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Abstract. Trace models such as Finite State Machines (FSMs) are widely used in the area of analysis and
synthesis of discrete event systems. FSM minimization is a well-known optimization problem which allows to
reduce the number of FSM states by deriving the canonical form that is unique up to isomorphism. In particular,
the latter is a base for FSM-based ‘black-box’ test derivation methods such as W-method and its modifications.
Since nowadays the behavior of many software and hardware systems significantly depends on time aspects,
classical FSMs are extended by clock variables including input and output timeouts. The minimization of a
Timed Finite State Machine (TFSM) includes both state and time aspects reduction. Existing approaches allow
to derive the canonical representation for non-initialized deterministic TFSMs while for initialized TFSMs, i.e.,
TFSMs with the designated initial state, several pair-wise non-isomorphic minimal forms can exist. In this
paper, we determine initialized TFSM classes for which the minimal form is unique up to isomorphism.
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AHHOTaHl/lﬂ. MOHGJ’II/I C KOHEYHBIM YUCIIOM COCTOSTHHIA HIAPOKO UCIOJB3YIOTCA IPU PEUICHNUHN 3aaY aHaIu3a
M CHHTE3a NUCKPETHBIX CUCTEM, U MHHHUMH3ALHUA KOHCYHBIX ABTOMATOB ABJIACTCA HM3BECTHOM npo6neM0ﬁ
ONTUMU3ALUU, KOTOpasi IO3BOJIIET YMEHBIINUTL KOJIUMYECTBO COCTOSTHHI KOHEYHOT'O aBToMara, OIUChIBAKOIICTO
TIOBCICHUEC HHCerTHOﬁ CHUCTEMBI, Ha OCHOBE HCIIOJIb30BaAHHUA €T0 HpPIBe[[CHHOfI CIJOpMI)I. Takas (bopMa
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€IMHCTBEHHA C TOYHOCTBHIO JO0 M30MOp(hH3Ma JUlsl KIACCHYSCKUX KOHEUYHBIX aBTOMATOB, YTO, B YaCTHOCTH,
SIBJSIETCS. OCHOBO# /IS COOTBETCTBYIOLIMX METOJOB CHHTE3a TECTOB C T'apaHTUPOBAHHOW IIOJHOTOM
OTHOCHUTEJIBHO «YEPHOro SIIMKa», TaKMX Kak W-mertox u ero Moaudukauuu. IIoCKonbKy moBeneHue
COBPEMEHHOTr'0 MPOrPaMMHOI0 U aIapaTHOro OOECIEeUYEHUs 3a4acTyl0 3aBHCUT OT BPEMEHHBIX acCleKTOB, B
HaCTOsIIee BPeMsl KJIACCHYECKHE aBTOMAThI PACIIMPSIIOTCS BPEMEHHOM MEPEeMEHHON U CBSI3aHHBIMH C HEil
BXOJHBIMHU U BBIXOJHBIMH TaiiMayTamu. CyIIECTBYIOIHME MOAXOIbl K MUHUMH3AIMH BPEMEHHBIX aBTOMAaTOB
OXBAaTHIBAIOT OINTHMHU3ALMI0 KaK COCTOSIHMI, Tak M BPEMEHHBIX acCIEKTOB, M IO3BOJIIOT IOJYYHUTh
€JMHCTBEHHYI0 MUHHUMAJIbHYIO ()OPMY JUIsSI HEMHHIIMAJIBHBIX JIETEPMUHUPOBAHHBIX BPEMEHHbBIX aBTOMATOB. B
TO JXK€ BpeMs /IS WHHIMAIBHBIX BPEMEHHBIX aBTOMATOB, T.€. aBTOMATOB C BBIJEJICHHBIM HAYaJbHBIM
COCTOSIHHEM, MOT'YT CYILIECTBOBATh Pa3JIM4HbIE MOMAPHO HEM30MOP(HbIE MUHMMAaIIbHBIE POpMBL. B HacTosei
paboTe MbI ONpeeIIsieM KIaCChl HHULUAIBHBIX BPEMEHHBIX aBTOMATOB, JUI KOTOPBIX MHHHUMAaJIbHAsT (hopma
€JIMHCTBEHHA C TOYHOCTBIO 710 n30MophH3Ma.

KunoueBnble ciioBa: BPEMCHHBIC aBTOMAThl; MUHUMHU3AIUS TaﬁMayTBI; WHHUIIAAJIBHBIC aBTOMAThI

Js uuruposanus: Teapposckuii A.C. Eprymenko H.B. O MuHMMH3aLUM MHULMAIBHBIX aBTOMATOB C
taiimayramu. Tpymsr UCIT PAH, tom 32, Bbmn. 2, 2020 r., crp. 125-134 (ma anrmmiickoM s3bike). DOL:
10.15514/ISPRAS-2020-32(2)-10

BaaropapnocTu: PaGoTa BbINOIHEHA TPU YaCTUYHOMN noaaepskke rpanta POOU Ne 19-07-00327.

1. Introduction

Finite State Machines (FSM) [1, 2] are widely used for synthesis and analysis of discrete components
of telecommunication and other hardware and software systems [3, 4, 5]. The complexity of solving
many problems significantly depends on the number of states of an FSM that represents the system
(component) specification; moreover, having the canonical form of a model usually simplifies
solving these problems. For example, almost all FSM-based test derivation methods [6, 7] with
guaranteed fault coverage for telecommunication protocols and other control systems with
deterministic behavior are developed for reduced FSMs, i.e., FSMs which have different behavior
at any two different states and such a reduced machine is unique for any complete deterministic
FSM.

In the classical FSM theory, FSM minimization methods are well developed [1], i.e., given a
deterministic complete FSM, it is well known how to derive a reduced form of the FSM that in fact
is the canonical representation of a complete deterministic FSM. Nowadays time aspects become
very important when describing the behavior of digital and hybrid systems, and, respectively,
classical FSMs have been extended with time variables [see, for example, 8, 9, 10, 11]. A timed
FSM (TFSM) is an FSM annotated with a clock and extended by input/output timeouts and
input/output timed guards [10, 12]. Input timed guards describe the behavior at a given state for
inputs which arrive during an appropriate time interval until timeout at the state expires. If no input
is applied until the clock value reaches an (input) timeout then the system can spontaneously move
to another state. An output timeout describes how long an applied input is processed at a given state.
In the number of cases [10], an FSM with output timed guards is considered when an interval of
possible output delays for processing each transition is given. In this paper, we assume that every
output timeout is a non-negative integer. As a simple example, computers or mobiles can be
considered when the devices move to a sleep mode if no button is pressed during an appropriate
number of time units, i.e., no input is applied.

When minimizing classical FSMs (and other trace models) most attention is paid to minimizing the
number of states of the machine under investigation. Differently from classical FSMs, a timed FSM
can have several non-isomorphic state reduced forms and time aspects should be also taken into
account when minimizing a TFSM. In [13], the notion of a time and state reduced non-initialized
FSM with timed guards and timeouts is introduced. The authors also show that such minimal form
is unique up to isomorphism for a non-initialized complete TFSM. However, such minimal form is
not unique for an initialized complete FSM with timeouts while such machines are widely used for
modeling timed systems with a reliable reset signal. For example, a number of test derivation
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techniques are developed for initialized FSMs and the absence of the unique reduced form for Timed
FSMs do not allow to directly apply W-methods and its derivatives to initialized TFSMs [14].

It is known that the reason for having several minimal forms is closely related to input timeouts [15],
since for FSMs with timed guards there is the unique state and time reduced FSM with time guards
[16]. In this paper, we determine classes of initialized FSMs with timeouts for which the unique
minimal form can be derived.

The structure of the paper is as follows. Section 2 contains the preliminaries for classical and timed
FSMs. In Section 3, the related work on minimizing TFSMs is briefly described. In Section 4, we
determine a class of initialized TFSMs for which the minimal form is unique up to isomorphism. In
Section 5, we show how the unique form can be derived for an FSM with timeouts based on its
transformation to an FSM with timed guards. Section 6 concludes the paper.

2. Preliminaries
This section contains basic definitions of classical and timed Finite State Machines.

2.1 Finite State Machines

The model of a Finite State Machine (FSM) [1] is used for describing the behavior of a system that
moves from state to state under input stimuli and produces predefined output responses. If the system
has a reliable reset then usually the system behavior is described by an initialized FSM, i.e., by an
FSM with the designated initial state. Formally, an initialized FSM is a 5-tuple S = (S, 1, O, ks, s0)
where S is a finite non-empty set of states with the designated initial state so, / and O are input
and output alphabets, and As < (S X I X O x §) is the transition (behavior) relation. A transition
(s, I, 0, s”) describes the situation when an input i is applied to S at the current state s and S moves
to state s” and produces the output (response) o.

A trace or an Input/Output sequence o/y of the FSM S at state s is a sequence of consecutive
input/output pairs starting at the state s. There is a trace o/y = ii/o1, i2/02, ..., in/0, at state s of FSM
S if and only if there exist transitions (s, i1, 01, 1), (S1, i2, 02, 52), .., (Su-1, in, On, Su). Glven a trace
a/y, a is the input projection of the trace (input sequence) while 7 is the corresponding output
projection (output sequence), i.e., an output response of the FSM when the input sequence o is
applied at state s. In this paper, if the converse is not explicitly stated, we consider complete and
deterministic FSMs where for each state s and input sequence o there exists a single trace o/y.
Given an input sequence o of a deterministic complete FSM, state s’ is the o.-successor of state s in
FSM S if S moves from state s to state s' when o is applied. Given an initialized FSM S, a trace
o/y is a trace of the FSM if it is a trace at the initial state of S.

2.2 Timed Finite State Machines

In this paper, a Timed FSM (TFSM) is an FSM with timeouts that can spontaneously move to
another state when the timeout expires at a current state. Respectively, a TFSM is an FSM annotated
with a clock (timed variable) and timeouts. A good example is a server implementation which can
decline the connection when a client request is not applied within an appropriate timeout.
Correspondingly, an initialized TFSM is a 6-tuple S = (S, 1, O, hs, As, so) where S is a finite non-
empty set of states with the designated initial state so, / and O are input and output alphabets, As
c SXIx O xS8x Zis the transition relation, As is the timeout function and Z is a set of output
delays which are nonnegative integers. We consider the timeout function As: S — S X (N U {eo})
where N is the set of positive integers: for each state this function specifies the maximum time for
waiting for an input. If no input is applied until an (input) timeout expires then the system can
spontaneously move to another state. By definition, for each state of the TFSM exactly one timeout
is specified. An output delay describes the number of ticks when an output has to be produced after
applying an input. A transition (s, i, 0, s”, d) describes the situation when an input i is applied to S

127

Tvardovskii A., Yevtushenko N. On reduced forms of initialized Finite State Machines with timeouts. Trudy ISP RAN/Proc. ISP RAS, vol.
32, issue 2, 2020. pp. 125-134

at the current state s. In this case, the FSM moves to state s’, the clock value then is set to zero and
S produces output o after d time units. Given state s of TFSM S such that As(s) = (s', T), if no
input is applied before the timeout 7 expires then the TFSM S moves to state s’ while the clock
value is set to zero. If As(s) = (s', ) then s’ = s; in other words, in this case, the TFSM can stay
at state s infinitely long waiting for an input.

In this work, we consider complete and deterministic TFSMs where for each pair (s, i) € S X [,
there exists a single transition (s, i, 0, s', d) € hs.

Similar to [7], for each state s of TFSM S we consider the function time(s, ) = s' that determines
state s’ that will be reached by the TFSM if no input is applied during ¢ time units.

A timed input is a pair (i, f) where i € [ and ¢ is a real; a timed input (i, f) means that input 7 is applied
to the TFSM at time instance . A timed output is a pair (0, d) where o € O and d is the output delay.
A sequence of timed inputs o = (i1, #1) ... (in, t,) is a timed input sequence, a sequence of timed
outputs Y = (01, d1) ... (0, dy) is a timed output sequence. A sequence oy = (i1, t1)/(o1, di) ... (in,
t)/(0n, d) of consecutive pairs of timed inputs and timed outputs starting at the state s is a timed /0
sequence or a timed trace of TFSM S at state s. Similar to FSMs, o is an applied timed input
sequence while vy is the corresponding output response of the TFSM to sequence o of applied
inputs. The behavior of TFSM S at state s is the set of all timed traces at this state. For a timed
input sequence o, of TFSM S at state s the a-successor is defined similar to FSM.

In order to determine the output response of the TFSM at state s to a timed input (i, ), state s’ =
time(s, t) is calculated first. State s’is a state where the TFSM moves from state s via timeout
transitions such that the maximum sum X of all timeouts starting from state s is less than ¢ and ¢ —
X < T, where As(s) = (s"", T). At the second step, a transition (s', i, 0, s", d) is used and respectively,
the machine produces the output (o, d) to a timed input (i, 7) applied at state s and moves to the next
state s". Thus, the output response of the TFSM to a timed input sequence at state s is iteratively
determined starting from state s. Similar to FSMs, the set of all timed traces at the initial state of the
initialized TFSM determines the TFSM behavior.

A timed input sequence 0. is a transfer sequence for state s or simply an s-transfer sequence in TFSM
S if state s is the a-successor of the initial state of S. If for state s of TFSM S there exists a transfer
timed input sequence o, then s is an input-reachable state, otherwise s is input-unreachable. By
default, the initial state is input-reachable, since it is reachable by the empty input sequence. If for
an input-unreachable state s' there exists a time instance ¢ and input-reachable state s such that
time(s, t) = s' then s’ is time-reachable. The TFSM S is initially connected or simply connected if
each state s € S is input- or time-reachable. In this paper, we consider only connected TFSMs.
Example. Consider a TFSM S in Figure 1 with the initial state a. This TFSM is connected but state
b is input-unreachable.

ilo,

T = .
| a Y I 1 ( C .“-| I e\, ilo f )
N //J iloy N2/ M 2 N

— iy, =

Fig. 1. State and time reduced equivalent initialized TFSMs S with the initial state a (on the left) and P with the
initial state e (on the right)
Puc. 1. Ilpusedénnvie no coOCMOoSHUAM U 8PeMeHU UHUYUATbHbLE 8peMeHHble agmomamsl S (caesa) u P
(cnpasa) ¢ HAYATBHBIMU COCMOAHUAMU A U € COOMEEMCMEECHHO

3. Minimization problem

There is a big body of work for minimizing a classical deterministic complete FSM based on the
state equivalence [1]. We now remind the notion of equivalent states for deterministic complete
(Timed) FSMs [1, 12]. Given complete deterministic (Timed) FSMs S and P with their states s

128



Tapnosckuii A.C. Eprymenko H.B. O MUHMMHI3a1lMN HHUIMABHBIX aBTOMATOB ¢ TaiiMaytamu. Tpyost UCIT PAH, Tom 32, Bbin. 2, 2020 1.,
cTp. 125-134

and p, states s and p are equivalent if (timed) output responses at these states coincide for each
(timed) input sequence. If states s and p are not equivalent then they are distinguishable.
Initialized (Timed) FSMs are equivalent if their initial states are equivalent. Equivalent (Timed)
FSMs have the same behavior. Two TFSMs S and P are isomorphic if there exists the one-to-
one correspondence H: § — P such that there exists a transition (s, i, 0, s’, d) € hs if and only if
there exists a transition (H(s), i, 0, H(s"), d) € hp and Ar(H(s)) = (H(s"), T) if and only if As(s) =
(s', T). A complete deterministic (Timed) FSM S is state reduced if every two different states s,
52 € S are not equivalent.

3.1 FSM Minimization

The minimal form of a (initialized) deterministic complete FSM S is defined as a (initialized)
state reduced FSM which is equivalent to S. An algorithm for deriving the minimal form (or an
FSM minimization algorithm) for classical deterministic complete FSMs has been proposed in
[1] and is based on partitioning the state set into equivalence classes, i.e., subsets with pairwise
equivalent states. The equivalence relation induces a partition E of the set of states of a complete
deterministic FSM. Any two states of the same class of the partition £ are equivalent; any two states
of different classes of partition £ are distinguishable. Respectively, states of the reduced form
correspond to classes of the partition £, i.e., the number of states of the reduced form equals the
cardinality of E. The transition relation of the reduced form is derived based on transitions between
E classes. It is shown that the minimal form of an initialized FSM as well as of a non-initialized
deterministic complete FSM is unique up to isomorphism.

3.2 TFSM Minimization

The notions of a state reduced TFSM and the partition into equivalent states are defined similar to
those of classical FSMs. A state reduced form of an FSM with timeouts can be derived based on its
FSM abstraction [13, 15]. Moreover, in order to derive the unique minimal form up to isomorphism
for a non-initialized FSM with timeouts, a so-called time reduced form should be also constructed.
A non-initialized FSM with timeouts S is time reduced if for each state s such that As(s) = (s, 7), it
holds that for each state s” € S and integer 7" < T, TFSM S’ which is obtained from S by replacing
the timeout at state s to As(s) = (s", 7"), is not equivalent to S. Minimal timeouts for states of TFSM
S can be found based on its FSM abstraction [13]. In other words, when deriving a time reduced
form of a non-initialized TFSM, the timeout for each state s should be set to the minimum value in
such a way that the TFSM behavior at state s is not changed.

In [13], the following theorem has been proven.

Theorem 1. Two non-initialized deterministic complete state and time reduced FSMs with timeouts
are equivalent if and only if they are isomorphic.

Respectively, the minimal form of a non-initialized deterministic complete TFSM is unique up to
isomorphism.

3.3 The uniqueness of the minimal form of initialized FSMs with timeouts

Unlike non-initialized Timed FSMs, a complete deterministic initialized FSM with timeouts can
have several non-isomorphic state and time reduced forms. An example is shown in Figure 1
where two equivalent minimal initialized FSMs with timeouts are presented. However, those
TFSMs are not isomorphic. The reason is that for non-initialized equivalent TFSMs, for each
state of one machine there is an equivalent state of another machine and vice versa. For initialized
machines it is not the case for input-unreachable states.

In fact, there can exist some states in TFSMs which are only time-reachable, i.e., are not input-
reachable, for example, state b of TFSM S (Figure 1). This input-unreachable state can be removed
from the TFSM if the TFSM moves from state a to state ¢ via a timeout transition. The corresponding
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TFSM P is presented in the Figure 1 on the right where the timeout of value two is used instead of
two timeouts of value one. Therefore, the problem that a reduced form of an FSM with timeouts is
not unique is closely related to states which are only time-reachable because for these states, the
requirement for the one-to-one correspondence between states of initialized equivalent TFSMs does
not need to necessarily hold. In this paper, we specify classes of initialized FSMs with timeouts for
which the state and time reduced form is unique up to isomorphism.

4. Input-connected FSM with timeouts

Since the existence of several state and time reduced equivalent but non-isomorphic initialized FSMs
with timeouts is closely related to time-reachable states, we first consider TFSMs without such
states.

An FSM with timeouts S is input-connected if each state s € S is input-reachable. In other words,
given a state s of an input-connected initialized FSM with timeouts, there exists a transfer timed
input sequence from initial state to state s. For input-connected TFSMs, the following proposition
can be proven.

Proposition 1. Two deterministic complete state and time reduced initialized input-connected FSMs
with timeouts are equivalent if and only if they are isomorphic.

Proof. Let deterministic complete state and time reduced initialized input-connected FSMs S and P
with timeouts be equivalent. Since the TFSMs are equivalent then a-successors s and p of initial
states TFSMs S and P respectively are equivalent for any timed input sequence o.. Moreover, since
S and P are state reduced then one-to-one correspondence H;: S— P can be established such that p
= Hj(s) is an input-reachable state of TFSM P which is equivalent to the input-reachable state s.
Similar to [13], for each transition (s, i, o, s’, d) € hs there exists a transition (Hy(s), i, o, H(s"), d)
€ hpe. Let there exist a pair of states s and p = Hi(s) such that As(s) = (s', Ty) and Ar(p) = (p', T),)
and 7, < T,. Due to the fact that S and P are equivalent, there exists state s” which is equivalent
to state p'= Hi(s"). Since states s and p are also equivalent, the timeout at state s can be replaced
by As(s) = (s", T;") where T,'= T, < T. The latter is not possible as S is time reduced. Since P is
time reduced too, the same reasoning can be applied when T < 7, and thus, Ty = 7). Since states
s and p are equivalent, states time(s, ;) and time(p, T),) are also equivalent and respectively, p'=
H(s"). Thus, Ap(H(s)) = (H{(s"), T) if and only if As(s) = (s, 7).

Since isomorphic TFSMs coincide up to state renaming, isomorphic TFSMs are equivalent.
Corollary. The minimal (state and time reduced) form of an input-connected initialized FSM
with timeouts is unique up to isomorphism.

However, there exist FSMs with timeouts which have time-reachable states, i.e., are not input-
connected. We next consider such TFSMs and discuss when the unique minimal form for TFSMs
with input-unreachable states can be derived.

5. Minimization procedure using FSMs with timed guards

Given an FSM with timeouts, according to the corollary to Proposition 1, if this FSM has a state and
time reduced input-connected form, then this form is unique up to isomorphism. However, just now
we do not know whether such a minimal form exists for any FSM with timeouts. On the other hand,
FSMs with timed guards can be considered as another type of the minimal form and such TFSMs
are input-connected. It is known [12] that there exists a class of FSMs with timeouts which can be
represented by a corresponding FSM with timed guards. Respectively, in this section, we show that
if for an FSM with timeouts there exists a minimal form with timed guards then such minimal form
is unique up to isomorphism.
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5.1 FSM with timed guards

An initialized FSM with timed guards is a 5-tuple S = (S, I, O, s, hs) where [ and O are input and
output alphabets, S is the finite non-empty set of states with the designated initial state so, is < (S X
11X O xS xIIx 2Z)is the transition relation with the set of input timed guards Il. An input timed
guard g € [7describes the time domain when a transition can be executed and is given in the form
of interval [ min, max | from [0; o), where [ e {G [},—| €{), 1}. The transition (s, i, 0, s, g, d) € SX [
X O X Sx ITx Zmeans that TFSM S being at state s accepts an input i applied at time ¢ € g measured
from the moment when TFSM S entered state s; the clock then is set to zero, S produces output o
and moves to state s” after d time units.

The state reduced form for FSM with timed guards can be derived based on its FSM abstraction [13]
or by the algorithm presented in [16]. Moreover, an FSM with timed guards is time reduced if for
each two transitions (s, i, 0, ', g1, d), (s, i, 0, 5", g2, d) € hs it holds that timed guards g, and g> cannot
be merged into a single guard. Thus, in order to derive the time reduced form for an FSM with timed
guards, transitions under the same input with the same output and output delay, between the same
states, the timed guards which can be merged should be replaced by a single transition. The
uniqueness of the minimal form of a non-initialized FSM with timed guards has been proven in [13]
and next we formulate a similar proposition for initialized TFSMs.

Proposition 2. Two deterministic complete time and state reduced initialized connected FSMs with
timed guards are equivalent if and only if they are isomorphic.

Proof. Let deterministic complete time and state reduced initialized connected FSMs with timed
guards S and P be equivalent. Since TFSMs S and P are equivalent, the o.-successors s and p of initial
states of these TFSMs are also equivalent for each o, i.e., at these states there are the same output
responses for each timed input sequence. Moreover, since S and P are state reduced then the one-to-
one correspondence H: S — P can be established such that p = H(s) is a state of TFSM P which is
equivalent to state s. We now show that for each transition (si, i, 0, 52, g, d) € As there exists a
transition (p1, i, 0, p2, g, d) € Ap, where p; = H(s1) and p, = H(s,). Let there exist (s, i, 0, 52, g, d) €
As, but (H(s1), i, 0, H(s2), g, d) & Ap. Since s, and p; are equivalent, the behavior of P at state p; in
time interval g coincides with that of the TFSM S at state 5. Respectively (p1, i, 0, p2, g, d) € Ap,
where g c g’, because P is state and time reduced. However, the behavior of TFSM S for the same
input 7 at state s for time instances in g differs from that in adjacent intervals since S is state and
time reduced. Thus, there exists # € g'\ g, such that the output responses to (i, ¢) at states s and p do
not coincide. In a similar way, we can show that for each transition (H(s1), i, 0, H(s2), g, d) € Ap there
exists a transition (s1, I, 0, 52, g, d) € As and thus, S and P are isomorphic.

Since isomorphic TFSMs coincide up to state renaming, isomorphic TFSMs are equivalent.

Thus, the minimal (state and time reduced) form of an initialized FSM with timed guards is unique
up to isomorphism and next we show how FSM with timeouts can be represented by a TFSM with
timed guards in some cases.

5.2 Transformation of an FSM with timeouts into an FSM with timed guards
An FSM with timeouts S is timeout loop-free [12] if there is no cycle of transitions labeled with
timeouts. A timeout loop-free FSM can be represented as an FSM with timed guards by the
algorithms proposed in [12].
Algorithm 1: Transforming a timeout loop-free FSM into an FSM with timed guards
Input: A timeout loop-free FSM S'= (S, 1, O, hs, As, s0)
Output: The FSM with timed guards S
While there exists s;€ S such that As(s;) = (s, T), T < e do

for each (sy, i, [t1, 12), 0, Sp, d) € hs do hs=hs U {(s;, I, [t1 + T, t2 + 1), 0, sn, d)};

if As(sx) = (s, Ty) then As(s)) = (s, Ty + T) else As(s)) = (s, *);
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Return S= (S, 1, O, hs, so).

Proposition 3 [12]. Given a complete deterministic initialized timeout loop-free FSM S/, let S be
an FSM with time guards returned by Algorithm 1 for S’. TFSM S is a complete deterministic
initialized FSM with timed guards that is equivalent to S'.

Let S be an FSM with timed guards that is returned by Algorithm 1 for a timeout loop-free FSM
S'. Note that each time-reachable state of TFSM S’ becomes unreachable from the initial state of
TFSM S and, respectively, can be removed since the behavior at this state does not affect the
machine behavior at the initial state. As an example, for the timeout loop-free FSM S in Figure
1 the corresponding FSM with timed guards Q is presented in Figure 2.

i, [0, 2)/o,

i, [2, =)o,

o P

/“.C\.;. [1, )0, i, [0,
L a ) = b}

~ §[0,0)0,

Fig. 2. An FSM with timed guards Q that is equivalent to FSM with timeouts Sin Fig. 1
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State b of TFSM Q becomes unreachable from the initial state @ and can be removed without
changing the initialized TFSM behavior. The following proposition can be proven based on
Proposition 2 and results from [12].

Proposition 4. Two deterministic complete initialized timeout loop-free FSMs are equivalent if and
only if corresponding state and time reduced FSMs with timed guards are isomorphic.

Given an initialized timeout loop-free FSM S, the state and time reduced form can be derived for S
as such a form for a corresponding FSM with timed guards. Respectively, the unique minimal form
for FSM with timed guards or timeouts P can be derived by the following algorithm.

Algorithm 2: Deriving the minimal form of an initialized FSM with timed guards or timeouts
Input: An initialized FSM with timed guards or an initialized FSM with timeouts S

Output: The minimal FSM with timed guards S’

Step 1. If S is an FSM with timeouts then Step 2, else Step 3.

Step 2. If S is a timeout loop-free FSM then call Algorithm 1 for deriving a corresponding FSM with
timed guards and Step 3, else the unique minimal form as an FSM with timed guards cannot be
derived.

Step 3. The unique minimal form with timed guards S’is derived as described in [16].

Proposition 5. Let P be a TFSM returned by the Algorithm 2 for a complete deterministic initialized
timeout loop-free FSM or an FSM with timed guards S. TFSM P is a complete deterministic
initialized state and timed reduced FSM with timed guards which is equivalent to S.

Given an FSM with timed guards or timeouts, we next determine a corresponding class of TFSMs
with the unique minimal form in the following way.

Theorem 2. Given two deterministic complete FSMs with timed guards or timeouts S and P which
are initialized connected timeout loop-free TFSMs, S and P are equivalent if and only if their time
and state reduced forms of corresponding FSMs with timed guards are isomorphic.

6. Conclusion

In this work, we have investigated the uniqueness of the minimal form for initialized FSMs with
timeouts. We determine two TFSM classes for which the minimal form is unique up to isomorphism.
The first class contains initialized TFSMs for which all states are reachable from initial state under
a timed input sequence. The second class contains TFSMs which are timeout loop-free, i.e., their
transition diagrams have no loops labeled with timeouts.
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We also note that the uniqueness of the minimal form for Timed FSMs allows to directly adapt
classical W-based test derivation methods for TFSMs. These methods are based on checking the
equivalence relation by checking the isomorphism (or possibly another relation for nondeterministic
TFSMs) between the specification and an implementation under test. We also plan to study the
possibility of deriving homing and synchronizing sequences for FSMs with timeouts based on their
minimal forms.
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