Tpyovr UCIT PAH, mom 31, ein. 5, 2019 2.// Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 5, 2019

DOI: 10.15514/ISPRAS-2019-31(5)-5

Improving fuzzing performance by applying
interval mutations

1'S.S. Sargsyan, ORCID: 0000-0002-8831-4965 <sevaksargsyan@jispras.ru>
' J.A. Hakobyan, ORCID: 0000-0002-4094-2727<jivan@ispras.ru>
'H.M. Movsisyan, ORCID: 0000-0002-7582-7948 <hovhannes@ispras.ru>
' M.S. Mehrabyan, ORCID: 0000-0001-9846-3414 <matos@ispras.ru>
YW.T. Sirunyan, ORCID: 0000-0002-2213-0530 <sirunyan@ispras.ru>
2Sh.F. Kurmangaleev, ORCID: 0000-0002-0558-2850 <kursh@ispras.ru>

' Russian-Armenian University,
123 Hovsep Emin str., Yerevan, 0051, Armenia
2 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. This paper presents a novel approach of generation effective inputs for fuzz testing. Most
applications check input format before performing basic calculations. That kind of applications usually
parse service information of input file to decide whether it is supported or not. Input formats which are not
supported are discarded and the application finishes its execution immediately. For example, the service
information of ELF (Extensible Linking Format) file should start with the following data: "0x7f'E' 'L' 'F"".
If a file does not contain this information in header section then it will not be considered as ELF. Effective
fuzzing of an application which has input validation stage is a relevant and important problem. Random
changes of input files usually malform service data and the target application finishes immediately without
execution of main code. This makes fuzzing process inefficient. To solve this problem, we have designed
and implemented three special plugins for ISP-Fuzzer. The first plugin is intended to collect execution
traces. The second plugin connects fragments of input data and executed basic blocks of the target program.
Based on that information we can determine potential fragments (critical fragments) of input data which
should not be mutated for new test case generation. The third plugin is designed for interval mutations. It
mutates input file escaping critical fragments detected by the second plugin. Experimental results prove the
effectiveness of proposed method.

Keywords: dynamic analysis; interval mutation; fuzzing.

For citation: Sargsyan S.S., Hakobyan J.A., Movsisyan H.M., Mehrabyan M.S., Sirunyan V.T.,
Kurmangaleev Sh.F. Improving fuzzing performance by applying interval mutations, Trudy ISP RAN/Proc.
ISP RAS, vol. 31, issue 5, 2019, pp. 79-88. DOI: 10.15514/ISPRAS-2019-31(5)-5

79

Sargsyan S.S., Hakobyan J.A., Movsisyan H.M., Mehrabyan M.S., Sirunyan V.T., Kurmangaleev Sh.F. Improving fuzzing performance
by applying interval mutations, Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 5, 2019, pp. 79-88

MoBbiweHne acpdpekTMBHOCTM ha33uHra ¢ NOMOLL b
MHTepBalibHbIX MyTaLun

'C.C. Capacan, ORCID: 0000-0002-8831-4965 <sevaksargsyan@ispras.ru>
! . A. Axoonsan, ORCID: 0000-0002-4094-2727 <jivan@jispras.ru>
V0. M. Moscucsn, ORCID: 0000-0002-7582-7948 <hovhannes@jispras.ru>
' M.C. Mezpabsin, ORCID: 0000-0001-9846-3414 <matos@jispras.ru>
'B.T. Cupynsn, ORCID: 0000-0002-2213-0530 <sirunyan@ispras.ru>
2 [II.®. Kypmanzanees, ORCID: 0000-0002-0558-2850 <kursh@ispras.ru>

! Poccuticko-Apmsnckuii Yuueepcumenm,
0051, Apmenus, . Epesan, yn. Oscena Omuna 123
2 Unuemumym cucmemrozo npozpammuposanus um. B.I1. Heannuxoea PAH,
109004, Poccus, 2. Mockea, yn. A. Conicenuypina, 0. 25

AuHHoTanus. B craThe npecTaBiieH HOBBIM MOAXOA IS reHepali 3G (GEKTUBHBIX BXOAHBIX JaHHBIX IS
(1)333 TECTUPOBAHUA. BonbuiuHcTBO porpamMm Inepea HayajaoM BBIIIOJHEHUS OCHOBHOI'O KOJa IMPOBEPSAIOT
(opMaT BXOIHBIX NaHHBIX. YacTo Takue IPUIOXKEHHS YUTAIOT CIYXEOHYI0 MH(GOPMALUIO U3 BXOIHOIO
(aiia 1 ONpeneNsIoT MOANSPKUBACTCS JIM JaHHBIH (popMaT WIH HEeT. BXoxHble (aiiibl, ¢ HeBaIUIHBIM
¢dopmarom otOpachiBatoTca. O(GEeKTHBHBIN (Da33MHT NPOTrpamMM, KOTOPbIE HPOBEPSIOT CIIyXKEOHYIO
HHGOPMALMIO BXOJHBIX JAHHBIX SBISIETCS aKTyalubHOH 3amaueid. MyTarmst BXOAHBIX (ailioB yacto
IPHUBOJUT K TeHEPAIMH HEBAIUIHOMN CepBUCHON NH(BOPMAINH, ¥ IIPOrpaMMa 3aKaHIUBACTCS JIO TOTO, KaK
UCIOIHHUTCS €€ OCHOBHOIT KoJI. UTOOBI peIIUTh 9Ty 3aa1y, MBI pa3pab0TaH U BHEIPUIIH TPH CIICHATBHBIX
iaruHoB B miargopmy ISP-Fuzzer. IlepBslit miarun npejiHazHaueH JUisi COOMPaHUs TPACC BBITOJIHEHUS.
Bropoii miaruH cBs3bBaeT (parMeHTh BXOAHBIX JAHHBIX C BBITOTHEHHBIMU 0230BBIMH OJIOKaMHU LEIeBOU
nporpamMMbl. C IIOMONIBIO 3TOH HHGOPMAaIMU ONpPENENIOTCS NOTCHIHAIbHbIE HHTEPBABI BXOTHBIX
JTaHHBIX, KOTOpBIE HE MOJDKHBI MYTHPOBAaThCA NPH TeHepalud HoBoro Tecrta. Ilocneqnuil miarus
paspaboTaH Uil MHTEpPBAIbHBIX MyTalHid. DTH MyTalMH MOAU(GUUUPYIOT BXOAHOW ailn, ocTaBisst
HEeTPOHYTHIMH 3aJaHHbIe HHTEpBAIbl. O(Q(PEKTHBHOCTh HPENIOKEHHOTO MeToja Jl0Ka3aHa
MHOTOYUCIICHHBIMH 9KCIIEPUMEHTAMH.

KitioueBsble cj10Ba: {HHAMUYECKHIT aHAIM3; HHTEPBaJIbHAs MyTalust; (ha33HHT

Jas mutupoBanusi: Capresu C.C. Axomse [Ix.A., Moscucsn O.M., Merpabsua M.C., Cupynsa B.T.,
Kypmanranees I111.®. Ilosbimrenue d¢dekTHBHOCTH (a33UHTa ¢ IIOMOINBI0 HHTEPBANBHBIX MYyTAIUH.
Tpyast UCIT PAH, tom 31, Bbim. 5, 2019 1., ctp. 79-88 (Ha anramiickom s3bike). DOI: 10.15514/ISPRAS-
2019-31(5)-5

1. Introduction

Development of reliable software is still an essential aspect in the field of information
technologies (IT). In order to improve software reliability, developers should repeatedly and
constantly analyze and test their product. There are several methods and tools for that purpose
[1-5]. Fuzzing is one of the most popular and efficient method of dynamic analysis. During
analysis the target program is executed with mutated or generated input data. Fuzzing tool
follows and verifies target programs behavior during its execution [6] (fig 1). If the target binary
crashes then it reports about failure.

~

Fig 1. Process of fuzzing
80

Capresin C.C. Axorsin Jlx.A., Moscrcs O.M., Merpa6sin M.C., Cupynsi B.T., Kypmatranees I1L.®. TToebiuenne dbdexmiHoCTH assiHra ¢
TIOMOIIIBEO HHTEPBATBHBIX MyTartHid. Tpyowt ICIT PAH, Tom 31, Bbim. 5,2019 1., c1p. 79-88

There are number of state-of-the-art fuzzing tools which are able to detect faults in the target
binary. One of them is AFL (American Fuzzy Lop) [7, 8, 9] — coverage based grey-box fuzzing
tool. This tool has uncovered number of mistakes in list of widely known software such as: bash,
OpenSSL and Mozilla Firefox [10]. There are several modifications of AFL for different tasks.
WinAFL [11] is designed for fuzzing under Windows OS. kAFL [12] performs fuzzing of OS
kernel. AFL uses an evolutionary algorithm to find new test data which will serve as input for
next execution. For new input generation the tool uses a feedback loop to determine how much
code was covered by current input. If the current input executes a new path then it is considered
as interesting and saved for future mutation. Disadvantage of AFLs mutation engine is that it
does not use any information about input file structure.

VUzzer [13] is an application aware grey box fuzzing tool which integrates static and dynamic
analysis. VUzzer focuses on generation meaningful inputs which will execute new paths in target
program. By static and dynamic analysis VUzzer creates a 'smart' feedback loop. Before the main
fuzzing loop the tool uses static analysis to extract immediate values, magic values and other
characteristic strings that affect the control flow. During the program execution, VUzzer utilize
the dynamic taint analysis technique to collect information that affect the control flow branches,
including specific values and the corresponding offsets. This information will be used in new
test generation. VUzzer uses Pin [14], as instrumentation tool which result in a relatively slow
testing speed, compared to AFL [15].

ISP-Fuzzer [16] is an extendable fuzzing framework which is implemented as coverage based,
grey-box fuzzer. In order to achieve extendibility of the framework, ISP-Fuzzer provides
opportunity to add custom plugins for different tasks solution. It contains number of
implemented plugins, such as: BNF data generation plugin [17, 18], directed fuzzing plugin [19],
DSE invocation plugin [20], etc. ISP-Fuzzer has its own mutation engine with several mutation
algorithms. These algorithms, like AFL’s mutation algorithms, do not know structure of input
data, and may change important fragments of it such as format information in header section.
For example, the first eight bytes of a PNG file contains the following values: '0x89 0x50 Ox4E
0x47 0xOD OxOA Ox1A OxOA'. If fuzzing tool changes one of these values during mutation then
a mutated input will be rejected by parsing stage (i.e. fuzzing tool cannot 'dig' deeper and cover
new execution paths). To address this problem, we have designed and developed a plugin for
ISP-Fuzzer (ZC-DSE - Zero Cost Dynamic Symbolic Execution), which detects what intervals
of input data are influencing on execution of particular basic block (BB) of the target binary.
Based on that information we perform interval mutations. Interval mutations can decrease
possibility of changing service bytes such as: header information, magic values, etc. These
mutations are implemented as ISP-Fuzzer plugin.

The rest of this paper is structured as follow. In the section 2 we present high level overview of
the proposed instrument. Section 3 describes changes in instrumentation tool for proper traces
generation. The section 4 describes interaction between ZC-DSE and interval mutations plugins.
In the section 5 we provide results of experimental setup for number of binary files.

2. ZC-DSE

ZC-DSE (Zero Cost Dynamic Symbolic Execution) is developed as a plugin for ISP-Fuzzer, to
find what intervals of input data influence on execution of a particular BB of target binary. The
tool accepts as input program’s execution traces and corresponding input data. Algorithm which
bounds intervals of input file to executed BB consist of two basic stages (each stage described
in section A and B accordingly).

81

Sargsyan S.S., Hakobyan J.A., Movsisyan H.M., Mehrabyan M.S., Sirunyan V.T., Kurmangaleev Sh.F. Improving fuzzing performance
by applying interval mutations, Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 5, 2019, pp. 79-88

int is_linux_binary(char* binary) {
if (binary[o] != ox7F || strncmp(“ELF”, binary + 1, 4) != 0) {
return false;
}else {
return true;
}
¥

g

400579: cmp $0x7f, %oal
40057b: jne 40059b <_Z15is_linux_binaryPc+0x35>
40057d: mov -0x8(%rbp), Yorax
400581: add $0x1, %rax
400585: mov $0x4,%edx
40058a: mov Y%rax, Yorsi
40058d: mov $0x400654,%edi
400592: callq 400430 <strncmp@plt>
400597: test Ypeax, Yoeax
400599: je 4005ac <_Z15is_linux_binaryPc+0x46>

Fig 2. Simple example of parsing header

21 Selecting interesting basic blocks

At first the tool examines available traces to finds all interesting BBs in them. In order to consider
BB as interesting, we use several metrics.

e Most common: BB considered as interesting if at least P percent of all traces contain it. Value
of P by default is equal to 30% but can be adjusted by user. We presume, that frequently
executed BBs corresponding to some service information parsing.

e Branch: With this metric the algorithm observes only branching BBs which have at least 7'
BB on true branch and no more than F on the false. Values of 7'and F are easily tunable via
configuration file. We presume that BBs satisfying these conditions are corresponding to
code, which checks service information. False branch is executed when service information
malformed, otherwise true branch executes basic functionality of target application.

e Custom: Any other metric can be easily implemented and integrated by user.

The “Most common” metric is used as default based on experimental results.

2.2 Binding interesting basic blocks to values

In the second phase ZC-DSE tries to bind intervals of input data to interesting BBs which were
selected on previous stage. For that purpose, the tool intersects input files (byte level intersection)
corresponding to traces containing interesting BB. We suppose resulting intervals influencing on
this BB execution. If interesting BB is selected by “Most common” metric, and intersection of
corresponding input data was empty then we stop processing of this BB. Empty result of
intersection proves that there is no fixed fragment of input data influencing this BB execution.
As results ZC-DSE returns json file, which contains list of interesting BB addresses and
corresponding intervals of values (from input files) which influence execution of these BBs.

82

Capresin C.C. Axorsin Jlx.A., Moscrcs O.M., Merpa6sin M.C., Cupynsi B.T., Kypmatranees I1L.®. TToebiuenne dbdexmiHoCTH assiHra ¢
TIOMOIIIBEO HHTEPBANBHBIX MyTatwit. 7pydet UCIT PAH, Tom 31, BeiL. 5,2019 1, c1p. 79-88

For example, in fig. 2 we have fragment of code which parses header of input file and decides
whether input has ELF extension. Suppose ZC-DSE have got as input two traces with respective
input data (fig. 3). In these traces start address of BB2 is 0x400579 and BB?2 is responsible for
check whether the first position of input data is ‘0x7F’. In both inputs the first position is the
same and equal to ‘0x7F’. As result ZC-DSE will return a json file which content is presented in
fig. 3. ZC-DSE has determined, that in order to execute BB2 an input data should contain ‘0x7F’
value at the first position

OxTF ‘ E ‘ I.| F ‘

| '

WIF A | B|C |

‘ BE2 BB2
‘ BB3 BES
{ “bb_start” : 400579

“intersections” : |
{ “walue” : ox7F
“position” : 1

Fig. 3. Simple example of execution ZC — DSE

3. Traces generation

ISP-Fuzzer uses DynamoRIO [21] based client library for code coverage collection.
DynamoRIO is a runtime code manipulation system which allows code transformation on any
part of a program, during its execution [22]. As well it provides flexible API for code
manipulation.

ISP-Fuzzer supports fork server [9] optimization, which improves fuzzing speed. DynamoRIO
has special code cache for instrumented BBs. It uses already instrumented BBs for next
executions. Code cache and fork server optimization are strongly connected which complicates
collection of current executed trace

To collect execution traces, we should dynamically collect addresses of executed BBs. For that
purpose, we should dynamically inject an assembler code in each BB while its execution. The
fragment will store address of current executing BB on special buffer. Injecting assembler code
in all BB is expensive and influences on fuzzing speed negatively. We use special tactic to reduce
trace collection cost. Every time when the fuzzing tool executes new path, we invoke
instrumentation tool with special options. This option tells DynamoRIO to inject assembler code
for current trace collection and run target one more time. This time current trace is collected
without affecting code cache (instrumented BBs won’t be stored in it). This tactic is implemented
as separate plugin.

83

Sargsyan S.S., Hakobyan J.A., Movsisyan H.M., Mehrabyan M.S., Sirunyan V.T., Kurmangaleev Sh.F. Improving fuzzing performance
by applying interval mutations, Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 5, 2019, pp. 79-88

In execution trace we keep pairs of BB addresses which were executed consequentially (Fig. 4).
It enables us to construct CFG (control flow graph) of current execution. Before saving a new
edge into the traces buffer we check whether it already contains that edge, to optimize buffer
size. Current execution traces are stored in json files (fig. 4).

“trace” : [

{ "source_start”: 10044,
“source_end”: 10980,
“destination_start™: 10368,
"destination_éend”: 10368

Fig. 4. Example of execution trace fragment

4, Interval mutations

ISP-Fuzzer has flexible mutation engine with number of efficient mutation algorithms. These

algorithms are fast but do not use information about structure of input file. For example:

1. expand data with: same/different random byte or zero byte;

2. shrink data by removing a random number of bytes;

3. modify data by setting: sequence of bytes to random values, sequence of bytes to the same
random value, random range of bytes to zero values, set a random range of bytes to random
non-zero values;

4. perform a word slide;

flip bit/byte/word;

6. generate string data by: repeating initial string a number of times, creating a list of invalid
UTF-8 strings;

7. modify string data case: lower-case each character, uppercase each character and then
randomly upper-case or lowercase each character;

8. modify numeric data: set to maximum/minimum value, apply arithmetic operations;
9. insert elements from dictionary;
10. concatenate random test cases from fuzzing queue.
We have developed new mutation plugin for ISP-Fuzzer (interval mutations) which allows to let
intact some parts of input data. This mutation takes as input information provided by ZC-DSE
plugin and does not mutate bytes of input data, which are responsible for service information
checks. By default, ISP-Fuzzer invokes ZC-DSE if original mutation algorithms do not increase
coverage of target binary during 3000 executions (this number is chosen after a large number of
experiments). This metric is configurable. For example, a user (analytic) can set new
configuration to invoke ZC-DSE:

1. if previous X executions were not able to detect at least Y new paths;

2. if previous X executions were not able to execute at least ¥ new BBs.

W

5. Experimental results

We have evaluated proposed method on several binaries from Ubuntu 18.04.2 LTS. In table 1
we present some interesting difference between default mode of ISP-Fuzzer compared with ZC-
DSE plugin. Results show that plugin ZC-DSE allows to detect more paths, which in its turn
allows to find more crashes and hangs. All detected crashes and hangs are manually verified.

84

Capresin C.C. Axorsin Jlx.A., Moscrcs O.M., Merpa6sin M.C., Cupynsi B.T., Kypmatranees I1L.®. TToebiuenne dbdexmiHoCTH assiHra ¢
TIOMOIIIBEO HHTEPBATBHBIX MyTartHid. Tpyowt ICIT PAH, Tom 31, Bbim. 5,2019 1., c1p. 79-88

Table 1. Results for experimental evaluation of ISP-Fuzzer with ZC-DSE

Program ISP - Fuzzer ISl;g_lIl)zSzEr * Difference
rame| Pt vt | Pt | 0| s |
readelf 1175 0 2081 1 +906 +1
djpeg 48 0 45 1 -3 +1
objdump 391 0 407 0 +16 0
ar 11 0 9 0 -2 0
latex 80 0 196 1 +116 +1
optipng 465 34 504 41 +39 +7
gif2png 309 10 366 37 +57 +27
tiff2ps 166 0 187 0 +21 0
tiff2bw 54 0 63 0 +9 0
tiff2pdf 88 0 109 0 +21 0
tiff2rgba 37 0 44 0 +7 0
jasper 4 0 4 0 0 0
zipclock 91 0 108 1 +17 +1
dvi2tty 391 0 459 0 +68 0
strings 7 0 71 0 +64 0
pdftk 9 0 11 0 +2 0

6. Conclusion

Three plugins are developed in ISP-Fuzzer framework to allow interval fuzzing. The first plugin
serves to collect execution traces, which will be used by the second plugin. The second plugin
(ZC-DSE) is intended to bind interesting BBs of target program with values in input data. The
third plugin uses information of the second one to mutate intervals of input data. Interval
mutations can be used for binaries fuzzing accepting structured data. Experimental results show
effeteness of the proposed method.

References / Cnucok nutepartypbl

[1]. V.P. Ivannikov, A.A. Belevantsev, A.E. Borodin, V.N. Ignatiev, D.M. Zhurikhin, A.I. Avetisyan.
Static analyzer Svace for finding defects in a source program code. Programming and Computer
Software, vol. 40, issue 5, 2014, pp 265-275.

[2]. Hayk Aslanyan, Sergey Asryan, Jivan Hakobyan, Vahagn Vardanyan, Sevak Sargsyan, Shamil
Kurmangaleev. Multiplatform Static Analysis Framework for Programs Defects Detection. In Proc.
of the 11th International Conference on Computer Science and Information Technologies, 2017, pp.
315-318.

[3]. H. Aslanyan, A. Avetisyan, M. Arutunian, G. Keropyan, S. Kurmangaleev and V. Vardanyan.
Scalable Framework for Accurate Binary Code Comparison, In Proc. of the 2017 Ivannikov ISPRAS
Open Conference, 2017, pp. 34-38.

[4]. M. Arutunian, H. Aslanyan, V. Vardanyan, V. Sirunyan, S. Kurmangaleev, and S. Gaissaryan.
Analysis of Program Patches Nature and Searching for Unpatched Code Fragments. In Proc. of the
2019 Ivannikov Memorial Workshop (IVMEM), 2019, pp. 53-56.

[5]. Aslanyan H.K. Plarform for interprocedural static analysis of binary code. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 5, 2018. pp. 89-100. doi: 10.15514/ISPRAS-2018- 30(5)-5.

85

Sargsyan S.S., Hakobyan J.A., Movsisyan H.M., Mehrabyan M.S., Sirunyan V.T., Kurmangaleev Sh.F. Improving fuzzing performance
by applying interval mutations, Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 5, 2019, pp. 79-88

[6]. Fuzzing (online publication). Available at: https:/en.wikipedia.org/wiki/Fuzzing, accessed
11.12.2018.

[7]. American fuzzy lop (online publication). Available at: http://lcamtuf.coredump.cx/afl, accessed
11.12.2018.

[8]. American fuzzy lop for network fuzzing (unofficial) (online publication). Available at:
https://github.com/jdbirdwell/afl, , accessed 11.12.2018.

[9]. Technical «whitepaper» for afl-fuzz (online publication). Available at:
http://Ilcamtuf.coredump.cx/afl/technical details.txt, accessed 11.12.2018.

[10]. Michat Zalewski. The bug-o-rama trophy case. Available at: http://lcamtuf.coredump.cx/afl/#bugs,
accessed 11.12.2018.

[11]. WinAFL - A fork of AFL for fuzzing Windows binaries (online publication). Available at
https://github.com/googleprojectzero/winafl, accessed 11.12.2018.

[12]. Schumilo, S, Aschermann C, Gawlik R, Schinzel S, Holz T. kAFL: Hardware-assisted feedback
fuzzing for OS kernels. In Proc. of the 26th USENIX Security Symposium, 2017, pp. 167-182.

[13]. Rawat S., Jain V., Kumar A., Cojocar L., Giuffrida C., Bos H. Vuzzer: Application-aware
evolutionary fuzzing. In Proc. of the Network and Distributed System Security Symposium, 2017, 14

p-

[14]. Luk C-K., Cohn R., Muth R., Patil H., Klauser A., Lowney G., Wallace S., Reddi V.J., Hazelwood
K. Pin: building customized program analysis tools with dynamic instrumentation. ACM SIGPLAN
Notices, vol. 40, issue 6, pp. 190-200.

[15]. Jun Li, Bodong Zhao, Chao Zhang. Fuzzing: a survey (online publication). Available at:
https://cybersecurity.springeropen.com/articles/10.1186/s42400-018-0002-y, accessed 11.12.2018

[16]. S. Sargysan, J. Hakobyan, M. Mehrabyan, M. Mishechkin, V. Akozin, Sh. Kurmangaleev. ISP-
Fuzzer: Extendable fuzzing framework. In Proc. of the 2019 Ivannikov Memorial Workshop
(IVMEM), 2019, pp. 68-71

[17]. S. Sargsyan, Sh. Kurmangaleev, M. Mehrabyan, M. Mishechkin, T. Ghukasyan, S. Asryan.
Grammar-based Fuzzing. In Proc. of the 2018 Ivannikov Memorial Workshop IVMEM), 2018, pp.
32-36,.

[18]. Terence Parr. The Definitive ANTLR Reference. Pragmatic Bookshelf, 2013, 328 p.

[19]. S. Sargsyan, Sh. Kurmangaleev, J. Hakobyan, H. Movsisyan, M. Mehrabyan, S. Asryan. Directed
Fuzzing Based on Program Dynamic Instrumentation. In Proc. of the 2019 International Conference
on Engineering Technologies and Computer Science , 2019, pp. 30-33.

[20]. Gerasimov A.Yu., Sargsyan S.S., Kurmangaleev S.F., Hakobyan J.A., Asryan S.A., Ermakov M.K.
Combining dynamic symbolic execution and fuzzing. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
6, 2018, pp. 25-38. DOL: 10.15514/ISPRAS-2018-30(6)-2.

[21]. DynamoRIO dynamic instrumentation tool platform, Feb. 2009. Available at http://dynamorio.org,
accessed 11.12.2018.

[22]. Derek Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manipulation. Ph.D.
Thesis, MIT, September 2004.

UHdopmaumsa 06 aBTopax / Information about authors

CeBax CenukoBuu CAPI'CAH - HayuHbI COTpYyIHMK, IIpelnojaBaTenb, 3aBeXyOIIUH
kadenpol, kaHAUAAT (QU3MKO-MaTeMaTHdeckux Hayk. Cdepa HayuyHBIX HHTEPECOB: aHANU3
IporpaMM, IUHAMUYECKUI aHanu3 Koja, (ha33uHT.

Sevak Senikovich SARGSY AN - researcher, lecturer, head of department, Ph.D in physical and
mathematical sciences. Research interests: program analysis, dynamic analysis of code, fuzzing.

JxuBan Auppanukoud AKOITSH — Hay4Hblid cOTpyIHHK, ITpenoaaBaTelb, acupanT. Chepa
HayYHBIX HHTEPECOB: aHAJIM3 IPOTpaMM, THHAMHYECKUH aHAIIN3 KoJa, (pa33uHT.

Jivan Andranikovich HAKOBYAN - researcher, lecturer, PhD student. Research interests:
program analysis, dynamic analysis of code, fuzzing.

Oranec Mymerosudu MOBCUCSH — nayunsiii corpynuuk, maructp. Cdepa HaydHBIX
UHTEPECOB: aHAIN3 IPOrpaMM, JMHAMUYECKUH aHaIu3 KoJa, (pa33uHr.

86

Capresin C.C. Axorsin Jlx.A., Moscrcs O.M., Merpa6sin M.C., Cupynsi B.T., Kypmatranees I1L.®. TToebiuenne dbdexmiHoCTH assiHra ¢
TIOMOIIIBEO HHTEPBATBHBIX MyTartHid. Tpyowt ICIT PAH, Tom 31, Bbim. 5,2019 1., c1p. 79-88

Hovhannes Musheghovich MOVSISYAN - researcher, master. Research interests: program
analysis, dynamic analysis of code, fuzzing.\ MareBoc CaprucoBuuy MerpaOsH — Hay4HBIH
cotpyaHuk, maructp. Chepa HaydHBIX HHTEPECOB: aHAIU3 MPOTPAMM, JTHHAMUICCKHN aHAIN3
Koza, a33uHr.

Matevos Sargisovich MEHRABY AN — researcher, master. Research interests: program analysis,
dynamic analysis of code, fuzzing.

Baarn TenemaxkoBua CHPYHSH - Hayuselii corpynuuk, OaxamaBp. Cdepa HaydHBIX
HHTEPECOB: aHAIN3 IPOrpaMM, IUHAMUYECKUI aHanu3 Koja, Gha33uHT.

Vahagn Telemakovich SIRUNYAN - researcher, bachelor. Research interests: program
analysis, dynamic analysis of code, fuzzing.

Hamuns anmosny KYPMAHI'AJIEEB — crapimmii HaydHbIH COTPYAHHUK, KaHAUAAT QU3HKO-
MareMaTH4eckux Hayk. Cepa HayUHBIX HHTEPECOB: aHAIN3 IPOTPaMM, AMHAMUIECKHH aHATIN3
Koza, (ha33uHr.

Shamil Faimovich KURMANGALEEV — Senior researcher, Ph.D in physical and mathematical
sciences. Research interests: program analysis, dynamic analysis of code, fuzzing.

87

