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BbluncneHue npunoputeToB cpabaTbiBaHUA NepexoaoB ANA XKUBbIX
ceten lNetpm
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Hayuonanvnwiii uccnedosamensckuil ynugepcumen «Bvicuids wKona SKOHOMUKUY,
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AunHoTanus. B naHHOIl cTaThe MpeicTaBieH MOAXOJ K peaau3aldy alrOpPUTMa BBIYHCIEHUS NPHOPHTETOB
cpabaTbiBaHUs NEPEXonoB Juis HUBbIX cereil Ilerpu. IIpuopurersl sBISAIOTCS OAHOM U3 (OPM YCIOBHIt
cpabaTbIBaHKS U MOTYT OBITH IIPHCBOCHBI IEpPeXoAaM Ul 00ECIIeUeHHs KUBOCTH M OIPAHUYCHHOCTH CETH
Ierpu. Hannune 3THX CBOMCTB KpaifHe jKeTaTeNbHO IPH aHAIN3E PAa3IMYHBIX CHCTEM, HauMHAsl OT OM3HeC-
IPOLECCOB M 3aKaHUYMBas BCTPAMBAaeMBIMH cHcTeMaMH. HeoGxomumocTs B HHX — 0OycioBieHa
OrpaHMYECHHOCTBIO PECYpPCOB, XapakKTepH3yiomeil OONBIIMHCTBO CHCTEM U3 pEalnbHOH NPAKTUKH.
PaccmarpuBaeMblii B JaHHOM HCCIICJOBAaHUM AITOPUTM U BBIYHCICHHS IPHOPUTETOB CPaOaTHIBAHUS
[ePEeXO/I0B UMeeT SKCIIOHEHITHAIBHYIO BPEMEHHYIO CII0XKHOCTb, TAK KaK OCHOBAH Ha IPOIEAypax HOCTPOCHHS
u obxoxa rpada nokpeitus. OHAKO, €ro MPOU3BOJUTEIBHOCTE MOXKET OBITh OCTATOYHA ISl OOJBLIMHCTBA
NpaKTHYeCKUX Ieneil. B nannoll paGoTe 3aTpOHYTHI pa3iIMYHBIC ACHEKTHl NPOCKTHPOBAHMS pealli3alluH,
BKJIIOYAsi INOAXOJ K PEIICHHIO HPOOJIEeMBI BBHICOKOH CIOXKHOCTH QITOPHTMAa ¥ IPUMEHEHHBIE K HEMY
ONTHMH3aIUU. B KauecTBe OCHOBHOr0 MeTO/[a IIOBBIIIICHHS IPOM3BOAUTEIBHOCTH AITOPUTMA OBLIH BEIOPAHEI
napajienbHble BbuMcleHus. He cMoTps Ha To, YTO Al OIHHX INAroB AaJrOPUTMA JAaHHBIH TOAXOX
MPOJEMOHCTPUPOBAI CBOIO JKH3HECHOCOOHOCTb, IS IPYIHX ero 3((eKTHBHOCTh OKa3alach He CTONb
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OJJHO3HAYHOH. B paboTe npeacTasieH aHanu3 pa3inuHbIX penieHuit. Takke, Ha OCHOBE pea3aliy AIropUT™Ma
6BUI0 pa3pabOTaHO IPUIIOKEHHE I BEIYUCIICHHS IIPUOPUTETOB CpadaThiBaHUs. JIaHHOE IPUIIOKEHHE MOXKET
OBITH HCIIOJIL30BAHO JUIS JAIBHEHIINX HCCIIEJOBAHUN pealbHON IPHMEHIMOCTH aJITOPUTMA.

KiroueBbie cioBa: (opMmanbHble METOABI; ceTH Iletpu; rpad) MOKPHITHS; OTHOIIEHHE MPHOPUTETOB;
LUKJIMYHOE TIOBE/ICHHE

Jst uutupoBanusi: Cepebpennukos K.I'. Beruncnenne npuopureToB cpadaTbIBaHUs MEPEXOA0B ISt )KUBBIX
cereid Ilerpu. Tpynsr VICIT PAH, tom 31, Bbim. 4, 2019 ., ctp. 163-174 (Ha anrumiickom s3bike). DOIL:
10.15514/ISPRAS-2019-31(4)-11

Bnaropapnocrn. PabGora BbImonHeHa npu moxmepxkke IIporpaMmbl (yHIaMEHTaNbHBIX HCCIEXOBAHHIL
HaroHansHOro HcCIe10BaTeNbCKOro YHUBEpCUTeTa «BhIcInas mKoaa S9KOHOMUKI.

1. Introduction

Petri nets are widely applicable for modeling and analysis of various distributed systems ranging
from business processes systems to biological systems. Regardless the nature of such systems their
models always have some properties of liveness and boundedness. Properties of liveness include
reiteration of all subprocesses and return to some initial state of the system. Properties of
boundedness are those related to finiteness of the set of possible states.

In most of the cases, it is highly desirable for the system to have finite set of states, i.e. its model
should be bounded. Let us consider, for example, a Petri net shown in fig. 1. This Petri net is a model
of a simple producer/consumer system, where the left cycle represents a producer, the right cycle —
a consumer, and the place p; between them is a buffer. This net is live, i.e. in every reachable marking
each transition can eventually fire. The net is unbounded, since the number of tokens in p3 can be
arbitrary large. It means that the buffer overflow will eventually occur. Thus, it is desirable to
transform the model into live and bounded preserving the original structure of the net.

Py Py
2
a b [ d
P3
P2 a

Fig. 1. Example of a marked Petri net. Model of a producer/consumer system

The problem of transformation of a given live and unbounded Petri net into live and bounded without
modification of its original structure was considered in [1] and [2]. The authors focused on two
approaches to control of Petri net behavior: through priority-based and through time-based
constraints on transition firings. Algorithms for computing priorities and time intervals were
proposed by them. This paper continues their study.

The proposed algorithms are based on construction of the spine tree, which is a subgraph of the
reachability tree, containing exactly all feasible cyclic runs in a net. It represents the behavior that
should be saved in a transformed Petri net to preserve the liveness property of the original net. The
procedure of obtaining those cyclic runs each of which contains all transitions and is reachable from
the initial marking was introduced in [3]. It is based on construction of the coverability graph that is
finite by definition but can be extremely large. This fact affects negatively the overall time
complexity of the algorithms.
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Nevertheless, the performance of these algorithms may be optimal for the majority of real life cases.
In this paper we target implementation considerations of the above mentioned algorithms. The study
is focused on computation of transition priorities leaving apart computation of time intervals, since
these two procedures have common foundation. The main contributions of this paper are the
following.

1) An approach to implementation design of the algorithm for computing transition priorities
based on construction steps optimization and adoption of parallelization.

2) A brief analysis of the actual implementation coded in Java programming language.

3) A Java application with GUI built upon the algorithm implementation that can be used for
running experiments and researching the applicability of the algorithm in practical cases. The
application supports the Petri Net Markup Language (.pnml) file format and can be used along
with other tools for Petri net modeling and analysis.

The source code of the application along with build and run instructions can be found in the

repository'.

The structure of the paper is as follows. In Section 2 the main theoretical preliminaries are provided.

Section 3 contains a brief description of the algorithm under consideration. In section 4 the approach

to implementation design is described and results of implementation analysis are presented. Section

5 concludes the paper.

2. Preliminaries
For a more detailed introduction to the concepts presented in this section see, e.g., [4].
Let N denote the set of natural numbers (including 0). We define a marked Petri net as a tuple

(P, T,pre:T x P — N,post:T x P — N,m0:P — N)
where P and T are finite disjoint sets of places and transitions, respectively. pre(t,p) is a number
of tokens required to present on place p to enable transition t. The firing of tadds
post(t,p) - pre(t,p) tokens to p. Graphically, places are denoted by circles and transitions by
squares. There is a directed arc from p to t if pre(t,p) > 0. The arc is annotated with pre(t, p) if
pre(t,p) > 1. Similarly, there is a directed arc from t to p if post(t,p) > 0. It is annotated with
post(t,p) if post(t,p) > 1. The pre-set of a transition t is the set of places p satisfying
pre(t,p) > 0. The post-set of t is a set of places p satisfying post(t,p) > 0. A marking of a net
is a mapping m: P — N. The initial marking m, is represented by m,0(p) tokens on place p.
An initial run is a sequence of transition firings, starting with the initial marking. Reachable
markings are all those markings, which can be reached by the initial run. A cyclic run is a finite run
starting and ending at the same marking.
A reachability graph of a Petri net is a labeled directed graph, in which vertices correspond to
reachable markings of the net. A directed edge from vertex v to vertex v’ is labeled with transition
t, which is enabled by marking m represented by v and leads to marking m' represented by v'.
A Petri net is bounded if, for each place p, the number of tokens on p does not exceed some fixed
bound k € N, i.e. for each reachable marking m the following is true: m(p) < k. Thus, a Petri net
is bounded if and only if its reachability graph is finite.
A marking m' strictly covers a marking m if and only if for each place p € P, m'(p) = m(p) and
m' # m.
In case of unbounded nets coverability graphs provide finite information about behavior. The
construction of coverability graph is based on the notion of the generalized marking, which is
formally a mapping: P — N U {w}, where w denotes an arbitrary number of tokens on a place. A
coverability graph is defined constructively: it is constructed successively like the reachability graph
starting from the initial marking. However, in case of the coverability graph, when a marking m’

! https://github.com/molassar/PN-transition-priority-computer
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represented by a current leave v’ in the reachability graph strictly covers a marking m represented
by a vertex v, lying on the path from the root to v, then in the coverability graph the vertex v’ gets
a marking m,,, where m,,(p) = w if m'(p) > m(p), and m,,(p) = m'(p) if m'(p) = m(p).
Fig. 2 shows a coverability graph of the example shown in fig. 1.

(1,0,0,1,0) b (0,1,1,1,0) a (1,0,w,1,0) b (0,1,w,1,0)

° ° o ————@

(1,0,w,0,1) (0,1,w,0,1)

Fig. 2. A coverability graph of the Petri net of fig. 1

The coverability net of a Petri net N = (P,T,pre,post,m,) is a new Petri net N' =
(P',T',pre’,post’,my"), which is constructed on the basis of a coverability graph (V, E, vy) of the
original net. The transitions of N’ are mapped to the transitions of N by a labeling function A': T' —
T. The coverability net is formally defined as:

e P =1V,

e T =E,

o pre'((W,t,v"),v) = lifv = v,

o pre'((W,t,v"),v) = 0ifv # v,

e post'((V,t,v"),v) = 1lifv = V",

e post'((V,t,v"),v) = 0ifv # V',

o my(w) = 1ifv = v,

o my'(v) = 0ifv # vy,

o ANt v) =t

The extended coverability net is the coverability net, that contains additional places to capture the
token count change for w-marked places of the original net. For each unbounded place p in the
original net a place p is added to the extended coverability net. If transition ¢ is in the pre-set of p
in the original net N, then all transitions t'" € T’ with A'(t") = t are in the pre-set of the added
place p. Arc weights are taken into account. The same holds for the post-sets of added places. The
initial marking of added places coincides with the initial marking of these places in the original net.

Fig. 3 demonstrates the extended coverability net constructed upon the coverability graph shown in
fig. 2.
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Fig. 3. The extended coverability net of the Petri net of Fig. 1
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Fig. 4. The spine tree of the Petri net of Fig. 1

We define the set of all minimal feasible cyclic runs together with prefixes leading to the cycles in
a Petri net N as
C(N) = {to| to * is aninitial run in N,
T does not include o and o includes all transitions in N}
where o is a minimal feasible cyclic run in N and 7 is a finite initial run leading to o. A spine tree is
a subgraph of a reachability tree, that contains exactly all runs from C(N). The spine tree contains
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the behavior that should be saved in course of transformation in order to keep a Petri net live. For
the Petri net in fig. 1 C(N) = {babacd, babcad, babcda, babacbd, babcabd, babacbad}. Thus,
the spine tree of the net has the construction as shown in fig. 4.

A priority relation for a Petri net N is a partial order (T, «), i.e., the relation is reflexive,
antisymmetric and transitive. A priority relation <« can be specified by assigning a priority label
m(t) € N to each transition t. Thus, t « t'if and only if m(t) < m(t"). A Petri net with priorities
is a Petri net together with a priority relation. In a Petri net with priorities if Q is a set of all transitions
enabled in a marking m, then only transitions with the highest priority may fire.

3. Algorithm overview

Let N be a live and unbounded Petri net. The task is to check, if it is possible to transform this net
into live and bounded by adding priorities to its transitions. To accomplish the task we should find
those transition priorities, which exclude runs leading to unboundedness.

It is possible to distinguish two major stages in the algorithm. The first is the search for cyclic runs

in a Petri net. The presence of cyclic runs is a necessary condition for existence of transition priorities

for a given Petri net. On the second stage the spine tree is built with the cyclic runs found on the
previous stage forming its skeleton. The whole algorithm has the following sequence of actions.

1) Given a Petri net build its coverability graph;

2) Given the coverability graph constructed on the previous step build a coverability net;

3) Transform the coverability net into an extended coverability net;

4) Find behavioral cycles of the extended coverability net;

5) If'the set of cyclic runs computed on the previous step is not empty build a spine tree in which
the cyclic runs form the skeleton;

6) Given the spine tree build a spine-based coverability tree in which all leaves are colored in
either red or green?;

7) Traverse the spine-based coverability tree. For each non-red node a with its incoming edge
labeled after transition ¢, if there exists a red sibling b with its incoming edge labeled after
transition #; add (¢, #2) to the priority relation;

8)  Assign priority labels to the transitions on the basis of the priority relation computed on the
previous step.

The steps 1-4 form the first stage of the algorithm — search for cyclic runs. The procedure was

introduced in [3]. The second stage — computation of a priority relation through spine tree

construction — is represented by the steps 5-7. It was described in [1].

4. Implementation approach

4.1 Cyclic runs search

The problem of the search for cyclic runs in a Petri net can be reduced to the search for cyclic runs
in its extended coverability net. The original algorithm for the cyclic runs search is comprised of
four steps. We have reduced the number of steps to two by optimizing the construction phases of
coverability and extended coverability nets.

The first step is the construction of a coverability graph. This step can not be avoided since the
coverability graph is the foundation for the rest of the algorithm. Since the coverability graph can
grow exponentially the overall time complexity of the algorithm is also exponential. We have chosen
parallelization to target the problem. The implementation of coverability graph construction and
traversal steps was designed to be easily parallelized.

2 For the complete algorithm see [1].
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Listing 1 demonstrates the pseudocode of the algorithm for building the coverability graph. Each
node is processed in the following way: the set of transitions is filtered to find the transitions enabled
by the marking corresponding to a node, then all the filtered transitions are fired to produce new
generalized markings. Directed arcs are added from the vertex labeled by the marking of the node
to the vertices labeled by the produced generalized markings. New nodes are generated from the
obtained markings for further processing. Processing of a node does not depend on processing of
other nodes so this task can be scheduled in parallel. The actual implementation of the pseudocode
has the time complexity
OQV| + IT| = d(CG) * |PI)

where |V| is the number of vertices in a coverability graph, |T| — the cardinality of the transition set
of a Petri net, d(CG) — depth of the coverability graph, i.e., the distance from the root to the most
distant vertex, and |P| — the cardinality of the set of places.

procedure buildCG (m0,T)
Input: Initial marking mO € M,
M - set of generalized markings;
set of transitions T
Output: Directed graph G = (V,E), |V| = |M]|
G = initGraph ()
root = Node (marking: m0, parentNode: null)
Q = makequeue (root)
while O is not empty:
node = dequeue (Q)
m = marking (node)
v = Vertex(label: label (m))
incidentFrom = listIncidentFrom (G, V)
if incidentFrom is empty:
fireableT = filter (T, predicate: isFireableFrom(m))
for each t € fireableT:
mn = fire(m,t)
parentNode = node
while parentNode is not null:
mp = marking (parentNode)
if isStrictlyCoveredBy (mn,mp) :
mn = generalize (mn,mp)
break
parentNode = parentNode (parentNode)
u = Vertex(label: label (mn))
e = Edge(label: label (t))
addIncidentFrom (G, v, e, u)
newNode = Node (marking: mn, parentNode: node)
enqueue (Q, newNode)

Listing. 1. Pseudocode of the algorithm for building the coverability graph

We have made two implementations of the algorithm: single-threaded and parallel. In the parallel
version, node processing tasks are submitted to a thread pool. Since the worker threads process the
submitted tasks asynchronously, there is a need for some synchronization mechanism in order to
prevent the function call in the master thread from returning before the graph is fully constructed.
For the purposes of synchronization, we have used Phaser. It is a reusable synchronization barrier,
which is provided by the standard Java library. The two main operations of Phaser are register and
arrive. It is possible to block on Phaser, while the number of registered is not equal to the number
of arrived. Phaser is incorporated into the implementation in the following way: the master thread
submits the first task to the pool and blocks on Phaser, when a working thread generates a new task
it is registered in Phaser, and after completion it arrives. Thus, the function call does not return until
all the submitted tasks are processed, i.e. the graph is completely built. We used ForkJoinPool from
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the fork/join Java framework as the implementation of the thread pool, since it provides the work-
stealing mechanism. If a worker thread runs out of tasks in its pool, it can steal tasks from other
threads that are busy. Thus, all the available processing powers are utilized and the performance
increases.

We have also conducted a benchmarking of the two implementations with the use of JMH open
source tool. Coverability graph construction for the Petri net in Fig. 1 was benchmarked. The single
shot time mode was selected for the test. In this mode the time for a single operation is measured.
Thus the “cold” performance of an algorithm is estimated, since no preliminary warm-up is
conducted. This mode is most similar to the real-life usage scenario of the algorithm. The results
are presented in Table 1.

Table 1. Benchmark results for implementations of the coverability graph construction algorithm

Benchmark mode Single-Threaded Score Parallel Score

Single shot time 5080.768 us/op 7632.496 us/op

The results in Table. 1 demonstrate that the single-threaded implementation performs slightly better
for the Petri net of fig. 1. The probable reason is the low complexity of the net. The time complexity
of processing a single node is

O(IT| * d(CG) * |P])
and, hence, there are strong reasons to believe, that with increase in concurrency of the model and
in number of transitions and places the parallel implementation will outperform the single-threaded
one. Further experiments conducted with more complex nets proved this assumption.

The construction of the coverability net and the extended coverability net was optimized: we used
coverability graph built on the previous stage and a separate data structure for capturing the number
of tokens on unbounded places to find all feasible cyclic runs.

Initially, we have designed an implementation of the algorithm for the cyclic runs search, which also
targeted parallelization. That implementation resembled closely the implementation of the
coverability graph construction algorithm. Both of them were built upon separate nodes processing
and since this procedure is completely independent for each node it can be easily parallelized.
However, several tests proved this approach to be practically inapplicable. The reason is high
memory space consumption. The number of enqueued nodes (logically they represent paths to be
checked for cyclic behavior) increases exponentially rapidly exhausting memory capacity.

Thus, we have designed another implementation based on the backtracking principle. It is much
more memory efficient, since only one node (path) is processed and stored in memory in every single
moment of time. The problem with this approach is that it is difficult to be parallelized. And the
developed implementation is also single-threaded. However, processing of each path in the actual
implementation has the time complexity O (|E|) where |E| is the number of edges in the coverability
graph. This means that in general case, the amount of work needed to be done to process a single
path is insignificant for a modern process, and hence no major increase in performance should be
observed with addition of parallelization. Nevertheless, the transformation of the proposed single-
threaded implementation into a parallel one can be a subject of future research. The pseudocode of
the cyclic runs search procedure based on backtracking is presented in Listing 2.

procedure backtrackingCyclicRunsSearch (G, m0,upm0,T)
Input: Coverability graph G;
initial marking m0 € M,
M - set of generalized markings;
initial marking of unbounded places upmO;
set of transitions T
Output: List of all cyclic runs L
L = initEmptyList ()
root = Node (marking: m0, unboundedPlaces: upm0,
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transition: null, parentNode: null)
path = root
isBacktracked = false
while path is not null:
if containsCyclicRun (path) :
cyclicRun = extractCyclicRun (path)
if containsAllTransitions(cyclicRun,T):
addRun (L, cyclicRun)
path = parentNode (path)
isBacktracked = true
continue
// no cyclic run was detected
nodeM = marking (path)
nodeUPM = unboundedPlaces (path)
if not isBacktracked:
incrementPhase (nodeM)
v = Vertex (label: label (nodeM))
incidentFrom = listIncidentFrom (G, V)
isBacktracked = true
for each (e,u) in incidentFrom:
tForE = transitionForEdge (e)
mForU = markingForVertex (u)
// check if transition tForE from
// marking m to marking mForU is not
// in the sequence represented by path
if isNotInSequence (path, tForE,mForU) :
// check if e was not followed already
// in current phase of nodeM
if wasNotFollowedInPhase (e, phase (nodeM)) :
// calculate marking of unbounded places
upmn = fireForUnbounded (nodeUPM, tForE)
if for every marking in upmn marking >= 0:
path = Node (marking: mForU,
unboundedPlaces: upmn,
transition: tForE,
parentNode: path)
markAsFollowedInPhase (e,phase (nodeM))
isBacktracked = false
// current path can not be extended; backtracking
if isBackTracked:
for each (e,u) in incidentFrom:
if wasFollowedInPhase (e,phase (nodeM)) :
unmarkAsFollowedInPhase (e, phase (nodeM) )
decrementPhase (nodeM)
path = parentNode (path)

Listing 2. Pseudocode of the backtracking-based procedure for cyclic runs search

A comment on the pseudocode in Listing 2 should be provided. Since it is possible to get into a
vertex in multiple different ways, and every time each edge incident from it and not in path should
be checked, we have introduced the notion of phase to take account of visited edges and prevent an
infinite traversal.

4.2 Priorities computation

The rest of the algorithm is based on the construction of the spine tree of a Petri net and its traversal.
The procedure of constructing the spine tree from the list of cyclic runs is quite straightforward and
we omit its description here. Similarly, the algorithm for the construction of the spine-based
coverability tree was described in details in [1] and we have mostly followed this description in the
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process of implementation design. In the spine-based coverability tree the red leaves (w-leaves) are
those nodes which strictly cover some markings preceding them in their branches. To guarantee
boundedness they should be cut off. This is achieved with priorities. Listing 3 demonstrates the
pseudocode for computing priority relation on the basis of the spine-based coverability tree.

It was proved in [1] that if the relation <« constructed for the live and unbounded Petri net (N, m;)
is a partial order (i.e. antisymmetric), then « is a priority relation for N, and the Petri net (N, <, m;)
is live and bounded. However, it is possible for the algorithm in Listing 3 to produce relations with
contradictory pairs, thus violating the antisymmetric property. In [2] it is suggested to remove such
contradictory pairs from the relation. In this case the Petri net with the resulting priority relation
should be checked for boundedness and liveness.

The concluding step of the algorithm implementation is computation of priority labels of transitions.
For transitions which are not included in the priority relation the highest priority is assigned since
this means that the order of their occurrence is not important. For the rest of transitions a topological
sorting is used to order the transitions in the ascending priority and assign a label to each of them
with respect to their position. This is possible because the priority relation can be represented as a
directed acyclic graph. It should be noted that the obtained priorities can be stronger than it is
required since topological sorting does not take into account relative independence of transitions in
the priority relation.

procedure computePR (treeRoot)
Input: Root of spine-based coverability tree treeRoot
Output: Priority relation PR = {(tl,t2) : tl1 € T A t2 € T},
T - set of transitions
PR = initEmptyRelation ()
QO = makequeue (treeRoot)
while Q is not empty:
node = dequeue (Q)
childNodes = children (node)
redNodes = filter (childNodes, predicate: isRed())
greenNodes = filter (childNodes, predicate: isGreen|()
yellowNodes = filter (childNodes, predicate: isYellow())
enqueueAll (Q, yellowNodes)
for each rn in redNodes:
// get transition represented by incoming arc of node
tr = transitionOfIncArc(rn)
for each yn in yellowNodes:
ty = transitionOfIncArc (yn)
addToRelation (PR, (ty, tr))
for each gn in greenNodes:
tg = transitionOfIncArc (gn)
addToRelation (PR, (tg, tr))

Listing 3. Pseudocode of the algorithm for priority relation computation

5. Conclusion

In this paper, we have presented our approach to implementation design of the algorithm for
computing transition priorities for live Petri nets. In the worst case the performance of the algorithm
may be not optimal for the task since it is based on construction and traversal of the coverability
graph which can grow exponentially. However, it may prove optimal for the majority of real-life
system models. We have proposed parallelization as the main method of handling the complexity.
A number of experiments were conducted to estimate its effect on the performance of the
implementation. While for some steps this approach proved to be viable, for others its applicability
was questioned.
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Priority constraints can be helpful in analysis of technical systems, since they ensure liveness and
boundedness of such systems. For the purposes of computing priorities the application was
developed. This application is based on the algorithm implementation presented in the paper and
can be used for further studies on the problem.

However, it should be noted that the application inherits the weak points of the algorithm it is based
on, i.e. the high time complexity. Hence, further experiments should be conducted to determine the
limits of applicability of the application and the algorithm in particular.
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