Tpyovt UCIT PAH, mom 31, soin. 3, 2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019

DOI: 10.15514/ISPRAS-2019-31(3)-16

SQLite RDBMS Extension for Data Indexing Using
B-tree Modifications

A.M. Rigin, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
S.A. Shershakov, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>
National Research University — Higher School of Economics,

20, Myasnitskaya st., Moscow, 101000, Russia

Abstract. Multiway trees are one of the most popular solutions for the big data indexing. The most commonly
used kind of the multiway trees is the B-tree. There exist different modifications of the B-trees, including B*-
trees, B*-trees and B*'-trees considered in this work. However, these modifications are not supported by the
popular open-source relational DBMS SQLite. This work is based on the previous research on the performance
of multiway trees in the problem of structured data indexing, with the previously developed multiway trees
C++ library usage. In this research the B*-tree was developed as the data structure which combines the main
B*-tree and B’-tree features together. Also, in the research the empirical computational complexities of different
operations on the B-tree and its modifications were measured as well as the memory usage. The purpose of the
current work is the development of the SQLite RDBMS extension which allows to use B-tree modifications
(B*-tree, B"*-tree and B**-tree) as index structures in the SQLite RDBMS. The modifications of the base data
structure were developed as a C++ library. The library is connected to the SQLite using the C-C++ cross-
language API which is developed in the current work. The SQLite extension implements the novel algorithm
for selecting the index structure (one of B-tree’s modifications) for some table of a database. The provided
SQLite extension is adopted by the SQLite EventLog component of the LDOPA process mining library. In
addition, the experiment on the counting the empirical computational complexities of operations on the trees
of different types is conducted using the developed in this work SQLite extension.

Keywords: B-tree; data indexing; SQLite; DBMS; RDBMS; multiway tree

For citation: Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree
Modifications. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 203-216. DOI: 10.15514/ISPRAS-
2019-31(3)-16

Acknowledgements. This work is supported by RFBR according to the Research project No. 18-37-00438
«mol_a» and the Basic Research Program of the National Research University — Higher School of Economics.

KomnoHeHT-pacwmpenne PCYB[SQLite ana nigekcnpoBaHus
AaHHbIXx mogudmkaunamm B-aepeBbeB

A.M. Pueun, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
C.A. Llepwaxos, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>
Hayuonanvnwiii uccnedosamensckuil ynugepcumen «Bvicuids wKona SKOHOMUKUY,
101000, Poccus, e. Mockea, yn. Macnuykas, 0. 20

AnHoranus. CuabHO BeTBAIIMECS IEPEBbsl SBIAIOTCA OJHUM M3 Hauboyiee MOMYNSAPHBIX PEIISHHH it
HMHIEKCUpoBaHUs Oonpmmx 00BEMOB maHHBIX. Hambonee pacHpocTpaHEHHOH Pa3sHOBHIHOCTBIO CHIIBHO
BETBSIIUXCS IEPEBLEB SBILIOTCS B-mepeBbst. CymecTByIoT pasnuunble Mopuduxanuu B-nepesbes, B TOM
4KCIIe, paccMaTpUBaEMble B HacTosllel pabore B'-mepesbs, B -mepeBbs u B™'-mepeBbs, onHako naHHbIE
MOAN(UKALMKY HE MOJUIEP)KUBAIOTCSA [0 YMOJYAHUIO B TOMyisipHOH pernsiinonHoi CYB/l ¢ OTKphITHIM
ucxonusM koxoM SQLite. JlanHas paOoTa BBHINONHSAETCS HA OCHOBE HPOBENEHHOIO PaHEe HCCIEIOBAHUSL

203

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

9((HEKTHBHOCTH CHIFHO BETBSIIHXCS AEPEBHEB B 3a[a4e MHICKCUPOBAHHUS CTPYKTYPUPOBAHHBIX JAHHBIX, C
HCIOJIb30BaHUEM pa3paboTaHHOU B paMkax Hero C++-OHONHOTeKN CTPYKTYp AAHHBIX — CHIIBHO BETBSIIIUXCS
JepeBbeB. B aTOM HccnenoBanuu Gbuto paspaborano B -epeBo kak cTpyKTypa JaHHBIX, COBMELIAIOMIAs B
cebe ocHOBHBIE cBoiicTBa BY-nepesa n B -nepesa. Takke B MCCIIEI0BAHNN OBLIM M3MEPEHBI SMITHPHUYECKHE
BBIYHMCIIMTENIBHBIE CIOKHOCTH PasIMYHBIX omepanui Hajg B-mepeBoM u ero mMomudukanusMu u 00BEM
noTpedisieMoll JaHHBIMH OIICpAIMsMH ONepaTHBHOW maMsTd. llenplo Hacrosmeld pabOTHI SBISIETCS
paspabotka pacumpenus s persinmonHoit CYBJ] SQLite, mo3Bosstomiero ucnons3osats Moaudukanuu B-
nepesa (B*-mepeso, B -nepeo u B*'-mepeBo) B KauecTBe MHEKCHPYIOUUX CTPYKTYp AaHHbIX B PCYBJI
SQLite. Monu¢ukanuy 6a30Boi CTPYKTYpHI HaHHBIX ObUIH pa3paboTansl B Buae C++-0ubnuorexu. Jlannas
6ubnmoreka nojxiroyaercs k SQLite, nenonb3ys pa3paOOTaHHBIN Ui He€ B paMKax HacTosmeil padorst API
Ha si3bike C. Pacmmpenue s SQLite Takoke peanusyeT HOBBII arOpUTM BbIOOPA MHICKCUPYIOLIEH CTPYKTYpBI
naHHbIX (0fHOM W3 Moambukaimii B-nepesa) s 3amanHol Tabnuipl B 6ase naHHbIX. IIpeaioxeHHOE
pacumpenue ucrons3yercst komnonentoM SQLite EventLog 6ubmuorexu LDOPA anropuT™MoB U CTpyKTyp
JaHHBIX 11 process mining. Kpome Toro, mpoBe€H OSKCIEPUMEHT IO CPAaBHCHHIO OMIMPHIECKOU
BBIYHCIIMTENIBHOH CIOXHOCTH ONEpalMii Ha JepeBbAX Pa3HBIX TUIIOB B Pa3pabOTaHHOM PACIIMPEHHH IS
SQLite.

KaroueBbie ciaoBa: B-nepeo; mnnexcupoBanue nanHbix; SQLite; CYB; PCYB]I; cuinbHO BeTBsieecs
JIepeBo

Jas nurupoBanmusi: Purmn AM., IlepmakoB C.A. Kommonenr-pacmmpenue PCYBJ] SQLite mis
HMHJICKCUPOBaHUS JaHHbIX Moaudukanusmu B-nepesses. Tpynst UCIT PAH, Tom 31, Bbim. 3, 2019 1., crp. 203-
216 (na anrmmiickoM si3bike). DOL: 10.15514/ISPRAS-2019-31(3)-16

BaaropapHocru. PabGora BeimonHena npu nojjepikke PODU (mpoexr Ne 18-37-00438) u IMporpammsl
(byHIaMeHTanbHBIX HccieoBaHnii HalMoHaIBHOTO HCCIIe0BaTENbCKOr0 yHUBEPCHTETa — BhIciiel mIKob
IKOHOMHKH.

1. Introduction

Last decades, the amount of data volume is growing substantially, which exposes the well-known

problem of big data [1]. Many companies and laboratories need to collect, store and process big

data. There exist many algorithmic and software solutions to cope with these problems. One of these

solutions is using indices which are usually represented by data structures such as hash tables and

trees.

Using indices creates a new problem — when data are stored on slow carriers, it is more efficient to

load data batches from a storage instead of splitting to individual elements. Multiway trees solve

this problem. One type of them is a B-tree which was initially described by Bayer and McCreight in

1972 [2]. The B-tree also has several modifications. In this paper, the following B-tree modifications

are considered: B*-tree [3], B"-tree [4] and B™*-tree (the latter is developed by the author of this

paper data structure, which combines the main B*-tree and B*-tree features) [5].

This paper extends the research made in the framework of the term project [5].

One of the popular open-source relational database management systems (RDBMS) is SQLite [6].

It is used in mobile phones, computers and many other devices. However, this RDBMS does not

support using B*-tree or B*-tree as data index structures by default.

The main goals of the work are the following:

e to add B-tree modifications such as B™-tree, B*-tree and B™"-tree to SQLite;

e to develop and implement an algorithm that would allow selecting the appropriate indexing
data structure (B-tree, B*-tree, B*-tree or B**-tree) when a user manipulates a table.

The work includes linking of B-tree modifications from a C++ library (developed by the author of

this work previously) to SQLite using a C-C++ cross-language API and developing an algorithm for

selecting an indexing data structure.

The rest of the paper is organized as follows. Firstly, B-tree, B*-tree, B*-tree and B**-tree are shortly

described. After this, the SQLite, its indexing algorithms and extensions are presented. Then, the B-

204

Purna AM,, Ilepmaxos C.A. Komnorent-pacimperre PCYB/] SQLite y1s1 HEACKCHPOBaHHS JTaHHBIX MoHbyKaimsavu B-nepesben. Tpyowr UCIT PAH, Tom
31, Bbi. 3,2019 1., c1p. 203-216

tree modifications C++ library and connecting it to the SQLite RDBMS is described. After this, our
previous researches conducted using this library are presented. These researches have proved the
main theoretical B-tree modifications complexity hypotheses and they show the abilities of this
library. Then, the indexing approach, the methods for outputting the index representation and
information and the development of algorithm of selecting the index structure for table are discussed,
after which the experiment conducted using the developed in this work SQLite extension is
described. After this, the main points of the paper are summarized in conclusion and used references
are presented.

2. B-tree and its modifications
2.1 B-tree

The B-tree is a multiway tree. It means that each node may contain more than one data key.
Furthermore, each node except of the leaf nodes contains more than one pointer to the children
nodes. If some node contains k keys than it contains exactly k + 1 pointers to the children nodes
(2.

The B-tree depends on its important parameter which is called B-tree order. The B-tree order is such

a number t that:

e for each non-root node, the following is true:
t-1 < k < 2t- 1, where k is the number of keys in the node [2];

e for root node in the non-empty tree the following is true:
1 < k < 2t - 1, where k is the number of keys in the node [2];

e for root node in the empty tree the following is true: k = 0, where k is the number of keys in
the node [2].

B-tree operations complexities are the following (t is the tree order, n is the tree total keys count):

e for the searching operation: time complexity is O(tlog,n), memory usage is O(t) and disk
operations count is O (log:n) [2];

e for the nodes split operation (the part of the insertion operation): time complexity is O(t),
memory usage is O(t) and disk operations count is 0(1) [2];

e for the insertion operation (includes the nodes split operation): time complexity is O(tlog,n),
memory usage is O (tlog,n) for simple recursion and O (t) for tail recursion and disk operations
count is O(log,n) [2];

e for the deletion operation: time complexity is O(tlog,n), memory usage is O(tlog.n) for
simple recursion and O(t) for tail recursion and disk operations count is O (log;n) [2].

B-tree is usually used as the data index [2].

The example of B-tree is shown on the fig. 1.

[HGREEDERERNE ‘/(|:| B T s T [T e [T T2 211 :4\ s Tas] [[=]

Fig. 1. The B-tree example, tree order t = 6

2.2 B-tree modifications

B'-tree is the B-tree modification in which only leaf nodes contain real keys (real data), other nodes
contain router keys for searching real keys. Leaf nodes in B*-tree containt < k < 2t keys, where
t is the tree order, the rules for other nodes are the same as in B-tree [3]. Keys deletion in B*-tree is
expected to be faster than in B-tree since it is always performed on the leaf nodes.

B’-tree is the B-tree modification in which each node (except of the root node) is filled at least by
2/3 not 1/2 [4]. Keys insertion in B*-tree is expected to be faster than in B-tree.

205

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

B**-tree is the B-tree modification developed by the author of this paper which combines the main
B'-tree and B"-tree features together. In this data structure only leaf nodes contain real keys (real
data) as in B*-tree and each node (except of the root node) is filled at least by 2/3 as in B -tree.

3. Implementation and tools

3.1 SQL.ite and its extensions

The SQLite is the popular open-source C-language library which implements the SQLite relational
database management system (RDBMS) [6]. The SQLite default index algorithms are hash-table
and B-tree. The SQLite does not implement B*-tree and B*-tree based indices.

Nevertheless, SQLite supports loading its extensions at run-time, which can add new functionality
to the SQLite. For example, it can be a new index structure implementation. One of such extensions
is the R-tree. The R-tree is a B-tree modification which allows to index geodata. It is loaded by the
SQLite as the extension and delivered together with the SQLite RDBMS default build.

3.2 B-tree modifications C++ library

The B-tree modifications C++ library was developed by the author of this paper previously. It
contains B-tree, B*-tree, B*-tree and B**-tree implementations written in C++ [5].

In the current work this library is connected to the SQLite as the run-time loadable extension. For
this goal the C-C++ cross-language API is implemented. It is possible to do using the extern "C" {
... } C++ statement. The other tasks are to implement base SQLite extension’s methods and to use
Makefiles to make this extension run-time loadable correctly. The extension provides module for
creating virtual tables (tables which encapsulate callbacks instead of simple reading from database
and writing to database) based on this module.

3.3 Research conducted using the library

The B-tree modifications C++ library was previously used for conducting a research on the
performance of multiway trees in the problem of structured data indexing by the author of this paper
(51

The CSV files with random content were generated for the indexing, with sizes of 25000, 50000,
75000, 100000 rows. The value of the first cell of each row was considered as a key («name») of
the row and was saved in the tree together with the bytes offset of the row in the indexed CSV file.
The charts of different dependencies were built using the Python 2.

The chart with the indexing time dependence on the tree order for a file where the «names» (keys)
of the rows are uniformly distributed, with the size of 25000 rows is shown on the fig. 2.
According to this chart, B*-tree and B*'-tree have a better time performance on the keys insertion
than B-tree and B*-tree, as expected. These results are confirmed by the experiments with other
parameters (for example, on the larger files with different keys).

However, the better time performance of B*-tree and B**-tree on the keys insertion has a cost of a
larger memory usage as shown on the fig. 3.

The monotonous dependence of the keys searching on the tree order is not detected as shown on the
fig. 5.

The B'-tree and B**-tree require more memory during the keys searching than the B-tree and B*-
tree as shown on the fig. 6.

In addition, the B*-tree and B**-tree have a better time performance on the keys removing than B-
tree and B -tree as expected and shown on the Fig. 7. This chart also proves that the B**-tree has the
best time performance on the keys removing among all the considered in this paper multiway trees
and that the dependence of keys removing time on the tree size is logarithmic.

Therefore, the main theoretical hypotheses were confirmed [5].

206

Purutt A.M, Wlepuaxos C.A. Kowmoner-pactunpetie PCYB/L SQLite sy niexciposatins fatHbix Motdukatusvu B-nepesses. Tpyoer HCI1 PAH, Tom Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.

31, 8o 3,2019 T, c1p. 203-216 31 issue 3. 2019, pp. 203216
25000_indexing_time_tree_types_partially_equal_names 25000_indexing_disk_operations_count_tree_types_equal_names
17000 - — btree) —— btree
—— bplustree §38E:+04 —— bplustree
- bstartree 5,37E+04 - ~— bstartree
— bstarplustree bstarplustree

5, 10E+04 -
16500 - 4,95E+04 -
4,85E+04 -
L04E+05 -
16000 - 9,31E+04 -
7,76E+04 -
5.22E+04 -

5,02E+04 -

IndexingTime
o
7
o
o
o

4,90E+04 -

7,28E+04 -

IndexingDiskOperationsCount

5,61E+04 -
15000 - 4,93E+04 -
4,81E+04 -
471E+04 -

14500 - 4,61E+04 -

0 250 500 750 1000 1250 1500 1750 2000
s | i i [| ' K tree order
0 250 500 750 1000 1250 1500 1750 2000
tree order Fig. 4. The chart with the indexing disk operations count dependence on the tree order for a file where all the
Fig. 2. The chart with the indexing time dependence on the tree order for a file where the «<names» (keys) of «names» (keys) of the rows are equal, with the size of 25000 rows

the rows are uniformly distributed, with the size of 25000 rows 25000_index_searching_time_tree_types_partially_equal_names
25000_indexing_used_memory_tree_types_equal_names — btree

f\ —— bplustree
\ ~— bstartree

410 -]
\ —— bstarplustree

405 -

— tRree

2000000 -

1500000

IndexSearchingTime

1000000

IndexingUsedMemory

390 -

385 -

0 250 500 750 1000 1250 1500 1750 2000
' y ! tree order
0 250 %00 750 1000 1250 1500 1750 2000
tree order Fig. 5. The chart with the index searching time dependence on the tree order for a file where the «<namesy
(keys) of the rows are uniformly distributed, with the size of 25000 rows
Also, indexing using B’-tree or B™*-tree requires more disk operations than indexing using B-tree or B*-tree
as shown on the fig. 4.

Fig. 3. The chart with the indexing memory usage dependence on the tree order for a file where all the
«names» (keys) of the rows are equal, with the size of 25000 rows

207 208

Purna AM,, Ilepmaxos C.A. Komnorent-pacimperre PCYB/] SQLite y1s1 HEACKCHPOBaHHS JTaHHBIX MoHbyKaimsavu B-nepesben. Tpyowr UCIT PAH, Tom
31, Bbi. 3,2019 1., c1p. 203-216

index_searching_used_memory_real

~— btree
5800000 - — Dbplustree
bstartree
— bstarplustree

B

g
48) ////
e
e
4600000 /
//

500 750 1000 1250 1500 1750

tree order

Fig. 6. The chart with the index searching memory usage dependence on the tree order for a file with real
(not randomly generated) data

int_keys_removing_time_tree_type_and_order

~— btree, order=50
bplustree, order=50
bstartree, order=50

— bstarplustree, order=50
btree, order=2000
bplustree, order=2000
bstartree, order=2000

— bstarplustree, order=2000

1000

RemovingTime

40000 60000 80000 100000

tree size

Fig. 7. The chart with the keys removing time dependence on the tree size

209

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

4. Working with indices while manipulating DB data
4.1 Table creation, data search and updating

In the current work B-tree modifications based indices are built over the existing SQLite table
implementation which is represented in the storage as pages of a B-tree by default.

The table creation and main data operations (inserting, searching, deleting and updating) use the
methods presented in the Table. 1.

Table. 1. Main extension methods

Method Purpose

btreesModsCreate(sqlite3*, void*, int, const | Creates a new table.
char* const*, sqlite3_vtab**, char**)

btreesModsUpdate(sqlite3_vtab*, int, | Inserts, deletes or updates a value
sqlite3_value**, sqlite_int64*) of a row in the table.

btreesModsFilter(sqlite3_vtab_cursor*, int, | Searches for a row in the table.
const char*, int, sqlite3_value**)

The extension with the B-tree modifications based indices provides module for creating virtual
tables. User should create a virtual table using the module called btrees_mods in order to use one of
the B-tree modifications as index for the table. When a user creates such virtual table, the
btreesModsCreate() method of the extension is called and the matching real table is created in the
database. Also, one of B-tree’s modifications is created using the algorithm of selecting the index’s
structure (see the section 5) and the information about the created table and index’s structure
(including the name of the file with the B-tree or its modification and the attributes of the primary
key of the table) is stored in a special table.

When a user inserts a row into a table, the btreesModsUpdate() method of the extension is called
and a corresponding record for the index structure is created. The record consists of the primary key
value of this row and the row id. This record is saved as a data key into the index structure (B-tree
or one of its modifications).

When a user searches for a row in a table, the btreesModsFilter() method of the extension is called
and the value of the primary key of the row being searched is compared with the keys of the index
structure. During the key searching only the primary key value part of the tree’s keys is compared
with the value of the primary key of the row being searched. If the necessary tree’s key is found, the
row id is extracted from the key and a row found in the table by the row id is considered as a result
of the searching.

When a user deletes a row from a table, the btreesModsUpdate() method of the extension is called,
the primary key of the deleted row is found in the index structure using the same approach as in the
search case. The found key is deleted from the index structure.

When a user updates the value of the primary key of a row in a table, the btreesModsUpdate()
method of the extension is called. The old value of the primary key is deleted from the index structure
and the new value is inserted to the index structure.

4.2 Index structure’s graphical representation and main information
outputting

Also, the several methods are available to output the index structure’s graphical representation and
main information. They are presented in the Table. 2.

210

Purun A.M,, Ileprakos C.A. Komronent-pactmpernie PCYB/] SQLite y1st nHieKeHpoBanust TaHHbIX MommbuKarisvi B-nepesbes. 7pyost UCIT PAH, Tom
31, Bbim. 3,2019 1., c1p. 203216

Table. 2. Index structure’s information and graphical representation outputting extension methods

Method Purpose

btreesModsVisualize(sqlite3_context*, int, | Outputs the graphical
sqlite3_value**) representation of the table’s index
structure (tree) into the GraphViz
DOT file.

It is called after the SQL query such
as SELECT
btreesModsVisualize(“btt”,
“btt.dot”);, where btt is the table
name, bitt.dot is the outputting
GraphViz DOT file name.

btreesModsGetTreeOrder(sqlite3_context*, int, | Outputs the order of the tree used as
sqlite3_value**) the table’s index structure.
It is called after the SQL query such
as SELECT

btreesModsGetTreeOrder(“btt”),,
where btt is the table name.

btreesModsGetTreeType(sqlite3_context™, int, | Outputs the type of the tree (1 — B-
sqlite3_value**) tree, 2 — B-tree, 3 — B'-tree, 4 —
B**-tree) used as the table’s index
structure.

It is called after the SQL query such
as SELECT
btreesModsGetTreeType(“btt”),
where btt is the table name.

SQLite version 3.26.9 2018-12-81 12:34:55

Enter ".help" for usage hints.

Connected to a 3
".open FILENAME" to reopen onh a persistent database.

sqlite> .load ./btrees_mods

sqlite> CREATE VIRTUAL TABLE btt USING btrees_mods(id INTEGER PRIMARY KEY, a INTEGER, b TEXT);

sqlite> INSERT INTO btt VALUES (4, 2, "ABC123");

sqlite> INSERT INTO btt VALUES (7, 3, "def");

sqlite> SELECT * FROM btt WHERE id 4;

4|2|ABC123

sqlite> SELECT * FROM btt WHERE id

7|3 |def

sqlite> SELECT * FROM btt WHERE id

4|2 |ABC123

713 |def

sqlite> .tables

btrees_mods_idxinfo btt btt_real

sqlite> SELECT * FROM btt_real;

4|2 |ABC123

7|3 |def

sqlite> SELECT * FROM btrees_mods_idxinfo;

btt|1]|@|id| INTEGER|4|tree_18291557263097.btree

sqlite> DROP TABLE btt;

sglite> .tables

btrees_mods_idxinfo

sqlite> SELECT * FROM btrees_mods_idxinfo;

sqlite> .exit

Fig. 8. SQLite extension’s usage example

211

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

4.3 SQL.ite extension’s usage

The developed in this work SQLite extension’s usage example is presented on the screenshot (fig.
8).

The provided SQLite extension is adopted by the SQLite EventLog component of the Library for
Dynamic Operational Process Analysis (LDOPA) [7].

5. Algorithm of selecting the index structure

In this work an algorithm for selecting the index structure for a table is developed and implemented

in the following way.

The algorithm considers B-tree’s modifications (B*-tree, B*-tree and B*'-tree) for using as an index

structure.

The algorithm is executed at the start of each operation on the table (search, insertion, deletion or

update of the table’s row) which uses the btrees_mods module. The algorithm consists of the

following steps.

1) If the current total number of the operations on a tree is equal to 0, or more than 10000, or not
a multiple of 1000, then the algorithm stops, otherwise it goes to step 2.

2) If the current number of the modifying operations (key insertions, key deletions) on the tree is
less than 10 % of the current total number of the operations on the tree, then the algorithm
stops, otherwise it goes to step 3.

3) If the current number of the key insertion operations is more than p = 73.97 % of the total
number of the modifying operations on the tree, then the algorithm selects the B*-tree as the
index structure and goes to step 5, otherwise it goes to step 4.

4) The algorithm selects the B**-tree as the index structure and goes to step 5.

5) If the new index structure has been selected at the steps
3 — 4, then the algorithm rebuilds the existing index structure replacing it by the new selected
index structure and copies all the data stored in the previous index structure to the new index
structure.

The tree order of the B-trees and their modifications used in the SQLite extension developed in this

work equals 750. For selecting this tree order the average times (for all the four tree types — B-tree,

B*-tree, B*-tree and B**-tree) of performing 1000 modifying operations (insertions and deletions)

on the tree were measured, for each of the tree orders from 100 to 1000 inclusive with the step of 50

(100, 150, 200, ..., 1000). The least average time was achieved for the tree order of 750 and it was

equal to 9.55 ms (for 1000 modifying operations on the tree).

The p = 73.97 % constant was selected in the following way. The splines for the plots of the

average time of performing 1000 modifying operations (insertions and deletions) on the tree

depending on the percentage of the insertions among all the modifying operations were drawn for
all the four tree types (B-tree, B*-tree, B*-tree and B™*-tree) using the Python 2 language. The
abscissa of the intersection point of the splines for B*-tree and B™*-tree was equal to p = 73.97 %.

This intersection point is shown on the fig. 9.

The B*-tree is used as the default index structure in the developed SQLite extension since its

operations have the least memory usage according to the previously conducted experiments (see the

section 3.3).

6. Experiment conducted using the developed SQLite extension
The experiment on the counting the empirical computational complexities of operations on the trees
of different types is conducted using the developed in this work SQLite extension. The operations’

times were counted using the SQLiteStudio GUI manager [8]. The results are presented in the Table
3.

212

Purna AM,, Ilepmaxos C.A. Komnorent-pacimperre PCYB/] SQLite y1s1 HEACKCHPOBaHHS JTaHHBIX MoHbyKaimsavu B-nepesben. Tpyowr UCIT PAH, Tom
31, Bbi. 3,2019 1., c1p. 203-216

plot_time_750
— B-tree
B+-tree /’/,
B*-tree =
B*+.tree ==
e // < —
s -
o -
e -
s ~
S, >
> h
J 7 >
/ >
= ”~
///
////
o ’/ /
/// >
< // / 7
/ / ”
J / / ~
/ / 7
// 7
// 7
// 7
// 7
// 7
7 e
/ 7
// /
// /
// /
4 /

Insertions Percent

Fig. 9. The splines for the plots of the average time of performing 1000 modifying operations on the tree
depending on the percentage of the insertions among all the modifying operations.

Table. 3. Experiment results

Operation on the table Total execution Mean
time (ms) execution time
per row (ms)
Table creation 20 -
First 500 rows insertion 10301 20.6
Next 500 rows insertion 10322 20.6
1001st row insertion (including the | 40 40
B*-tree into the B -tree rebuilding)
Next 499 rows insertion 9386 18.8
Last 500 rows insertion 9032 18.1
First 500 rows deletion 11558 23.1
Next 500 rows deletion 10708 21.4
1001st row insertion (including the | 62 62
B"-tree into the B*'-tree rebuilding)
Next 499 rows deletion 9418 18.9
Last 500 rows deletion 8863 17.7
1000 rows insertion 18890 18.9
Next 5000 rows insertion (including | 92395 18.5
the B™-tree into the B'-tree
rebuilding)

213

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

According to the data in the Table. 3, the key insertion into the B*-tree was faster than into the B*-
tree during the experiment. The key deletion from the B**-tree was faster than from the B*-tree
during the experiment. Also, the key insertion into the B*-tree was slightly faster than into the B"*-
tree during the experiment.

The search in a table took about 1 ms on all the B-tree modifications considered in this work.

7. Conclusion

The big data problem currently affects the world. There are many mathematical and software
solutions for collecting, storing and processing big data including the data indexing. Many of the
index data structures are tree-based ones such as B-tree and its modifications. B-tree is used as an
index structure in many DBMSs including the popular open-source RDBMS SQLite. However, the
SQLite does not support its modifications which may be more appropriate for some tasks than the
original B-tree. In the current work this problem is elaborated.

Firstly, the B-tree modifications C++ library is connected to the SQLite as the extension using C-
C++ cross-language APL. After this, the algorithm of the index structure selection is developed and
implemented and the experiment is conducted using the developed in this work SQLite extension.

The developed B**-tree has smaller running time for keys insertion and deletion than B-tree,
however it has greater memory usage, which is confirmed by the experiments conducted using the
B-tree modifications C++ library.

This work tests new data indexing approaches using the SQLite as an example. The results of the
work can be used by researchers and professors in this field and their students. The developed SQLite
B-tree modifications extension can be used by all the developers who use this DBMS.

References / Cnucok nutepaTtypbl

[1]. Manyika J., Chui M., Brown B., Bughin J., Dobbs R., Roxburgh C., Hung Byers A. Big data: The next
frontier for innovation, competition, and productivity. McKinsey Global Institute, May 2011. Available
at:
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%201
nsights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.
ashx, accessed Jan. 20, 2019.

[2]. Bayer R., McCreight E. Organization and maintenance of large ordered indexes. Acta Informatica, vol. 1,
no. 3, 1972, pp. 173 — 189.

[3]. Pollari-Malmi K. B*-trees. Available at: https:/www.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf,
accessed Dec. 24, 2018.

[4]. B™-tree. NIST Dictionary of Algorithms and Data Structures. Available at:
https://xlinux.nist.gov/dads/HTML/bstartree.html, accessed Dec. 24, 2018.

[5]. Rigin AM. On the Performance of Multiway Trees in the Problem of Structured Data Indexing.
Coursework, Dept. Soft. Eng., HSE, Moscow, Russia, 2018 (in Russian) / Purun B.M. HccnenoBanue
9} (HEeKTHBHOCTH CHIBHO BETBANIMXCS JEPEBLEB B 33/1aUe HHAEKCUPOBAHHUS CTPYKTYPHPOBAHHBIX JAHHBIX.
Kypcosas pabota, Jlenaprament nporpammHuoii nmxenepuu, ®KH, BIIID, Mocksa, 2018.

[6]. SQLite Home Page. Available at: https://www.sqlite.org/, accessed Jan. 20, 2019.

[7]. Library for Dynamic Operational Process Analysis (LDOPA). xiart.ru Projects. Available at:
https://prj.xiart.ru/projects/ldopa, accessed Jul. 1, 2019.

[8]. SQLiteStudio. Available at: https://sqlitestudio.pl/, accessed Jan. 26, 2019.

MHdopmauus o6 asTopax / Information about authors

Anron Muxaiinosuy PUT'MH nomy4un crenens 6akanaBpa B 00JacTH IPOrpaMMHOM HHXKEHEPUH B
2019 r. B HammoHalsHOM HCCIIEOBAaTENbCKOM yHHBepcHTETe «BpICmias mrkoima SKOHOMHKHY
(MockBa, Poccust). Ero mccienoBarenbckue MHTEPECHl BKIFOYAIOT MPOTPAMMHYIO WHIKEHEPHIO,

214

Purun A.M,, Ileprakos C.A. Komronent-pactmpernie PCYB/] SQLite y1st nHieKeHpoBanust TaHHbIX MommbuKarisvi B-nepesbes. 7pyost UCIT PAH, Tom
31, Bbim. 3,2019 1., c1p. 203216

ITOPUTMBI U CTPYKTYPBI JAQHHBIX M WX NMPUMEHEHHE B 3a/lauyaX XpaHEHHsS W HHICKCHPOBAHUS
nanneix B CYBJI, Brittoyast ucnoyib3oBanue B-gepeBbeB 1 UX MOIM(UKAIMH IS PEIICHUS ITUX
3a/1a4.

Anton Mikhailovitch RIGIN received his bachelor’s degree in software engineering from National
Research University — Higher School of Economics (Moscow, Russia) in 2019. His research
interests include software engineering, algorithms and data structures and their usage in the problems
of data indexing and storage in DBMSs, which involves the usage of the B-trees and their
modifications in these problems solving.

Cepreii Anppeesuu IIIEPIITAKOB momyumn cTemeHb MarucTpa B 00JAcTH IPOrPaMMHON
uHKeHepuu B HalmoHaIbHOM HCCIIEIOBATEIbCKOM YHUBEpCUTETE «Bplcimas mKoa S5KOHOMUKI»
(Mocksa) B 2012 roxy. B Hacrosmuii MOMEHT OH SIBISICTCSI HayYHBIM COTPYIHUKOM HAay4HO-
y4eOHOI 71abopaTOpHH IPOIECCHO-OPHEHTHPOBAHHBIX HMH()OPMAIIMOHHEIX CHCTEM (akyibTera
KOMIBIOTEPHBIX HayK Bplcoieil MIKONBI SKOHOMHKH. B 4YHCIO HaydHBIX HHTEPECOB BXOMSAT
W3BJICYCHUE W aHAM3 IIPOLECCOB (process mining), BepuGHKaIys IPOrpaMMHOTO obecredeHHs,
APXUTEKTYpBl HHPOPMAIIMOHHBIX CUCTEM M IIPENOIaBaHUE IPOrPAMMHOM HHKEHEPUH.

Sergey Anreevitch SHERSHAKOYV received the MS degree in software engineering from National
Research University — Higher School of Economics (Moscow, Russia) in 2012. He is currently a
researcher at PAIS Lab of the Faculty of Computer Science at Higher School of Economics. His
research interests include process mining, software verification, information systems architectures
and teaching software engineering.

215

Rigin A.M., Shershakov S.A. SQLite RDBMS Extension for Data Indexing Using B-tree Modifications. Trudy ISP RAN/Proc. ISP RAS, vol.
31, issue 3, 2019. pp. 203-216

216

