from the one in the second 
message. If the protocol takes the following form: 
1. 𝐴 → 𝐵: 𝐸𝑘(𝑁𝑎, 𝐴) 
2. 𝐵 → 𝐴: 𝐸𝑘(𝑁𝑏, 𝑁𝑎) 
There is a problem. Na just comes back, and on the receiving side we need to understand that this is 
the same data. For example, when processing message 2 (lines 34-58), we can trace the separated 
parts. In line 50, the value of the random number Na is obtained, after which it is checked for 
coincidence with what was sent in line 52. Most often in the context of cryptographic protocols, 
returned values are used for mutual authentication. There can be 2 types: the return of the same 
number or the return of a function from this number. In both cases, the return value is checked for a 
match with the one sent earlier. In our case, this is line 53. However, another value is checked here 
– identifier B. In this case, one of the solutions to this problem would be to find the situation when 
the variable was sent, and then a value is checked for a match with this variable. In this case, you 
can assume that this is the case of the return value. However, there may be a number of problems, 
in particular, just the occurrence of an error in writing code, or simply the absence of such a check 
of the return value. At the moment, the abstract notion of the type of the RETURN variable is used. 
This means that a variable of this type was returned in the current message. 

6. Protocol output structure 
Using the algorithm presented in the preceding paragraphs, the complete output structure of the 
protocol is constructed according to the messages. It is obtained both in short form for formal 
verification, and in full form for dynamic verification. The full view contains the last variable, before 
serving in the cryptographic function, the names of the last variables and their initial initialization, 
for example, static in the code or loading data from a file. Dynamic analysis will be considered in 
further work and therefore the contents of the full protocol can be changed. 
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Short view: 
1. 𝐴 → 𝐵: 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝐷𝐴𝑇𝐴, 𝑅𝐴𝑁𝐷𝑂𝑀) 

2. 𝐵 → 𝐴: 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐴𝑁𝐷𝑂𝑀, 𝐷𝐴𝑇𝐴) 

3. 𝐴 → 𝐵: 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐴𝑁𝐷𝑂𝑀) 

4. 𝐵 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝐷𝐴𝑇𝐴, 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝐷𝐴𝑇𝐴)), 𝐻𝐴𝑆𝐻(𝐷𝐴𝑇𝐴) 

5. 𝐴 → 𝐵: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴), 𝑆𝑖𝑔𝑛(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴) 

6. 𝐵 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁) 
Full view: 

1) 𝐴 → 𝐵: 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝐷𝐴𝑇𝐴, 𝑅𝐴𝑁𝐷𝑂𝑀) 
M1 | byte[] A = new byte[] { 132, 114 } | rng.GetBytes(Na) 

2) 𝐵 → 𝐴: 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐴𝑁𝐷𝑂𝑀, 𝐷𝐴𝑇𝐴) 
M2 | socB.Receive(MGet1) | rng.GetBytes(Nb) |  
byte[] B = new byte[] { 15, 245 } 

3) 𝐴 → 𝐵: 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐴𝑁𝐷𝑂𝑀) 
M3 | socA.Receive(MGet2Encr) | rng.GetBytes(k) 

4) 𝐵 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝐷𝐴𝑇𝐴, 𝐴𝑠𝑦𝑚𝐸𝑁𝐶(𝐷𝐴𝑇𝐴)), 𝐻𝐴𝑆𝐻(𝐷𝐴𝑇𝐴) 
ForEncM4 | byte[] M1forSend = File.ReadAllBytes("Mess1.txt") | M2forSend | 
byte[] M2forSend = File.ReadAllBytes("Mess2.txt") | M1forSend |  
byte[] M1forSend = File.ReadAllBytes("Mess1.txt") 

5) 𝐴 → 𝐵: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴), 𝑆𝑖𝑔𝑛(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴) 
ConcatMess5 | socA.Receive(MGet4) | socA.Receive(MGet4) |  
byte[] M3forSend = File.ReadAllBytes("Mess3.txt") | ConcatMess5 | 
socA.Receive(MGet4) | socA.Receive(MGet4) |  
byte[] M3forSend = File.ReadAllBytes("Mess3.txt") 

6) 𝐵 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁) 
M3From5 | socB.Receive(MGet5) 

7. Experiments 
For testing parser on real project we take our previous project - e-voting system based on blinded 
intermediaries [15], which implemented on C# language. It consists 3 main components: Voter 
application, Authentication server, Voting server. The protocol in main voting stage is: 
1. 𝐴𝑆 →  𝑉: 𝐸௩௔௦( 𝑁௔௦) 

2. 𝑉𝑆 →  𝑉: 𝐸௩௩௦(𝑁௕ ,  𝑁௩௦) 

3. 𝑉𝑆 →  𝐴𝑆: 𝐸௔௦௩௦(𝑁௔௦௩௦) 

4. 𝑉 →  𝐴𝑆:  𝐸௩௔௦ (𝑁௔௦, 𝑢𝑠𝑒𝑟𝐷𝑎𝑡𝑎, 𝐸௩௩௦(𝑁௩௦ , 𝑁௩ , 𝑓𝑖𝑙𝑙𝑒𝑑𝐵𝑎𝑙𝑙𝑜𝑡)) 

5. 𝐴𝑆 →  𝑉𝑆: 𝐸௔௦௩௦  (𝑁௔௦௩௦, 𝐸௩௩௦(𝑁௩௦ , 𝑁௩, 𝑓𝑖𝑙𝑙𝑒𝑑𝐵𝑎𝑙𝑙𝑜𝑡))) 

6. 𝑉𝑆 →  𝐴𝑆: 𝐸௔௦௩௦  (𝑁௕ , 𝑁௔௦௩௦ , “𝑔𝑜𝑜𝑑”) 

7. 𝑉𝑆 →  𝑉: 𝐸௩௩௦( 𝑁௩, 𝑁௩௦, 𝑐ℎ𝑒𝑐𝑘𝐼𝐷) 
Before the protocol session keys vas, vvs, asvs were generated with ECDHE (the Diffie-Hellman 
protocol on elliptical curves using ephemeral keys and signing the secret parts) protocol. So at the 
beginning of the main voting protocol session keys are created. It is necessary to say that Nb is a 
number of blinding, a non-random random number, which is regenerated each time. It is introduced 
in order to add some data before the semantic random number for making full search more 
complicated (in particular, it is necessary to select two encryption keys for message 7 in order to 
find userData). Randomly generated random numbers are sent to authenticate the parties as shown 
in (1)-(3). The message (4) uses the principle of blind intermediaries. The voter encrypts his vote 
filledBallot on the session key with VS, applies his personal data to the ciphertext, and encrypts it 
on the session key with AS. AS hashes the sent personal data, searches for the hash in the database 
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and, and, if detected, redirects the message to the VS component. VS memorizes the vote, generates 
a checkID through which the user can check his vote after the end of the election, and sends it to the 
user. 
Code organization of cryptographic protocols in this project is simple. Message sending or receiving 
located in methods' block, so there is no difficult code structure. Our parser was launched for this 
project and we cad this result: 
1. 𝐴 → 𝐵: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐴𝑁𝐷𝑂𝑀) 

2. 𝐶 → 𝐵: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐴𝑁𝐷𝑂𝑀, 𝑅𝐴𝑁𝐷𝑂𝑀) 

3. 𝐶 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐴𝑁𝐷𝑂𝑀) 

4. 𝐵 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴, 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐴𝑁𝐷𝑂𝑀, 𝐷𝐴𝑇𝐴)) 

5. 𝐴 → 𝐶: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐸𝑇𝑈𝑅𝑁) 

6. 𝐶 → 𝐴: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐴𝑁𝐷𝑂𝑀, 𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴) 

7. 𝐶 → 𝐵: 𝑆𝑦𝑚𝐸𝑁𝐶(𝑅𝐸𝑇𝑈𝑅𝑁, 𝑅𝐸𝑇𝑈𝑅𝑁, 𝐷𝐴𝑇𝐴) 
As we can see from output cryptographic protocol structure was extracted correctly. It is necessary 
to say that in message 4 A gets «SymENC(RETURN,RANDOM,DATA)», but in message 5 it sends 
this like «RETURN». So side A doesn't know key for decryption and for it this is some data that was 
sent to it and it sends this data to another side so there is 1 element «RETURN» instead of 3. 

7. Future work 
Future work primarily includes a segmentation of DATA semantic data into classes: 
1) party identifiers; 
2) keys; 
3) timestamps; 
4) authentication Codes; 
5) data received from the user. 
It is also an important point to determine the ownership of a key by any of the parties in the case of 
asymmetric encryption, and to the list of parties in the case of symmetric encryption. Support for 
protocols involving more than two parties will also be needed. In addition, a complete solution to 
the problem of accurately determining the returned data is necessary to make it possible to build a 
complete structure of a cryptographic protocol and its further analysis using formal verification 
tools. After obtaining the structure of the cryptographic protocol, it is necessary to develop an 
algorithm for automated translation into the specification language of the most well-known protocol 
verification tools, such as Avispa [16], Scyther [17], ProVerif [18], and others. It is also necessary 
to improve the parser. At the moment, the structure can only be retrieved from areas of code where 
all functions for sending and receiving messages are combined into one block, for example, into the 
body of a function or class method. In the future, it is planned to improve the parser to work with 
complex code structures. 

8. Conclusion 
An algorithm was presented for analyzing the source code of the C# programming language for 
extracting the structure of cryptographic protocols, based on identifying important code sections that 
contain cryptographic protocol-specific constructions and determining the chain of variable 
transformations from the sending or receiving status to their initial initialization, taking into account 
possible cryptographic transformations to compose a tree, from which it is possible to get simplified 
structure of a cryptographic protocol. An example of a protocol containing all cryptographic 
functions is given. The output structure of the cryptographic protocol is shown. Successful practical 
testing on real e-voting system based on blinded intermediaries is done. For the further possibility 
of the application of formal verification of protocols and dynamic analysis, it is necessary to make 
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an additional classification of semantic data, determine whether the keys belong to any party or 
parties, and also solve the problem with the returned values. 
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