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Abstract. In this paper, we propose an approach to implementation of the algorithm for computing transition 
priorities for live Petri nets. Priorities are a form of constraints which can be imposed to ensure liveness and 
boundedness of a Petri net model. These properties are highly desirable in analysis of different types of systems, 
ranging from business processes systems to embedded systems. The need for them is imposed by resource 
limitations of real-life systems. The algorithm for computing transition priorities considered in the study has 
exponential time complexity, since it is based on construction and traversal of the coverability graph. However, 
its performance may be sufficient for the majority of real-life cases. This paper covers the design considerations 
of the implementation, including the approach to handling the high time complexity of the algorithm and 
optimizations introduced in the original algorithm. We target parallelization as the main method of performance 
increase. While, for some steps of the algorithm the parallelization approach proves to be viable, for others its 
applicability is questioned. Analysis of different design decisions is provided in the text. On the basis of the 
actual implementation an application for computing priorities was developed. It can be used for further analysis 
of the algorithm applicability for real-life cases. 

Keywords: formal methods; Petri nets; coverability graph; priority relation; cyclic behavior  

For citation: Serebrennikov K.G. Computing transition priorities for life Petri nets. Trudy ISP RAN/Proc. ISP 
RAS, vol. 31, issue 4, 2019. pp. 163-174. DOI: 10.15514/ISPRAS-2019-31(4)-11 

Acknowledgments. This work is supported by the Basic Research Program at the National Research University 
Higher School of Economics. 

Вычисление приоритетов срабатывания переходов для живых 
сетей Петри 

К.Г. Серебренников, ORCID: 0000-0002-8420-9826 <cyrilsilver94@gmail.com> 
Национальный исследовательский университет «Высшая школа экономики», 

101000, Россия, г. Москва, ул. Мясницкая, д. 20 

Аннотация. В данной статье представлен подход к реализации алгоритма вычисления приоритетов 
срабатывания переходов для живых сетей Петри. Приоритеты являются одной из форм условий 
срабатывания и могут быть присвоены переходам для обеспечения живости и ограниченности сети 
Петри. Наличие этих свойств крайне желательно при анализе различных систем, начиная от бизнес-
процессов и заканчивая встраиваемыми системами. Необходимость в них обусловлена 
ограниченностью ресурсов, характеризующей большинство систем из реальной практики. 
Рассматриваемый в данном исследовании алгоритм для вычисления приоритетов срабатывания 
переходов имеет экспоненциальную временную сложность, так как основан на процедурах построения 
и обхода графа покрытия. Однако, его производительность может быть достаточна для большинства 
практических целей. В данной работе затронуты различные аспекты проектирования реализации, 
включая подход к решению проблемы высокой сложности алгоритма и примененные к нему 
оптимизации. В качестве основного метода повышения производительности алгоритма были выбраны 
параллельные вычисления. Не смотря на то, что для одних шагов алгоритма данный подход 
продемонстрировал свою жизнеспособность, для других его эффективность оказалась не столь 
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однозначной. В работе представлен анализ различных решений. Также, на основе реализации алгоритма 
было разработано приложение для вычисления приоритетов срабатывания. Данное приложение может 
быть использовано для дальнейших исследований реальной применимости алгоритма. 

Ключевые слова: формальные методы; сети Петри; граф покрытия; отношение приоритетов; 
цикличное поведение 
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1. Introduction 
Petri nets are widely applicable for modeling and analysis of various distributed systems ranging 
from business processes systems to biological systems. Regardless the nature of such systems their 
models always have some properties of liveness and boundedness. Properties of liveness include 
reiteration of all subprocesses and return to some initial state of the system. Properties of 
boundedness are those related to finiteness of the set of possible states. 
In most of the cases, it is highly desirable for the system to have finite set of states, i.e. its model 
should be bounded. Let us consider, for example, a Petri net shown in fig. 1. This Petri net is a model 
of a simple producer/consumer system, where the left cycle represents a producer, the right cycle – 
a consumer, and the place p3 between them is a buffer. This net is live, i.e. in every reachable marking 
each transition can eventually fire. The net is unbounded, since the number of tokens in p3 can be 
arbitrary large. It means that the buffer overflow will eventually occur. Thus, it is desirable to 
transform the model into live and bounded preserving the original structure of the net. 

  

Fig. 1. Example of a marked Petri net. Model of a producer/consumer system 

The problem of transformation of a given live and unbounded Petri net into live and bounded without 
modification of its original structure was considered in [1] and [2]. The authors focused on two 
approaches to control of Petri net behavior: through priority-based and through time-based 
constraints on transition firings. Algorithms for computing priorities and time intervals were 
proposed by them. This paper continues their study. 
The proposed algorithms are based on construction of the spine tree, which is a subgraph of the 
reachability tree, containing exactly all feasible cyclic runs in a net. It represents the behavior that 
should be saved in a transformed Petri net to preserve the liveness property of the original net. The 
procedure of obtaining those cyclic runs each of which contains all transitions and is reachable from 
the initial marking was introduced in [3]. It is based on construction of the coverability graph that is 
finite by definition but can be extremely large. This fact affects negatively the overall time 
complexity of the algorithms. 
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Nevertheless, the performance of these algorithms may be optimal for the majority of real life cases. 
In this paper we target implementation considerations of the above mentioned algorithms. The study 
is focused on computation of transition priorities leaving apart computation of time intervals, since 
these two procedures have common foundation. The main contributions of this paper are the 
following. 
1) An approach to implementation design of the algorithm for computing transition priorities 

based on construction steps optimization and adoption of parallelization. 
2) A brief analysis of the actual implementation coded in Java programming language. 
3) A Java application with GUI built upon the algorithm implementation that can be used for 

running experiments and researching the applicability of the algorithm in practical cases. The 
application supports the Petri Net Markup Language (.pnml) file format and can be used along 
with other tools for Petri net modeling and analysis. 

The source code of the application along with build and run instructions can be found in the 
repository1. 
The structure of the paper is as follows. In Section 2 the main theoretical preliminaries are provided. 
Section 3 contains a brief description of the algorithm under consideration. In section 4 the approach 
to implementation design is described and results of implementation analysis are presented. Section 
5 concludes the paper. 

2. Preliminaries 
For a more detailed introduction to the concepts presented in this section see, e.g., [4]. 
Let ℕ denote the set of natural numbers (including 0). We define a marked Petri net as a tuple 

(𝑃, 𝑇, 𝑝𝑟𝑒: 𝑇 ⨯  𝑃 ⟶  ℕ, 𝑝𝑜𝑠𝑡: 𝑇 ⨯  𝑃 ⟶  ℕ, 𝑚0: 𝑃 ⟶  ℕ) 
where 𝑃 and 𝑇 are finite disjoint sets of places and transitions, respectively. 𝑝𝑟𝑒(𝑡, 𝑝) is a number 
of tokens required to present on place 𝑝 to enable transition 𝑡. The firing of 𝑡 adds 
𝑝𝑜𝑠𝑡(𝑡, 𝑝) –  𝑝𝑟𝑒(𝑡, 𝑝) tokens to 𝑝. Graphically, places are denoted by circles and transitions by 
squares. There is a directed arc from 𝑝 to 𝑡 if 𝑝𝑟𝑒(𝑡, 𝑝)  >  0. The arc is annotated with 𝑝𝑟𝑒(𝑡, 𝑝) if 
𝑝𝑟𝑒(𝑡, 𝑝)  >  1. Similarly, there is a directed arc from 𝑡 to 𝑝 if 𝑝𝑜𝑠𝑡(𝑡, 𝑝)  >  0. It is annotated with 
𝑝𝑜𝑠𝑡(𝑡, 𝑝) if 𝑝𝑜𝑠𝑡(𝑡, 𝑝)  >  1. The pre-set of a transition 𝑡 is the set of places 𝑝 satisfying 
𝑝𝑟𝑒(𝑡, 𝑝)  >  0. The post-set of 𝑡 is a set of places 𝑝 satisfying 𝑝𝑜𝑠𝑡(𝑡, 𝑝)  >  0. A marking of a net 
is a mapping 𝑚: 𝑃 ⟶  ℕ. The initial marking 𝑚଴ is represented by 𝑚଴0(𝑝) tokens on place 𝑝. 
An initial run is a sequence of transition firings, starting with the initial marking. Reachable 
markings are all those markings, which can be reached by the initial run. A cyclic run is a finite run 
starting and ending at the same marking. 
A reachability graph of a Petri net is a labeled directed graph, in which vertices correspond to 
reachable markings of the net. A directed edge from vertex 𝑣 to vertex 𝑣′ is labeled with transition 
𝑡, which is enabled by marking 𝑚 represented by 𝑣 and leads to marking 𝑚′ represented by 𝑣′. 
A Petri net is bounded if, for each place 𝑝, the number of tokens on 𝑝 does not exceed some fixed 
bound 𝑘 ∈  ℕ, i.e. for each reachable marking m the following is true: 𝑚(𝑝) ≤  𝑘. Thus, a Petri net 
is bounded if and only if its reachability graph is finite. 
A marking 𝑚′ strictly covers a marking 𝑚 if and only if for each place 𝑝 ∈  𝑃, 𝑚′(𝑝)  ≥  𝑚(𝑝) and 
𝑚′ ≠  𝑚.  
In case of unbounded nets coverability graphs provide finite information about behavior. The 
construction of coverability graph is based on the notion of the generalized marking, which is 
formally a mapping: 𝑃 ⟶  ℕ ⋃ {𝜔}, where 𝜔 denotes an arbitrary number of tokens on a place. A 
coverability graph is defined constructively: it is constructed successively like the reachability graph 
starting from the initial marking. However, in case of the coverability graph, when a marking 𝑚′ 

                                                           
1 https://github.com/molassar/PN-transition-priority-computer 
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represented by a current leave 𝑣′ in the reachability graph strictly covers a marking m represented 
by a vertex 𝑣, lying on the path from the root to 𝑣′, then in the coverability graph the vertex 𝑣′ gets 
a marking 𝑚௪ , where 𝑚௪(𝑝)  =  𝜔 if 𝑚′(𝑝) >  𝑚(𝑝), and 𝑚௪(𝑝) =  𝑚′(𝑝) if 𝑚′(𝑝)  =  𝑚(𝑝). 
Fig. 2 shows a coverability graph of the example shown in fig. 1. 

 

Fig. 2. A coverability graph of the Petri net of fig. 1 

The coverability net of a Petri net 𝑁 =  (𝑃, 𝑇, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑚଴) is a new Petri net 𝑁′ =
 (𝑃′, 𝑇′, 𝑝𝑟𝑒′, 𝑝𝑜𝑠𝑡′, 𝑚଴′), which is constructed on the basis of a coverability graph (𝑉, 𝐸, 𝑣଴) of the 
original net. The transitions of 𝑁′ are mapped to the transitions of 𝑁 by a labeling function 𝜆′: 𝑇′ ⟶
 𝑇. The coverability net is formally defined as: 
 𝑃′ =  𝑉, 
 𝑇′ =  𝐸, 

 𝑝𝑟𝑒′((𝑣′, 𝑡, 𝑣′′), 𝑣)  =  1 𝑖𝑓 𝑣 =  𝑣′, 
 𝑝𝑟𝑒′((𝑣′, 𝑡, 𝑣′′), 𝑣)  =  0 𝑖𝑓 𝑣 ≠  𝑣′,  
 𝑝𝑜𝑠𝑡′((𝑣′, 𝑡, 𝑣′′), 𝑣)  =  1 𝑖𝑓 𝑣 =  𝑣′′, 

 𝑝𝑜𝑠𝑡′((𝑣′, 𝑡, 𝑣′′), 𝑣)  =  0 𝑖𝑓 𝑣 ≠  𝑣′′, 
 𝑚଴′(𝑣)  =  1 𝑖𝑓 𝑣 =  𝑣଴, 

 𝑚଴′(𝑣)  =  0 𝑖𝑓 𝑣 ≠  𝑣଴, 

 𝜆′(𝑣, 𝑡, 𝑣′)  =  𝑡. 
The extended coverability net is the coverability net, that contains additional places to capture the 
token count change for 𝜔-marked places of the original net. For each unbounded place p in the 
original net a place 𝑝 is added to the extended coverability net. If transition 𝑡 is in the pre-set of 𝑝 
in the original net 𝑁, then all transitions 𝑡′ ∈  𝑇′ with 𝜆′(𝑡′)  =  𝑡 are in the pre-set of the added 
place 𝑝. Arc weights are taken into account. The same holds for the post-sets of added places. The 
initial marking of added places coincides with the initial marking of these places in the original net. 
Fig. 3 demonstrates the extended coverability net constructed upon the coverability graph shown in 
fig. 2. 
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Fig. 3. The extended coverability net of the Petri net of Fig. 1 

 

Fig. 4. The spine tree of the Petri net of Fig. 1 

We define the set of all minimal feasible cyclic runs together with prefixes leading to the cycles in 
a Petri net 𝑁 as 

𝐶(𝑁)  =  {𝜏𝜎 |  𝜏𝜎 ∗  𝑖𝑠 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑢𝑛 𝑖𝑛 𝑁, 
𝜏 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝜎 𝑎𝑛𝑑 𝜎 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑎𝑙𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑁} 

where 𝜎 is a minimal feasible cyclic run in 𝑁 and 𝜏 is a finite initial run leading to 𝜎. A spine tree is 
a subgraph of a reachability tree, that contains exactly all runs from 𝐶(𝑁). The spine tree contains 
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the behavior that should be saved in course of transformation in order to keep a Petri net live. For 
the Petri net in fig. 1 𝐶(𝑁)  =  {𝑏𝑎𝑏𝑎𝑐𝑑, 𝑏𝑎𝑏𝑐𝑎𝑑, 𝑏𝑎𝑏𝑐𝑑𝑎, 𝑏𝑎𝑏𝑎𝑐𝑏𝑑, 𝑏𝑎𝑏𝑐𝑎𝑏𝑑, 𝑏𝑎𝑏𝑎𝑐𝑏𝑎𝑑}. Thus, 
the spine tree of the net has the construction as shown in fig. 4. 

A priority relation for a Petri net 𝑁 is a partial order (𝑇,  ≪), i.e., the relation is reflexive, 
antisymmetric and transitive. A priority relation ≪ can be specified by assigning a priority label 
𝜋(𝑡) ∈ ℕ to each transition 𝑡. Thus, 𝑡 ≪  𝑡′ if and only if 𝜋(𝑡)  <  𝜋(𝑡′). A Petri net with priorities 
is a Petri net together with a priority relation. In a Petri net with priorities if 𝑄 is a set of all transitions 
enabled in a marking m, then only transitions with the highest priority may fire. 

3. Algorithm overview 
Let 𝑁 be a live and unbounded Petri net. The task is to check, if it is possible to transform this net 
into live and bounded by adding priorities to its transitions. To accomplish the task we should find 
those transition priorities, which exclude runs leading to unboundedness. 
It is possible to distinguish two major stages in the algorithm. The first is the search for cyclic runs 
in a Petri net. The presence of cyclic runs is a necessary condition for existence of transition priorities 
for a given Petri net. On the second stage the spine tree is built with the cyclic runs found on the 
previous stage forming its skeleton. The whole algorithm has the following sequence of actions. 
1) Given a Petri net build its coverability graph; 
2) Given the coverability graph constructed on the previous step build a coverability net; 
3) Transform the coverability net into an extended coverability net; 
4) Find behavioral cycles of the extended coverability net; 
5) If the set of cyclic runs computed on the previous step is not empty build a spine tree in which 

the cyclic runs form the skeleton; 
6) Given the spine tree build a spine-based coverability tree in which all leaves are colored in 

either red or green2; 
7) Traverse the spine-based coverability tree. For each non-red node a with its incoming edge 

labeled after transition t1 if there exists a red sibling b with its incoming edge labeled after 
transition t2 add (t1, t2) to the priority relation; 

8) Assign priority labels to the transitions on the basis of the priority relation computed on the 
previous step. 

The steps 1-4 form the first stage of the algorithm – search for cyclic runs. The procedure was 
introduced in [3]. The second stage – computation of a priority relation through spine tree 
construction – is represented by the steps 5-7. It was described in [1]. 

4. Implementation approach 

4.1 Cyclic runs search 
The problem of the search for cyclic runs in a Petri net can be reduced to the search for cyclic runs 
in its extended coverability net. The original algorithm for the cyclic runs search is comprised of 
four steps. We have reduced the number of steps to two by optimizing the construction phases of 
coverability and extended coverability nets. 
The first step is the construction of a coverability graph. This step can not be avoided since the 
coverability graph is the foundation for the rest of the algorithm. Since the coverability graph can 
grow exponentially the overall time complexity of the algorithm is also exponential. We have chosen 
parallelization to target the problem. The implementation of coverability graph construction and 
traversal steps was designed to be easily parallelized. 

                                                           
2 For the complete algorithm see [1]. 
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Listing 1 demonstrates the pseudocode of the algorithm for building the coverability graph. Each 
node is processed in the following way: the set of transitions is filtered to find the transitions enabled 
by the marking corresponding to a node, then all the filtered transitions are fired to produce new 
generalized markings. Directed arcs are added from the vertex labeled by the marking of the node 
to the vertices labeled by the produced generalized markings. New nodes are generated from the 
obtained markings for further processing. Processing of a node does not depend on processing of 
other nodes so this task can be scheduled in parallel. The actual implementation of the pseudocode 
has the time complexity 

𝑂(|𝑉|  ∗  |𝑇|  ∗  𝑑(𝐶𝐺)  ∗  |𝑃|) 
where |𝑉| is the number of vertices in a coverability graph, |𝑇| – the cardinality of the transition set 
of a Petri net, 𝑑(𝐶𝐺) – depth of  the coverability graph, i.e., the distance from the root to the most 
distant vertex, and |𝑃| – the cardinality of the set of places. 

procedure buildCG(m0,T) 
Input:  Initial marking m0 ∈ M, 
          M - set of generalized markings; 
       set of transitions T 
Output:  Directed graph G = (V,E), |V| = |M| 
G = initGraph() 
root = Node(marking: m0, parentNode: null) 
Q = makequeue(root) 
while Q is not empty: 
   node = dequeue(Q) 
   m = marking(node) 
   v = Vertex(label: label(m)) 
   incidentFrom = listIncidentFrom(G,v) 
   if incidentFrom is empty: 
      fireableT = filter(T, predicate: isFireableFrom(m)) 
      for each t ∈ fireableT: 
         mn = fire(m,t) 
         parentNode = node 
         while parentNode is not null: 
            mp = marking(parentNode) 
            if isStrictlyCoveredBy(mn,mp): 
               mn = generalize(mn,mp) 
               break 
            parentNode = parentNode(parentNode) 
         u = Vertex(label: label(mn)) 
         e = Edge(label: label(t)) 
         addIncidentFrom(G,v,e,u) 
         newNode = Node(marking: mn, parentNode: node) 
         enqueue(Q,newNode) 

Listing. 1. Pseudocode of the algorithm for building the coverability graph 

We have made two implementations of the algorithm: single-threaded and parallel. In the parallel 
version, node processing tasks are submitted to a thread pool. Since the worker threads process the 
submitted tasks asynchronously, there is a need for some synchronization mechanism in order to 
prevent the function call in the master thread from returning before the graph is fully constructed. 
For the purposes of synchronization, we have used Phaser. It is a reusable synchronization barrier, 
which is provided by the standard Java library. The two main operations of Phaser are register and 
arrive. It is possible to block on Phaser, while the number of registered is not equal to the number 
of arrived. Phaser is incorporated into the implementation in the following way: the master thread 
submits the first task to the pool and blocks on Phaser, when a working thread generates a new task 
it is registered in Phaser, and after completion it arrives. Thus, the function call does not return until 
all the submitted tasks are processed, i.e. the graph is completely built. We used ForkJoinPool from 
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the fork/join Java framework as the implementation of the thread pool, since it provides the work-
stealing mechanism. If a worker thread runs out of tasks in its pool, it can steal tasks from other 
threads that are busy. Thus, all the available processing powers are utilized and the performance 
increases. 
We have also conducted a benchmarking of the two implementations with the use of JMH open 
source tool. Coverability graph construction for the Petri net in Fig. 1 was benchmarked. The single 
shot time mode was selected for the test. In this mode the time for a single operation is measured. 
Thus the “cold” performance of an algorithm is estimated, since no preliminary warm-up is 
conducted. This mode is most similar to the real-life usage scenario of the algorithm.  The results 
are presented in Table 1. 

Table 1. Benchmark results for implementations of the coverability graph construction algorithm 

Benchmark mode Single-Threaded Score Parallel Score 

Single shot time 5080.768 us/op 7632.496 us/op 

The results in Table. 1 demonstrate that the single-threaded implementation performs slightly better 
for the Petri net of fig. 1. The probable reason is the low complexity of the net. The time complexity 
of processing a single node is  

𝑂(|𝑇|  ∗  𝑑(𝐶𝐺) ∗  |𝑃|) 
and, hence, there are strong reasons to believe, that with increase in concurrency of the model and 
in number of transitions and places the parallel implementation  will outperform the single-threaded 
one. Further experiments conducted with more complex nets proved this assumption. 
The construction of the coverability net and the extended coverability net was optimized: we used 
coverability graph built on the previous stage and a separate data structure for capturing the number 
of tokens on unbounded places to find all feasible cyclic runs. 
Initially, we have designed an implementation of the algorithm for the cyclic runs search, which also 
targeted parallelization. That implementation resembled closely the implementation of the 
coverability graph construction algorithm. Both of them were built upon separate nodes processing 
and since this procedure is completely independent for each node it can be easily parallelized. 
However, several tests proved this approach to be practically inapplicable. The reason is high 
memory space consumption. The number of enqueued nodes (logically they represent paths to be 
checked for cyclic behavior) increases exponentially rapidly exhausting memory capacity. 
Thus, we have designed another implementation based on the backtracking principle. It is much 
more memory efficient, since only one node (path) is processed and stored in memory in every single 
moment of time. The problem with this approach is that it is difficult to be parallelized. And the 
developed implementation is also single-threaded. However, processing of each path in the actual 
implementation has the time complexity 𝑂(|𝐸|) where |𝐸| is the number of edges in the coverability 
graph. This means that in general case, the amount of work needed to be done to process a single 
path is insignificant for a modern process, and hence no major increase in performance should be 
observed with addition of parallelization. Nevertheless, the transformation of the proposed single-
threaded implementation into a parallel one can be a subject of future research. The pseudocode of 
the cyclic runs search procedure based on backtracking is presented in Listing 2. 

procedure backtrackingCyclicRunsSearch(G,m0,upm0,T) 
Input: Coverability graph G; 
       initial marking m0 ∈ M, 
          M - set of generalized markings; 
       initial marking of unbounded places upm0; 
       set of transitions T 
Output: List of all cyclic runs L 
L = initEmptyList() 
root = Node(marking: m0, unboundedPlaces: upm0, 
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         transition: null, parentNode: null) 
path = root 
isBacktracked = false 
while path is not null: 
   if containsCyclicRun(path): 
      cyclicRun = extractCyclicRun(path) 
      if containsAllTransitions(cyclicRun,T): 
         addRun(L,cyclicRun) 
         path = parentNode(path) 
         isBacktracked = true 
         continue 
   // no cyclic run was detected 
   nodeM = marking(path) 
   nodeUPM = unboundedPlaces(path) 
   if not isBacktracked: 
      incrementPhase(nodeM) 
   v = Vertex(label: label(nodeM)) 
   incidentFrom = listIncidentFrom(G,v) 
   isBacktracked = true 
   for each (e,u) in incidentFrom: 
      tForE = transitionForEdge(e) 
      mForU = markingForVertex(u) 
      // check if transition tForE from  
      //     marking m to marking mForU is not 
      //     in the sequence represented by path 
      if isNotInSequence(path,tForE,mForU): 
         // check if e was not followed already 
         // in current phase of nodeM 
         if wasNotFollowedInPhase(e,phase(nodeM)): 
         // calculate marking of unbounded places 
         upmn = fireForUnbounded(nodeUPM,tForE) 
         if for every marking in upmn marking >= 0: 
            path = Node(marking: mForU, 
                        unboundedPlaces: upmn, 
                        transition: tForE, 
                        parentNode: path) 
            markAsFollowedInPhase(e,phase(nodeM)) 
            isBacktracked = false 
   // current path can not be extended; backtracking 
   if isBackTracked: 
      for each (e,u) in incidentFrom: 
         if wasFollowedInPhase(e,phase(nodeM)): 
            unmarkAsFollowedInPhase(e,phase(nodeM)) 
      decrementPhase(nodeM) 
      path = parentNode(path) 

Listing 2. Pseudocode of the backtracking-based procedure for cyclic runs search 

A comment on the pseudocode in Listing 2 should be provided. Since it is possible to get into a 
vertex in multiple different ways, and every time each edge incident from it and not in path should 
be checked, we have introduced the notion of phase to take account of visited edges and prevent an 
infinite traversal. 

4.2 Priorities computation 
The rest of the algorithm is based on the construction of the spine tree of a Petri net and its traversal. 
The procedure of constructing the spine tree from the list of cyclic runs is quite straightforward and 
we omit its description here. Similarly, the algorithm for the construction of the spine-based 
coverability tree was described in details in [1] and we have mostly followed this description in the 
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process of implementation design. In the spine-based coverability tree the red leaves (ω-leaves) are 
those nodes which strictly cover some markings preceding them in their branches. To guarantee 
boundedness they should be cut off. This is achieved with priorities. Listing 3 demonstrates the 
pseudocode for computing priority relation on the basis of the spine-based coverability tree. 
It was proved in [1] that if the relation ≪ constructed for the live and unbounded Petri net (𝑁, 𝑚଴) 
is a partial order (i.e. antisymmetric), then ≪ is a priority relation for 𝑁, and the Petri net (𝑁, ≪, 𝑚଴) 
is live and bounded. However, it is possible for the algorithm in Listing 3 to produce relations with 
contradictory pairs, thus violating the antisymmetric property. In [2] it is suggested to remove such 
contradictory pairs from the relation. In this case the Petri net with the  resulting priority relation 
should be checked for boundedness and liveness. 
The concluding step of the algorithm implementation is computation of priority labels of transitions. 
For transitions which are not included in the priority relation the highest priority is assigned since 
this means that the order of their occurrence is not important. For the rest of transitions a topological 
sorting is used to order the transitions in the ascending priority and assign a label to each of them 
with respect to their position. This is possible because the priority relation can be represented as a 
directed acyclic graph. It should be noted that the obtained priorities can be stronger than it is 
required since topological sorting does not take into account relative independence of transitions in 
the priority relation. 

procedure computePR(treeRoot) 
Input:  Root of spine-based coverability tree treeRoot 
Output: Priority relation PR = {(t1,t2) : t1 ∈ T ∧ t2 ∈ T}, 
          T - set of transitions 
PR = initEmptyRelation() 
Q = makequeue(treeRoot) 
while Q is not empty: 
   node = dequeue(Q) 
   childNodes = children(node) 
   redNodes = filter(childNodes, predicate: isRed()) 
   greenNodes = filter(childNodes, predicate: isGreen()) 
   yellowNodes = filter(childNodes, predicate: isYellow()) 
   enqueueAll(Q,yellowNodes) 
   for each rn in redNodes: 
      // get transition represented by incoming arc of node 
      tr = transitionOfIncArc(rn) 
      for each yn in yellowNodes: 
         ty = transitionOfIncArc(yn) 
         addToRelation(PR,(ty,tr)) 
      for each gn in greenNodes: 
         tg = transitionOfIncArc(gn) 
         addToRelation(PR,(tg,tr)) 

Listing 3. Pseudocode of the algorithm for priority relation computation 

5. Conclusion 
In this paper, we have presented our approach to implementation design of the algorithm for 
computing transition priorities for live Petri nets. In the worst case the performance of the algorithm 
may be not optimal for the task since it is based on construction and traversal of the coverability 
graph which can grow exponentially. However, it may prove optimal for the majority of real-life 
system models. We have proposed parallelization as the main method of handling the complexity. 
A number of experiments were conducted to estimate its effect on the performance of the 
implementation. While for some steps this approach proved to be viable, for others its applicability 
was questioned. 
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Priority constraints can be helpful in analysis of technical systems, since they ensure liveness and 
boundedness of such systems. For the purposes of computing priorities the application was 
developed. This application is based on the algorithm implementation presented in the paper and 
can be used for further studies on the problem. 
However, it should be noted that the application inherits the weak points of the algorithm it is based 
on, i.e. the high time complexity. Hence, further experiments should be conducted to determine the 
limits of applicability of the application and the algorithm in particular. 
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