Tpyovt UCIT PAH, mom 31, soin. 4, 2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019

DOI: 10.15514/ISPRAS-2019-31(4)-9

Method for Building UML Activity Diagrams from
Event Logs

N.S. Zubkova, ORCID: 0000-0002-0123-7689 <nszubkova@edu.hse.ru>
S.A. Shershakov, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>
Laboratory of Process-Aware Information Systems (PAIS Lab),
National Research University Higher School of Economics,

20, Myasnitskaya st., Moscow 101000, Russia

Abstract. UML Activity Diagrams are widely used models for representing software processes. Models built
from event logs, recorded by information systems, can provide valuable insights into real flows in processes
and suggest ways of improving those systems. This paper proposes a novel method for mining UML Activity
Diagrams from event logs. The method is based on a framework that consists of three nested stages involving
a set of model transformations. The initial model is inferred from an event log using one of the existing mining
algorithms. Then the model, if necessary, is transformed into an intermediate form and, finally, converted into
the target UML Activity Diagram by the newly proposed algorithm. The transforming algorithms, except one
used at the last stage, are parameters of the framework and can be adjusted based on needed or available models.
The paper provides examples of the approach application on real life event logs.

Keywords: process mining; Petri nets; UML activity diagrams; process discovery

For citation: Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs.
Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019. pp. 139-150. DOI: 10.15514/ISPRAS-2019-31(4)-9

Acknowledgements. This work is supported by the Basic Research Program of the National Research
University Higher School of Economics.

MeTtoa noctpoeHns UML anarpamm aesiTenbHOCTU MO XypHanam
coObITUN

H.C. 3ybrosa, ORCID: 0000-0002-0123-7689 <nszubkova@edu.hse.ru>
C.A. lepwakos, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>
Jlabopamopus npoyeccro-opuenmupoganuvix ungopmayuonnvix cucmem (I1IOUC),
Hayuonanvnwiii uccnedosamensckuil ynugepcumen «Bvicuids wKona SKOHOMUKUY,
101000, Poccus, Mocksa, yn. Macnuykas, 0.20

Annoranusi. UML nuarpammsl A€ATEIBHOCTH ITHPOKO HMCHONB3YIOTCS AJISL MPEACTABIEHHs IPOLIECCOB B
HPOrPaMMHON HHKeHepUH. MoJeny, IOCTpOEHHbIe 110)KypHanaM COOBITHH, MOTYT HPEIOCTaBUTH LEHHYIO
“H(MOPMAIHUIO O pealibHbIe Ipoleccax B HHPOPMAIMOHHBIX CHCTEMaxX, Ha OCHOBAaHUH KOTOPOM 9T MPOLECCH
MOXHO YJIy4IIUTh. JlaHHAs cTaThs MpeAcTaBiseT HOBbIM MeToa Maitnnara UML nuarpamMm AesTeabHOCTH 110
JKypHaIaM coObITHH. MeToJ ocHOBaM Ha IapaMeTPHYECKOIl cXeMe, KOTOpas COCTOMT M3 TPeX BIOXKEHHBIX
CTyIeHeH, BKII0YAloHX B ce0st Habop mpeobpasoBanuii Hax MonenavMu. HauanbHas Mozienb U3BIEKaeTCs U3
JKypHaJTa COOBITHH OAMH M3 CYNIECTBYIOIIMX allOPHTMOB CHHTe3a. OJTa MOJENb, ecIu Tpedyercs,
npeodpasyercst B IPOMEXYTOUHYIO (popMy, H 3aTeM KOHBEPTHPYETCsI B LIEJIEBYIO AUArPaMMY JESTEIbHOCTH C
MOMOIIBIO TIPEUIAraeMoro aaropuT™Ma. AJITOPUTMEL CHHTE3a, IOMUAMO HCIIONB3YEeMOro Ha IOCIIeIHeH CTaIuH,
SBILIOTCS TAPAMETPAMU CXEMBI U MOT'YT OBITh H3MEHEHBI, HCXO/S M3 HMEIOIINXCS I TPeOYyeMbIX MOJETIeH.
B crarbe npeacTaBiIeHs! IPIMEpPh! IPUMEHEHHS II0AX0/1a K XKypHaTIaM COOBITHII U3 PeaIbHOM KU3HH.

139

Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 4, 2019. pp. 139-150

KuroueBblie ciioBa: ananu3 npoueccos; cetu [letpu; UML nuarpammsl esitebHOCTH; process discovery

Jns uurupoBanus: 3yokxosa H.C., lllepmaxos C.A. Merox nocrpoennst UML nuarpamm IesTeIbHOCTH 1O
sxypHanam coobrtuit. Tpynst UCIT PAH, Tom 31, Bbim. 4, 2019 1., ctp. 139-150 (Ha anrmmiickoM s3eike). DOL:
10.15514/ISPRAS-2019-31(4)-9

BaaropapHocru. Pabora BbimonHeHa mnpu moanepikke IIporpammbl (yHZAMEHTAIBHBIX MCCIEAO0BAHMIA
HarpoHaibHOTO HCCIIe[OBATEILCKOr0 YHUBEpCUTETa «BhIcIIast IKoIa 9KOHOMUKID).

1. Introduction

Process mining techniques [1] aim at analyzing and improving real-life processes by taking
information from event logs. Event logs are generally produced by process-aware information
systems (PAIS) that support these processes. One particular problem of process mining is process
discovery; its goal is to build a model of a process, based on the data in an event log. Such models
can be expressed in different notations. For example, transition systems (TS) naturally represent
sequences of events (fraces) as they are recorded in event logs. However, if a process contains
concurrent behavior, transition systems tend to be very complex and as large as the event log itself.
This occurs due to the fact that similar patterns are not joined together and concurrency is expressed
in the form of interleaving.

There are other types of models that allow to represent concurrency patterns, namely choice and
parallelism, and that are widely used in the field of process mining. Petri nets (PN), BPMN, Fuzzy
maps and UML Activity Diagrams (AD) are examples of such models. Unified Modeling Language
(UML) [18] is a standard for defining, documenting and visualizing artifacts, especially in the
software engineering domain. Particularly, UML Activity Diagrams are used, among other, to
represent and analyze actual or expected behavior of software systems. AD is not the only UML
class that allows to represent concurrency [9]. For instance, UML State Machine Diagrams have
their own semantics to illustrate concurrency. However, they reflect different states of a system that
are not explicitly represented in event logs. These states, therefore, have to be mined using different
techniques, i.e. encoding states with trace prefixes. Given that event logs contain information
representing activities performed by process participants and supporting systems, we regard Activity
Diagrams as the de- sired class of target models in this paper.

In our work, we propose a framework for building UML Activity Diagrams from event logs,
consisting of a number of steps. The frameworks essential part is the algorithm for converting Petri
nets into UML ADs. Other intermediate models (namely, TS and PN) can be synthesized using
different algorithms which are parameters of the framework. Here we consider the algorithm of
regions [8] as a means to generate Petri nets which are consequently converted into target UML
ADs. ADs are usually more compact than Petri nets and are more easily interpretable. Moreover,
generated diagrams can be imported and used in different visual modeling and design tools used in
the software engineering domain, i.e. Sparx Enterprise Architect, and be later included as part of
bigger software models.

The contributions of this paper are as follows: (1) a framework for generating UML AD from event
logs, (2) a novel method for UML AD synthesis from a Petri nets as intermediate models, (3)
implementation of the proposed framework specified by a particular set of synthesis algorithms. The
rest of the paper is organized as follows. Section II gives a brief overview of related work. Section
III defines necessary concepts needed for the explanation of the proposed approach. The framework
is described in Section IV and the PN-to-UML AD conversion algorithm is presented in Section V.
Section VI contains models derived from real-life event logs. Finally, Section VII concludes the
paper and outlines possible directions for future work.

2. Related work

There exist many approaches to construct Petri nets from event logs [1], [2], [19]. The algorithm of
regions and its extensions are described, particularly, in [6], [8], [10]. The algorithm produces a Petri
140

3ybkosa H.C., IllepmakoB C.A. Metox noctpoennss UML auarpamMm JesTenbHOCTH 110 XKypHanaMm coObrtuit. Tpyast UCIT PAH, tom 31,
BoIM. 4, 2019 1., ctp. 139-150

net from a given TS that serves as an input of the algorithm. The behavior of the derived PN is
guaranteed to be equivalent to the TS. Previously, Petri nets have also been used as intermediate
models for constructing other types of target models, such as BPMN in [14].

The similarity between UML Activity Diagrams and Petri nets are studied in numerous works.
Arlow et al. present UML specification in application to Unified Process including UML AD
structural elements, and also mention that UML AD are based on the Petri Net techniques [5]. In
[12] authors formalize AD semantics and compare them to semantics of Petri Nets. There are many
works dedicated to the transformation of UML Activity Diagrams into Petri nets; the reverse
transformation is studied scantily. In [13] the author describes an approach to translate UML AD
into Petri nets. Agarwal [4] developed a method for transforming AD into Petri nets for verification
purposes. The author considers a set of UML patterns and indicates corresponding Petri net
instances.

3. Preliminaries

B(X) is the set of all multisets over some set X. For a given set X, X* is the set of all non-empty
finite sequences over X.

3.1 Trace, Event Log

Let Z be a set of activities. A trace is a finite sequence
o= (ay,ay, ...,a;..,a,) € Z*. By a(i) = a; we denote i-th element. L € B(Z*) , such that
|L] > 0, is an event log. Here, |L| is the number of all traces.

3.2 Labeled Petri Net, Well-structured Labeled Petri Net

A labeled Petri net (PN)is atuple = {P,T,F,l}, where P is a set of places, T is a set of transitions,
PNT=0,F € (PXT)U (T x P) is the flow relation, [is the labeling function [: T - A, and 4
is a set of labels. In process mining, labels of transition represent events.

Given p € P, the set p* = {y|(p,y) € F} is the postset of p.

In this paper, we denote by Petri net a well-structured Petri net, i.e., a hierarchical Petri net that can
be recursively divided into parts having single entry and exit points [15].

3.2 UML Activity Diagram

A UML Activity Diagram is a tuple AD = {N, E, NT}, where

e NT is asetofnode types, NT = {control,object, executable};
e Nisasetofnodes.n € N:n = (4, type),A € A, type € NT;
e Eisasetofedges.e € E:e = (n1,n2),n1,n2 € N.

Similar definition was used in [11]. In this paper we mainly focus on the following elements of the
UML AD (see fig. 1):

1) Aisasetofactivity nodes, a € A: a = (A, executable);

2) Fisaset of parallel nodes, f € F: f = (control);

3) Disasetof decision nodes, d € D: d = (control);

4) initial and final are initial and final nodes, both of type control.

UML decision nodes should be equipped with guards that indicate the conditions under which the
decision is made. In this paper, we regard non-deterministic Petri nets as intermediate models'. The

! There exists an extension to Petri nets that adds guards to its semantics. However, most of the process mining
algorithms consider Petri nets without guards. Here we follow the same approach.

141

Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 4, 2019. pp. 139-150

proposed conversion algorithm does not assume the presence of guard information in the event log
and uses only the input Petri net. Thus, the produced Activity Diagram is non-deterministic as well.

activity
> a4
activity)
de:;fton
init .
activity

activit)
paraliel Y parallel
fork Join

Fig. 1. An Activity Diagram example

4. Framework

The proposed framework is illustrated in fig. 2. The framework consists of a number of nested stages
related to individual steps of the proposed method. At every step a transformation from one entity,
event log or process model, into another is made. There exist numerous approaches to construct both
Petri nets and transition systems. Models obtained from the same event log, but using different
algorithms, represent the same process. However, they vary in details that are usually represented
by quality metrics [7]. Depending on the task, specific combinations of quality metrics can be
considered.

-2
PN

Event log s

PN-to-UML AD
converter

UML AD

Fig. 2. Proposed framework: I = Il + TS construction; Il = III + PN synthesis;
11l = PN-to-UML AD conversion

The long path of the framework (I) includes first building a TS needed for the algorithm of regions.
Here, various techniques for TS construction can be used, for instance, prefix tree synthesis [3],
frequency based reduction [16], neural approach [17] etc. However, the TS synthesis can be
bypassed and a Petri net can be generated directly from the event log (II). There are many algorithms
for that, i.e., Inductive miner [15], a-algorithm [2], ILP-miner [20] and other. Finally, in III the
generated Petri net is converted into a UML Activity Diagram.

4.1 Proposed implementation

In this paper we consider the full version of the framework with the following parameters.
1) Prefix tree builder, unlimited window, for TS construction.

2) The algorithm of regions for converting the TS into a PN.

142

3ybkosa H.C., IllepmakoB C.A. Metox noctpoennss UML auarpamMm JesTenbHOCTH 110 XKypHanaMm coObrtuit. Tpyast UCIT PAH, tom 31,
BoIM. 4, 2019 1., ctp. 139-150

Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 4, 2019. pp. 139-150

3) The PN-to-UML AD converter described in the following section.

The following paragraph gives a brief overview of the algorithms used in steps 1 and 2.

Prefix tree builder [3] is an algorithm for TS synthesis. Event logs usually do not explicitly contain
states that are needed for the construction of a transition system. A state function is introduced in
order to infer such states. This function maps events in an event log onto states of a TS. Let E be a
set of events in an event log, and S be a set of states in a transition system. For each event e € E the
state function produces a state s € S regarding either pre- or posthistory of the state s. A prefix tree
is a special type of transition systems, for which the state function consideres prehistory (prefix) of
the states. Informally, a transition (s,e,s) appears if
prehistory,s = prehistory; + e. If the prefix size is unlimited, the size of the generated TS can
be equivalent to the size of the event log.

The algorithm of regions [8] used is based on finding equivalent behaviors in a given transition
system. These behavioral fragments are grouped into so-called regions. Intuitively a region is
equivalent to a place in a Petri net. Placing a token in such a place means allowing such a behavior
to appear — via activating a post-transition. In UML Activity Diagrams transitions are translated into
activities. Thus, considering a transitive dependence between an initial TS and an AD, one can
ascertain a link between equivalent behavioral fragments in TS (regions) and corresponding nodes

in AD.
start_booking

[book_ﬂight] @et_insurance

v

start_booking

book_flight ° get_insurance
a e | book_flight |
get_insurance book_flight

send_email

&/

get_insurance

pay_by_
web_money

pay_by_card

pay_by_
web_money

pay_by_card

complete
_booking
complete_booking

¢) Constructed UML
Activity Diagram

a) Transition system

b) Corresponding Petri net

Fig.3. Example models
143

3. Petri Net to UML Activity Diagram conversion algorithm

The PN-to-UML AD conversion algorithm is based on the idea of converting places and transitions
of a given Petri net into corresponding elements of the target UML Activity Diagram. UML AD
specification notes that an activity diagram can only have a single entry point, whereas the
inception of a process modeled by a Petri net can be determined by placing tokens in multiple
places (an initial marking). Here, we consider all places without incoming edges as a potential
starting place. Then a single starting point (initial node) in an Activity Diagram is constructed and
connected to the following activities. Final places are also not explicitly indicated in Petri nets,
however it is sensible to regard those without outgoing edges as such, corresponding final nodes are
inserted in the AD.

While translating a Petri net into a UML activity diagram the algorithm considers special patterns,
namely parallelisms and decisions. Such patterns can be translated into equivalent patterns in an
Activity Diagram. A similar approach was used in [4], [13] for the reverse transformation.

In order to describe the proposed transformation we illustrate it on a running example (fig. 3).

We consider different types of AD nodes and describe the according transformations as follows.

5.1 Transformation functions

Let a: (T,1) = (A4,1) be a function transforming transitions of the Petri net into activities of the
constructed UML AD, tagged by the same labels;

Let ¢: P > D be a function transforming appropriate positions of the PN into decision nodes of the
UML AD;

Let &: T —» F and y: P — F be functions transforming PN transitions and sets of PN places into
UML parallel nodes accordingly.

5.2 Building a UML Activity Diagram

UML Activity Diagram construction includes the following procedures.

5.2.1 Constructing activity nodes

The semantics of Petri nets suggests that transitions, which model events in Petri nets, correspond
to activities in Activity Diagrams. So the first transformation step of the algorithm is turning
transitions of a given Petri net into UML AD activities, i.e. for each transition t € T we create an
activity a = a(t) in the AD.

5.2.2 Detecting parallel forks

We now need to connect nodes and identify more complex behaviors. In a Petri net a concurrent

pattern occurs if a transition has multiple outgoing edges, allowing tokens to appear in all of the

following places when the transition is fired (see Fig. 4). Considering a transition t € T of a Petri

net, let T* be a set of transitions reachable from t in one step. For each transition t € T, if t has:

a) 0 outgoing edges, then activity a(t) is connected to a final node;

b) 1 outgoing edge, then activity a(t) is connected to a(t*), for each t* € T*;

¢) > 1 outgoing edge, activity a(t) is connected to a fork node &(t), and &(t) is then connected
to a(t*), foreach t* € T".

5.2.3 Detecting parallel join

In order for the model to be more interpretable, for each parallel fork there should be a reciprocal
parallel join. So for each fork, described in 2) we need to find the corresponding join. This is done
according to the following steps.

144

3y6xosa H.C., Illepurakos C.A. Metoxa noctpoerns UML quarpamMm AesTeIbHOCTH 110 sypHagam coObithit. Tpyast ICIT PAH, Tom 31,
BoIM. 4, 2019 1., ctp. 139-150

a) For each maximum set of places S = {p4,...,p,} S P that have coinciding postsets (p; =
...=py)and n > 1, a P(P) join node is inserted in the AD.
b) For each transition ¢ immediately preceding each place from S, the activity a(t) is connected

to P(P).

¢) Join node P(P) is then connected to a(t'), for all t' € T', where T' is a set of transitions

immediately following places {p1, ..., Pn}-

Fig. 4. Concurrency pattern in Petri Net and UML AD

starl_booking

5.2.4 Detecting decision splits and merges

A decision pattern in a Petri net occurs if a place has multiple outgoing edges allowing only one
consecutive transition to fire (see fig. 5). So for each place € P , that has more than one outgoing
edge a decision node ¢ (p) is inserted into the AD and is connected to a(£), for all £ € T, T are PN
transitions connected to p (both before and after). Likewise, if the place p has multiple incoming
edges, a reciprocal merge node ¢ (p) is inserted into the AD.

pay_by_
web_mone

pay_by_card

pay_by_
web_money

pay_by_card

Fig. 5. Choice pattern in Petri Net and UML AD

Applying the steps 5.2.1 — 5.2.4 to an input Petri net, the target UML Activity Diagram is
constructed.

6. Application

In this section, we provide examples of models obtained from real logs. Logl and Log2 consist of
243 and 1132 traces respectively. For observability purposes, intermediate transition systems were
reduced using a frequency reduction algorithm described in [16].

In fig. 6 models were generated with window size 1 and frequency reduction parameter 0.04. Logl
contains information about bank operations.

In fig. 7 models were generated on a log containing information about building permit applications
from five Dutch municipalities. Transition system was built with unlimited window parameter and
reduced with frequency reduction parameter of 0.15.

145

Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 4, 2019. pp. 139-150

checkPasswold(flmngeNee(ledT getAgency F getSubject getSupportInfoList l logon modifyGenerallnformation _‘ quickAdd |
checkPasswordChangeNeeded getAgency ‘ getSubject getSupportInfoList getSupportInformation logon getReservation
getAgency getSupportInfoList getSupportInformation

getAgency getSupportInfoList

Fig. 6a. Logl: Petri net

resolveUser

Fig. 6b. Logl: UML Activity Diagram

146

3y6xosa H.C., Illepmakos C.A. Metoa noctpoerns UML nuarpamm aesTeabHOCTH 110 skypHasam coobituit. Tpyast ICIT PAH, Tom 31, Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
BbIIL 4, 2019 r., ctp. 139-150 issue 4, 2019. pp. 139-150

01_HOOFD_010-complete 01 HOOFD_010-complete

01 HOOFD 011-complete

01_HOOFD_011-complete

01_HOOFD 020-complete

@ 01_HOOFD_015-complete

01_HOOFD_020-complete 01_HOOFD_015-complete

01_HOOFD_030_1-complete 02_DRZ 010-complete

02 DRZ 010-complete

01 HOOFD 030 1-complete 04 BPT 005-complete
04_BPT_005-complete
01 HOOFD 065 0-complete

01_HOOFD_065_0-complete O

Fig. 7a. Log2: Petri net Fig. 7b. Log2: UML Activity Diagram

147 148

3ybkosa H.C., IllepmakoB C.A. Metox noctpoennss UML auarpamMm JesTenbHOCTH 110 XKypHanaMm coObrtuit. Tpyast UCIT PAH, tom 31,
BoIM. 4, 2019 1., ctp. 139-150

7. Conclusion

In this paper, we proposed a method based on a framework to build UML Activity Diagrams from
event logs and introduced a novel algorithm for converting a well-structured Petri net into a UML
Activity Diagram. The method is implemented as a part of the LDOPA? library. Future work
includes studying the execution semantics of Petri nets with guards, mining dependencies and adding
guards to Activity Diagrams. Moreover, the framework can be further investigated by implementing
different TS and PN synthesis algorithms.

References

[1]. Van der Aalst W. Data science in action. In Process Mining, Springer, 2016, pp. 3-23.
[2]. Van der Aalst W.M.P., Van Dongen B.F. Discovering petri nets from event logs. Lecture Notes in
Computer Science, vol. 7480, 2013, pp. 372-422.
[3]. Van der Aalst W., Rubin V., Verbeek H., van Dongen B., Kindler E., Giinther C. Process mining: a two-
step approach to balance between underfitting and overfitting. Software and Systems Modeling, vol. 9,
no. 1, 2010, pp. 87-111.
[4]. Agarwal B. Transformation of UML activity diagrams into Petri nets for verification purposes.
International Journal of Engineering and Computer Science, vol. 2, no. 3, 2013, pp. 798-805.
[5]. ArlowJ., Neustadt I. UML 2 and the unified process: practical object-oriented analysis and design. Pearson
Education, 2005, 624 p.
[6]. Badouel E., Bernardinello L., Darondeau P. Polynomial algorithms for the synthesis of bounded nets.
Lecture Notes in Computer Science, vol. 915, 1995, pp. 364-378.
[7]. Buijs J.C.A.M., van Dongen B.F., van der Aalst W. M. P. On the role of fitness, precision, generalization
and simplicity in process discovery. Lecture Notes in Computer Science, vol. 7565, 2012, pp. 305-322.
[8]. Carmona J., Cortadella J., Kishinevsky M. A region-based algorithm for discovering Petri nets from event
logs. Lecture Notes in Computer Science, vol. 5240, 2008, pp. 358-373.
[9]. Concurrency in UML. Available at: https://www.omg.org/ocup-
2/documents/concurrency in_uml version 2.6.pdf. Accessed: 2019-03-05.
[10]. Cortadella J. et al. Deriving Petri nets from finite transition systems. IEEE Transactions on Computers,
vol. 47, no. 8, 1998, pp. 859-882.
[11]. Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA systems. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOL: 10.15514/ISPRAS-2017-29(4)-10.
[12]. Eshuis R., Wieringa R. A comparison of Petri net and activity diagram variants. In Proc. of the 2nd Int.
Coll. on Petri Net Technologies for Modelling Communication Based Systems, 2001, pp. 93-104.
[13]. Fahland D. Translating uml2 activity diagrams to petri nets. Informatik-Berichte 226, Humboldt-
Universitat zu Berlin, 2008.
[14]. Kalenkova A., van der Aalst W., Lomazova I., Rubin V. Process mining using BPMN: relating event logs
and process models, Software and Systems Modeling, 2017, vol. 16, no. 4, pp. 1019-1048.
[15]. Leemans S.J.J., Fahland D., van der Aalst W.M.P. Discovering block-structured process models from
event logs-a constructive approach. Lecture Notes in Computer Science, vol. 2472, 2013, pp. 311-329.
[16]. Shershakov S.A., Kalenkova A.A., Lomazova L.A. Transition systems reduction: balancing between
precision and simplicity. Lecture Notes in Computer Science, vol. 10470, 2017, pp. 119-139.
[17]. Shunin T., Zubkova N., Shershakov S. Neural Approach to the Discovery Problem in Process Mining.
Lecture Notes in Computer Science, vol. 11179, 2018, pp. 261-273.
[18]. UML specification. Available at: https://www.omg.org/spec/UML/About-UML/. Accessed: 2019-03-01.
[19]. Weijters A., van Der Aalst W., De Medeiros A.K.A. Process mining with the heuristics miner-algorithm.
Technische Universiteit Eindhoven, Tech. Rep. WP, 2006, 34 p.
[20]. Van der Werf J. M. E. M., van Dongen B. F., Hurkens C. A., Serebrenik A. Process Discovery Using
Integer Linear Programming. Lecture Notes in Computer Science, vol. 5062, 2008, pp. 368-387.

MHdopmauus o6 asTopax / Information about the authors

Haramsst CepreeBra 3YBKOBA B Hacrosmiee BpeMs sBIAeTCS CTYACHTKOM OakalaaBpCKOM
nporpammsl «IIporpamMmHast nHKeHepus» (aKyIbTeTa KOMIBIOTEPHBIX HayK. O0IacTh ee HayuHbIX

2 Available at https:/prj.xiart.ru/projects/Idopa
149

Zubkova N.S., Shershakov S.A. Method for Building UML Activity Diagrams from Event Logs. Trudy ISP RAN/Proc. ISP RAS, vol. 31,
issue 4, 2019. pp. 139-150

HUHTCEPECOB BKIIIOYACT aHAJIU3 U MOJACIIMPOBAHUEC ITPOIIECCOB, HHTCHHCKTyaJ’ILHLIfI aHaJIu3 TaHHBIX U
MalInHHOC 06yquI/Ie.

Natalia Sergeyevna ZUBKOVA is currently a student enrolled in the «Software Engineering»
bachelor’s program, faculty of Computer Science. Her research interests include process modelling
and analysis, data mining and machine learning.

Cepreii Angpeesuu IIIEPIITAKOB mnomyumn cTemeHb MarucTpa B 00JAcTH IPOrPaMMHON
umxeHepun B HAY BIIID (Mocksa) B 2012 roxy. B HacTosmiee BpeMs OH ABJIAETCS HAayYHBIM
COTPYAHHKOM Hay4HO-y4eOHOIl 1a0opaTopuu MpPOLECCHO-OPUEHTHPOBAHHBIX WH(OPMAIMOHHBIX
cuCTeM (paKyJIbTeTa KOMIBIOTEPHBIX HAayK. B 4HCIIO HayyHBIX MHTEPECOB BXOAAT U3BICUCHUE U
aHaJIU3 MPOLECCOB (process mining), BepuduKanus NPOrpaMMHOIO O0OECIIEUCHUs], apXUTEKTYpPhI
MHGOPMAIMOHHBIX CHCTEM H IIPEeNoaBaHNe IIPOTrPaMMHOM HH)KEHEPUH.

Sergey Andreevitch SHERSHAKOV received the MS degree in software engineering from HSE
(Moscow, Russia) in 2012. He is currently a research fellow at PAIS Lab of the Faculty of Computer
Science. His research interests include process mining, software verification, information systems
architectures and teaching software engineering.

150

