Tpyowt UCIT PAH, mom 32, evin. 2, 2020 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 2, 2020

DOI: 10.15514/ISPRAS-2020-32(2)-5

Test environment for verification of multi-processor
interrupt system with virtualization support

D.A. Lebedev, ORCID: 0000-0002-9244-4949 <lebedev_d@mcst.ru>
V.N. Kutsevol, ORCID: 0000-0001-7322-2622 <kutsevol v@mcst.ru>
MCST, 1, Nagatinskaya st., Moscow, 117105, Russia

Abstract. Interrupt system is an important part of microprocessors. Interrupts are widely used for interaction
with hardware and responding to stimuli. Modern microprocessor interrupt systems include hardware support
of virtualization. Hardware support helps to increase the performance of virtual machines. However, including
additional functionality may lead to potential errors. The paper presents an overview of approaches used for
multi-core microprocessors interrupt system with virtualization support verification. Some definitions and
characteristics of interrupt systems that needed to be taken into account in the process of verification are
described. Stand-alone verification environment general scheme is presented. Universal Verification
Methodology was applied to construct test system. To simplify development of checking module discrete-event
with time accounting reference model was used. Sequences of primary requests and automatically generated
secondary requests in the special modules named auto-handlers were used for test system behavior
randomization. We describe some difficulties discovered in the verification process and corresponding solving
methods. Generalized test algorithm stages are presented. Some other techniques for checking the correctness
of interrupt system have been reviewed. In conclusion, we provide the case study of applying the suggested
approaches for interrupt system verification of microprocessors with “Elbrus” and “SPARC-V9” architectures
developed by MCST. The results and further plan of the test system development are presented.

Keywords: test environment; standalone verification; multicore microprocessors; interrupt system; UVM,;
virtualization

For citation: Lebedev D., Kutsevol V. Test environment for verification of multi-processor interrupt system
with virtualization support. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 2, 2020. pp. 53-60. DOLI:
10.15514/ISPRAS-2020-32(2)-5

TecToBOE OKpyxeHue ansa BepudnKaLMm MHOronpoLeccopHom
CUCTeMbI NpepbIBaHUM C NOAAEPKKON BUPTyanusauum

1. A. Jlebeoes, ORCID: 0000-0002-9244-4949 <lebedev_d@mcst.ru>
B.H. Kyyeson, ORCID: 0000-0001-7322-2622 <kutsevol v@mcst.ru>
AO «ML[CT», 117105, Mockea, Poccus, yn. Haeamunckas, o. 1

AnHoTanus. CucremMa NpepbIBAHUN SABJISETCS BAXKHOIM 4acTbIO MUKpOMpOLeccopoB. [IpepbiBaHus MIMPOKO
HCHONB3YIOTCSl A7l B3aMMOJEHCTBUS C 00OpyJOBaHMEM H pearnpoBaHusl Ha curHaiabl. CoBpeMeHHbIE
MHKDPOIPOLIECCOPHBIE CHCTEMBI IPEPHIBAHMN BKIIOYAIOT AaIIlapaTHYI0 IIOANEPXKKY BHUPTYyaIIH3aLlUH.
AnmapaTHas HOJJIEPXKKA IOMOTaeT MOBBICHTh IPOM3BOAUTENBHOCTh BHUPTYalbHBIX MammH. OpHaKo
J100aBIeHNE IONOTHUTENBHOH (DYHKIMOHATBHOCTH MOXKET IIPUBECTH K MOSIBICHHIO MOTEHIHAIBHBIX OIIHOOK.
B cratbe mnpexacraBieH 0030p MOJXOAOB, HCIOIb3YEMbIX JUI CHUCTEM IPEPbIBAaHUS B MHOTIOSIEPHBIX
MHKpPOIPOLECCOpPaX C allapaTHOU MOANEp:KKOH BHUpTyanu3anud. OIMCaHbBl HEKOTOPHIC OIpPENCIeHUS U
XapaKTepUCTHKH CHCTEM IPEephIBaHHI, KOTOpble HEOOXOOMMO YUYHTHIBATh B IIPOLECCE IPOBEPKH.
IpencraBnena obuias cxema aBTOHOMHO#M cpeabl Bepudukanuu. Universal Verification Methodology Obiia
NPUMEHEHA [UIsl IIOCTPOSHUsl TECTOBOW cucTeMbl. [l ymporieHust pa3pabOTKM MOJIyJsi HPOBEPKH
HCIOJIb30BAJIACh ITAJIOHHAST MOJENb C YIETOM BPEMEHHBIX XapaKTepHCTUK. [1ocae0BaTenbHOCTH IePBHYHBIX

53

Lebedev D., Kutsevol V. Test environment for verification of multi-processor interrupt system with virtualization support. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 2, 2020. pp. 53-60

3aIIpOCOB U aBTOMAaTHYECKU T'€HepHPyeMble BTOPHUHBIE 3aIPOCH! B CIENUAIBHBIX MOAYIAX aBTO IeHepalHu
UCIIONB30BAIIMCH JUIS PAHIOMU3aLUY [TOBEJICHHUs TECTOBOI cCUCTEMBI. BbliM onmucaHbl HEKOTOPbIE TPYAHOCTH,
oOHapyKEeHHbIE B IIpoliecce BepU(UKAINH, a TAKKe COOTBETCTBYIONINE METOIbI UX pemeHus. IIpencraBieHst
0000IIeHHBIEe 3TAMbl AITOPHTMa TECTHPOBaHUS. BBITM paccMOTpEeHBI HEKOTOPHIE OPYTHE METOABI MPOBEPKU
KOPPEKTHOCTH pabOTHl CHCTEMBI MpephiBaHHH. B 3akmroyeHne NpUBEAEHBI HPHMEPHl INPHMEHEHHS
HPEIOKEHHBIX MMOAXOJ0B Ul BepU(PUKALMH CHCTEMBI NMPEPhIBAHUNH MHUKPOIPOLECCOPOB C aPXUTEKTYPOii
Ombpyc u «SPARC-V9», paspaborannoit AO MILICT. IlpencTtaBineHsl pe3yabTaThl M JalbHEHIIHI ILTaH
Pa3BHUTHS TECTOBOIl CHCTEMEL.

KilloueBble cjI0Ba: TECTOBas CHCTEMa; aBTOHOMHAs BEPH(UKALSA; MHOTOSICPHbIE MHKDPOIPOLIECCOPSI;
cucrema npepsiannii; UVM; BupTyanu3amus

s umtupoBanmsi: Jlebenes J[.A., Kyneson B.H. TecroBoe oxpyxkeHne mis BepupHKALUK
MHOTOIIPOLIECCOPHON CHCTEMBI NPepbIBaHUii ¢ noaaepxkoi supryamusauuu. Tpyast UCIT PAH, Tom 32, Bbim.
2,2020 r., ctp. 53-60 (Ha anrnuiickom s3bike). DOI: 10.15514/ISPRAS-2020-32(2)-5

1. Introduction

State of the art microprocessors are becoming complex systems. The development of new
technological processes allows integrating great number of controllers and subsystems on the one
crystal. The logic of their work becomes more complicated. As an example: interrupts delivery and
handling mechanisms. Interrupts are widely used for interaction with hardware and responding to
stimuli. Interrupt system is an important part of microprocessor and have to be tested thoroughly
because errors in this block may lead to a race condition or multiple accesses to shared memory [1].
Virtualization is necessary for modern tasks like cloud computing, modeling, information security,
and other scientific researches. Interrupt system hardware support for virtualization is implemented
in the most of modern SoC (System on a Chip) [2 3]. Performance requirements for virtualized
systems are steadily increasing [4]. One method to increase performance of virtual operating system
is to implement hardware support. However, this becomes an additional error-prone place in the
microprocessor system. In addition, I/O virtualization is a difficult part of system virtualization due
to the increasing number of I/O devices attached to the computer and the increasing diversity of I/O
device types [5]. A significant part of the total number of interrupts is accounted for I/O interrupts.

Many approaches are proposed for verification of the interrupt system. In [6] authors divide existing
techniques for verifying interrupt systems into two categories. First of them is testing via executing
some programs and invocation various interrupts. The disadvantage of this approach is probability
of missing important bugs. The second one is constructing and analyzing formal models. As was
already mentioned in [7] constructing and analyzing of formal models are complicated and requires
detailed specification. In this paper, we propose simulation-based methods for verification of
interrupt system that are much simpler and could be applied at earlier stage of RTL (Register
Transfer Level) model development when first versions of specification were available.

In [8] verification of the interrupt system provided using interrupt-driven software which launched
on the whole microprocessor system. This method gives good results in finding race condition bugs
but requires fine-tuning of interrupt sending schedule. Moreover, none of the discussed methods
recreates rare dynamic scenarios. Stand-alone verification usually used for building necessary test
conditions to achieve sufficient testing quality.

There are a number of methods to implement a standalone functional verification [7]. In this paper,
we focus on building testing environment for interrupt system using Universal Verification
Methodology (UVM) [9]. UVM is IEEE standard elaborated by Accellera Systems. UVM is a set
of class libraries defined using the syntax and semantics of SystemVerilog hardware description and
verification language. The verification environment built using UVM divided into specific
components each of them performs its own role in test scenario. One of the main advantages of
UVM-build verification environments is reusability of components. It helps to support probable
changes in DUV (Device Under Verification). The main drawback of UVM is a complexity of its

54

Jle6enes JI.A., Kyueson B.H., TectoBoe okpyskeHue st BepuHKAIHH MHOTOIPOLECCOPHOH CHCTEMBI IPEPBIBAHHIT C MOIEPIKKOIT
BupTyamusatmun. Tpyost UCIT PAH, Tom 32, Beim. 2, 2020 1., ctp. 53-60

learning. Our verification team have a number of already debugged components and classes.
Therefore, we can apply UVM for developing interrupt system stand-alone verification
environment.

The rest of the paper is organized as follows. Section 2 reviews some definitions and describes
general technique for standalone verification of the interrupt subsystem. Section 3 describes a case
study and suggests approaches for functional verification of interrupt system. Section 4 describes
additional used approaches. Section 5 reveals results and Section 6 concludes the paper.

2. Definitions and verification methods

Let us give a few definitions. An interrupt is asynchronous signal that indicates necessity for control
transferring to some external to the processor core requester. An interrupt vector characterizes the
transmitted signal. Interrupt vector points to the memory area where the corresponding interrupt
handler is located. The interrupt handler is a code that should be executed instead of current main
program. It essential to mention that interrupts change main memory and device registers state but
main context of processor work stays the same.

We can divide interrupts into two types: non-maskable and maskable. Non-maskable interrupt
cannot be disabled. It has more priority then maskable and used for exceptional conditions like
critical faults, system handling and other. Maskable interrupt is intended for maintenance of system
and user programs: the organization of external exchanges, interaction of different processes and
working with timers. Maskable interrupts usually have several levels of priority. If an interrupt signal
is received, but its priority is less than the one that came earlier, the interrupt becomes pending.
Important time characteristic is interrupt latency. This is a time interval from the start of the interrupt
request to the start of the interrupt handler execution. A set of system setups such as interrupt
enabling, current priority, and the presence of a large number of pending interrupts can cause an
interrupt loss or spurious interrupt. The spurious interrupt is an invalid, short-duration signal on an
interrupt input. It is necessary to take into account these features when verifying interrupt system.
It is necessary to define some concepts related to virtualization. Hypervisor is a system software that
distributes physical resources between virtual machines. A computer on which a hypervisor handles
one or more virtual machines is called a Aost, and each virtual machine is called a guest. As a part
of hardware interrupts support, the guest can be bounded on one or more cores. These cores are
called guest cores. Without hardware support, the virtual software model of the interrupt controller,
register requests, and interrupt delivery involved interception and emulation. Because of this, the
performance of the VM is reduced.

We isolate a part of microprocessor system while providing stand-alone verification. The device
specification have to describe correct sequence of stimuli and reactions in different device states.
All interactions controlled by test environment — a program that generates input stimuli, checks
correctness of reactions and calculates the quality of testing. Therefore, test environment could be
divided into separate modules each performing its own function:

e input stimuli generator;

e correctness checking module;

e coverage collector.

Usually the interrupt controllers are handled by a set of software-visible registers. All requests to
registers processed sequentially strictly one at a time. Thus, input generator is responsible not only
for sending primary requests it also sets up a device. Next, we need to collect device responses and
process them correctly. Generation of stimulus and collection of reactions simplified by using
Transaction Level Modeling (TLM) [10]. This method allows concentrating on the interaction
functionality with DUV. It is necessary to implement only once how to handle with interface and
then simple data sending and receiving functions are used. Collected information about functional
code coverage is used to identify untapped regions of controller during testing. Analyzing that

55

Lebedev D., Kutsevol V. Test environment for verification of multi-processor interrupt system with virtualization support. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 2, 2020. pp. 53-60

information helps to refine test scenarios and add new ones. This approach is called coverage driven
constrained random verification [11].

ENVIRONMENT C

... H

E

e c

D (Smul) Stimuli Generator K

|

N

U ”ﬂ G

v M

:> Coverage .

reactions, D
Collector

u

L

.. E

Fig 1. Generalized scheme of test environment

Checking of behavior correctness is a complex and an important part while providing interrupt
system stand-alone verification. It is usually easier to build test environment external to the reference
model for this purpose. Identical input stimuli fed into the DUV and reference model. If reactions
differ, it indicates a possible error in the system. Reference models usually written in high-level
language (C, C++) or some specialized languages for hardware verification, such as SystemVerilog,
SystemC or «e». The reference models could be divided into three types: cycle-accurate, discrete-
event with time accounting and event models [12]. The type of verified device defines the type of
the reference model. Cycle-accurate and discrete-event with time accounting models require
specification with describing behavior on a register transfer level. Development of models of these
types is labor-intensive when the design specification is changing. However, because the interrupt
system includes the use of counters, we have to choose more accurate reference model. To simplify
development of checking module we use discrete-event with time accounting reference model.
Communication between reference model and test environment carried out with DPI (Directed
Programming Interface). The use of DPI is necessary to coordinate the variable types used in
different programming languages. Exchange of test data occurs instantly by calling appropriate
functions. Generalized scheme of test environment shown on fig. 1.

3. Using gray box approach for verification of home memory unit

Elbrus Programmable Interrupt Controller (EPIC) is a device intended for capturing, storing external
and interprocessor interrupts and delivering them to the microprocessor cores. EPIC is a part of 16-
core microprocessor with “Elbrus” architecture developing by MCST. Software-available registers
manage the controller setup and handling of interrupts. The algorithms for working with maskable
and non-maskable interrupts are different. Maskable interrupts have four priority classes. An
unhandled interrupt with the highest priority are placed on CIR (Current Interrupt Register) or if
CIR is busy placed on PMIRR (Pending Maskable Interrupt Request Registers). Signal to the core
sets only if current core priority is less than interrupt priority in CIR register. Interrupt system
implements hardware support of virtualization. Supporting options include additional control
registers representing the state of guest interrupt system and guest-physical core mapping table.

As we mentioned before, test system for stand-alone verification of the interrupt system is based on
UVM. UVM helps to setup system, generate pseudo-random constrained input requests and monitor
all changes of device states. Input stimuli generation is usually implemented at level that is more
abstract than register transfers and interface signals. Input and output device ports combined into
interfaces based on the similarity of the performed functions. Transaction level packets are

56

Jle6enes JI.A., Kyueson B.H., TectoBoe okpyskeHue st BepuHKAIHH MHOTOIPOLECCOPHOH CHCTEMBI IPEPBIBAHHIT C MOIEPIKKOIT
BupTyamusatmun. Tpyost UCIT PAH, Tom 32, Beim. 2, 2020 1., ctp. 53-60

transferred on interfaces [13]. Serialization and deserialization modules transform transaction level
packets to signal level interfaces.
In modern microprocessor system, there are several sources of interrupt requests or primary requests.
Each interrupt source is replaced by a special test sequence. Generation of primary requests should
be similar to that in real microprocessor system. One of the benefits of stand-alone verification is
ability to create highly loaded test scenarios relatively easily. The efficiency of verification increases
because generated pseudo-random requests can cover most of the edge cases. We use sequences of
primary requests and generate secondary requests automatically in the special modules named auto-
handlers. In case of interrupts system secondary request is a writes and reads sequence to the
registers that simulating a real software behavior. Interrupts generated from primary requests are
monitored and collected in special buffers. After that auto-handler randomly choose next interrupt
to handle. Thus, an interrupt latency parameter randomly changes.
For virtualization support, the hardware implements a DAT (Destination Address Table) that stores
the number of the currently active guest core for each physical core. Hypervisor manages the table
by requests to the registers. The state of the table has to be the same in all processors of
multiprocessor system. This is implemented through hardware-generated control messages. Auto-
handler module with randomized parameters of sending service messages were added to verify the
described above functionality.
Maskable and non-maskable interrupt handling is differ. For maskable interrupts, it is necessary to
restore the previous core priority after handling current interrupt. For this purpose, we add
monitoring module with memory where ratio “number of core-current priority” stored.
There was a dynamic inconsistency problem between the RTL implementation of the controller
behavior and the reference model. Under dynamic test conditions, there may be situations when we
start to handle a maskable interrupt m.handle(x), read vector value from RTL-model register and it
is not equal to reference model value. For this situation, we introduce additional function
m.correct(x) that transfer RTL-model value to the reference model. During a test, the reference
model accumulates possible vectors. When there is a values inconsistency situation the special
algorithm in reference model iterates over possible vector values and makes a decision about
correction. The pseudo-code of the algorithm is presented below.
Vector correctness check:
while true do

wait m — start(x)

m.handle (x)

if check(x !=x") then

m.correct (x)

else m.print ok(x)
end B
Register for non-maskable interrupts contains several types of interrupts and they represented as one
bit for an interrupt. In high-load dynamic tests with many non-maskable input requests for interrupts
there may be differences in a register content. A similar procedure for correction nm.correct(x) is
performed for non-maskable interrupts. From a functional point of view, handling guest interrupts
does not differ from the procedures described above. The only difference is setting the bit that
indicates a guest when working with registers.
Another problem is an interrupt vectors overlay. This is a subtype of dynamic inconsistency problem
when the same vector values are imposed on each other. This can happen for example when working
with cyclic timers. Additional functionality was added to the RTL and reference models of verified
device. A special module and interface signaling about interrupt overlay monitored in the test
environment and then transferred to the reference model. Method when we use hints from a verified
device for single correct state identification named “gray box” method [7, 11]. The information
about overlay type used by reference model to exclude extra interrupts. This method required direct
involvement of the device developer and a detailed description of the interface.

57

Lebedev D., Kutsevol V. Test environment for verification of multi-processor interrupt system with virtualization support. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 2, 2020. pp. 53-60

In a multiprocessor system, the interrupt system settings in each processor may differ. It is possible
to configure the presence and numbers of processors and cores. It is necessary to check all possible
system setups for completeness of verification. Interrupt routing changes when we change the
processor or core numbering. This adds restrictions on generating primary requests. To simplify
primary requests generation, we added a set of functions that automatically capture changes in
system settings and allow easily select possible interrupt directions.

The generalized test algorithm is presented below:

randomization of device configuration;

configuring registers;

configuring guest cores;

choosing random requester and presence of receiver;

choosing random type of interrupt;

sending primary requests for interrupt, collecting reactions, starting auto handling;

transferring transaction information to reference model on each step of algorithm.

NNk LD~

4. Additional verification methodsSpecial cases

To check the interrupt system functionality related to virtualization support it was necessary to create
special tests scenarios. For example, hypervisor can remove a guest from core if it receives an
intercept signal. In this moment guest may contain unfinished or unhandled interrupts. In real system
after bounding the guest back, we needed to recover it previous state. Special test cases of this kind
play a big role in verifying correctness of controller operating. The development of algorithms for
such narrowly focused tests is possible due to the availability of well-described documentation,
analysis of the functional coverage of the code, and discussions of the strategy with the device
developer.

4.2 Assertions

SystemVerilog Assertions (SVA) is a part of SystemVerilog [14]. The assertions are used to specify
the behavior of the test environment and DUV interfaces. Parts of a verification environment have
to implement certain functions. We can add assertions to check correctness of the module. Violation
of an assertion signals about an error. Usage of assertions is an effective method of error detection
especially in the beginning of the project. In addition, assertions alert about uncertain and
unconnected states of interface signals.

4.3 After test checking

Communication between test environment and reference model is provided using DPI. Special
buffers and memories contain generated answers form different interfaces. The correct behavior of
the DUV and reference model determined in providing certain number of responses. After test
scenario ending we check an absence of transactions in these communication buffers. Detection of
extra number of requests signals about a potential error either in the verified device or in the
reference model.

5. Results

The approaches described in this paper were applied for standalone verification of interrupt system
of the 16-core microprocessor with “Elbrus” architecture and 2-core microprocessor with “SPARC-
V9” architecture.

There is some difference in interrupt systems in these microprocessors. The 16-core
microprocessor’s interrupt system has a hardware support of virtualization and specialized interfaces
for handling requests from virtual OS and hypervisor.

58

Jle6enes JI.A., Kyueson B.H., TectoBoe okpyskeHue st BepuHKAIHH MHOTOIPOLECCOPHOH CHCTEMBI IPEPBIBAHHIT C MOIEPIKKOIT
BupTyamusatmun. Tpyost UCIT PAH, Tom 32, Beim. 2, 2020 1., ctp. 53-60

The 2-core microprocessor does not support virtualization. Most of interfaces differs from the
“Elbrus” interrupt system. One of its features is an additional module that handles direct MSI-X
interrupts and a separate register interface for handling MSI-X interrupts. The test environment
based on UVM made it relatively easy to change the format of modules that work with the interfaces
while preserving their functionality.

“SPARC-V9” implementation of the interrupt system contains an additional synchro signal. The
parts of the interrupt system in which several synchro signals interact should be checked carefully.
At the beginning of each test, we generate random periods of synchro signals and their shifts that
are relative to each other. Ranges of each synchro signal have to be described in the device
specification. This method helped us to detect synchronization errors in RTL-model internal
modules.

In the process of the standalone verification of the interrupt systems, we verified not only RTL-
models. Parts of reference models were used in full-system “Elbrus” and “SPARC” machine
simulators. Aforementioned approaches helped to find and correct some errors in the simulators.
Interrupt systems distribution of errors is presented in Table 1. Code functional coverage was carried
out and for “Elbrus” it was 94%, for SPARC 96% coverage was extracted.

Table 1. Distribution of errors and its quantity

Verified object Number of bugs
RTL Elbrus 84
Elbrus Simulator 163
RTL SPARC 24
SPARC Simulator 23

6. Conclusion and directions for future work

Interrupt system with hardware virtualization support is one of important parts of modern
microprocessors. The correct operation of the interrupt system allows avoiding critical errors and
improves performance of virtual machines.

In this paper, we have presented a stand-alone test environment for interrupt system based on UVM.
The proposed approaches could be used to verify interrupt systems of different multicore
microprocessors regardless of their architectures. Developed test environment and test scenarios
made it possible to detect and correct a number of errors that were not detected by other verification
methods.

In the future, we plan to enhance error diagnostics and adapt the test environment for the forthcoming
projects.

References / Cnucok nutepartypsbl

[1] Makoto Higashi, Tetsuo Yamamoto, Yasuhiro Hayase, Takashi Ishio, and Katsuro Inoue. An effective
method to control interrupt handler for data race detection. In Proce. of the Sth Workshop on Automation
of Software Test, 2010, pp. 79-86.

[2] ARM Generic Interrupt Controller Architecture Specification version 4.0, 2107, available at:
https://static.docs.arm.com/ihi0069/c/IHI0069C_gic_architecture_specification.pdf, accessed
25.05.2020.

[3] Intel Virtualization Technology for Directed /0O, Architecture Specification. Intel, 2019, available at:
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf, accessed 25.05.2020.

[4] Znamenskiy D.V. Alternatives of hardware virtualization support inplementation for Elbrus processor
architecture. Voprosy radioelektroniki, 2014, vol. 4, no. 3, pp. 64-73 (In Russian) / 3namencxkuii /I.B.
BbI6Op BapHaHTOB pealu3alidl CPEJCTB allapaTHOW MOIIEPKKH BHPTYAIN3alUd apXHTEKTYpPbI
«2nb0pyc». Bonpockl pasino3nekTpoHuKH, ToM 4, no. 3, ctp. 64-73.

59

Lebedev D., Kutsevol V. Test environment for verification of multi-processor interrupt system with virtualization support. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 2, 2020. pp. 53-60

[5] Hennessy J.L., Patterson D.A. Computer Architecture: A Quantitative Approach. Fifth Edition. Morgan
Kaufmann, 2012. 857 p.

[6] Chungha Sung, Markus Kusano, Chao Wang. Modular Verification of Interrupt-Driven Software. In Proc.
of the 32nd IEEE/ACM International Conference on Automated Software Engineering, 2017, pp. 206—
216.

[7] Lebedev D.A., Petrochenkov M.V. Test environment for verification of multi-processor memory
subsystem unit. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 3, 2019. pp. 67-76. DOL:
10.15514/ISPRAS-2019-31(3)-6.

[8] John Regehr. Random testing of interrupt-driven software. In Proc. Of the International Conference on
Embedded Software, 2005, pp. 290-298.

[9] Standard Universal Verification Methodology, available at:
http://accellera.org/downloads/standards/uvm, accessed 25.05.2020.

[10] Kamkin A., Chupilko M. A TLM-based approach to functional verification of hardware components at
different abstraction levels. Proc. of the 12th Latin-American Test Workshop (LATW), 2011, pp. 1-6.

[11] Petrochenkov M., Stotland I., Mushtakov R. Approaches to Stand-alone Verification of Multicore
Multiprocessor Cores. Trudy ISP RAN/Proc.ISP RAS, vol. 28, issue 3, 2016, pp. 161-172. DOI:
10.15514/ISPRAS-2016-28(3)-10.

[12] Averill M. Law, W. David Kelton. Simulation Modelling and Analysis. 3rd edition. McGraw-Hill
Education, 2000, 784 p.

[13] TLM-2.0.1. TLM Transaction-Level Modeling Library, available at:
http://www.accellera.org/downloads/standards/systemc, accessed 25.05.2020.

[14] 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification
Language, available at: https://standards.ieee.org/standard/1800-2017.html, accessed 25.05.2020.

Information about authors / UHdopmauus 06 aBTOpax

Dmitry Alexeyevich LEBEDEV earned a specialist in electronics diploma in 2014 at MEPhI. His
area of research interests includes the verification methods study of communication system
controllers, interrupts systems and memory subsystems devices with support of protocols of
coherence.

Jmutpuit Anexceesnd JIEBEJIEB 3aummrun numnioM crienuaiucTta B 00JacTi 31eKTpoHuky B 2014
r. B HUSAY MUHOU. O6nacth €ro HCCIeJOBaTENbCKUX HHTEPECOB BKIIOYAET HUCCIEA0BAHHE
METOJ0B BepU(UKALUM KOHTPOJUIEPOB CBSI3H, CHCTEM MpEpPBIBAHUM, YCTPOHCTB IOACHCTEMBI
MaMATH C HOAAEPKKOH IPOTOKOJIOB KOT€PEHTHOCTH.

Vitaliy Nikolaevich KUTSEVOL received his master's degree in 2013 from MIPT. Area of his
scientific interests includes system verification, development of cycle-accurate simulators and event
models.

Buranuit Hukonaesnu KYLIEBOJI nmonyunn crenens maructpa B 2013 r. B M®TU. Obnacts ero
Hay4YHBIX HHTEPECOB BKIIIOYAET CUCTEMHAas BepuHKaIKs, pa3pabOTKa IOTAKTOBEIX CUMYJIITOPOB U
COOBITHHHBIX MOZEIIEH.

60

