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Abstract. In this paper, we present a method for state space reduction of dense-time Petri nets (TPNs) – an 
extension of Petri nets by adding a time interval to every transition for its firing. The time elapsing and memory 
operating policies define different semantics for TPNs. The decidability of many standard problems in the 
context of TPNs depends on the choice of their semantics. The state space of the TPN is infinite and non-
discrete, in general, and, therefore, the analysis of its behavior is rather complicated. To cope with the problem, 
we elaborate a state space discretization technique and develop a partial order semantics for TPNs equipped 
with weak time elapsing and intermediate memory policies. 
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Abstract. В данной статье предлагается метод редукции пространства состояний непрерывно-
временных сетей Петри (НВСП) – расширения сетей Петри, где каждому переходу ставится в 
соответствие временной интервал его срабатывания. Техники контроля времени и памяти определяют 
различные семантики для НВСП, которые влияют на разрешимость многих стандартных проблем 
анализа поведения НВСП. В общем случае, пространство состояний НВСП бесконечно и несчетно, и, 
следовательно, анализ их поведения довольно сложен. С целью разрешения данной проблемы 
выполняется дискретизация пространства состояний и определяется семантика частичного порядка для 
НВСП со «слабой» техникой продвижения времени (продвижение времени неограничено) и 
«промежуточной» техникой контроля памяти (с учетом промежуточных разметок при срабатывании 
сетевых переходов). 
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1 Introduction 
Dense-Time Petri Nets (TPNs) are now a well-established model to describe and study safety-critical 
systems that often require verification of real time (quantitative) characteristics, in addition to 
functional (qualitative) properties. In the TPN, each transition is associated with a time interval. 
With that, each transition is assumed to have its own local clock. A state of the TPN contains a 
current marking and readings of the local clocks of enabled transitions (i.e. transitions whose all 
input places have enough tokens at the marking). A transition can fire from a state only if the 
transition is enabled at the corresponding marking and its clock reaches a moment in time that is 
within the interval associated. So, the firing of an enabled transition can be suspended for a certain 
time. Along with that, the firing itself takes no time. State changes are divided in two types: either 
time elapses, i.e. the clocks of enabled transitions go forward, or a transition fires, i.e. a current 
marking is changed to a new one (in which tokens are consumed from the input places and tokens 
are produced to the output places of the transition that fires) and the clocks of the transitions that 
become enabled at the new marking (newly enabled transitions) are reset to zero. 
There are two policies of time elapsing in TPNs, which define strong and weak semantics. In the 
former semantics, time elapsing cannot exceed the upper bounds of enabled transitions and, 
therefore, an enabled transition must fire no later than the upper bound of its time interval is reached. 
On the contrary, any time elapsing is allowed in the latter semantics and, therefore, enabled 
transitions are not forced to fire. In [1], the authors have proven that the two semantics are 
incomparable w.r.t. timed weak bisimulation. 
Memory policies in TPNs determine when the local clocks of enabled transitions are reset. 
Intermediate and atomic memory policies are put forward in the literature. The former treats 
intermediary marking, i.e. the marking after consumption of tokens from the input places and before 
production of tokens to the output places of a transition ݐ that fires. A transition ݐ′ is regarded as 
newly enabled and its clock is reset to zero after the firing of ݐ whenever ݐ′ is disabled at the 
intermediary marking and becomes enabled at the new marking, i.e. after production of tokens to 
the output places of ݐ. Instead, the latter policy considers a firing as one-step. The clock of ݐ′ is reset 
to zero only if it is disabled at the marking before ݐ fires and becomes enabled at the new marking 
after ݐ fires. The memory policies were studied in [2] for strong semantic and in [3] for weak 
semantics. It was shown that the marking reachability/coverability and boundedness problems are 
undecidable for time Petri nets with strong semantics and any memory policy, whereas the problems 
are decidable in the case of TPNs with weak intermediate semantics but not with weak atomic 
semantics. 
The state space of the TPN is infinite and non-discrete, in general, that increases the difficulty of the 
model analysis. In the work [4], a transformation to the behavior with only integer time elapsings 
has been suggested for TPNs with strong semantics, while the discretization of the state space for 
weak semantics has hitherto not be treated in the literature, to the best of our knowledge. 
The classical interleaving behavior of the TPN is described by runs – sequences of changes in states 
by time elapsings or transition firings. Interleaving semantics allows for analyzing some safety and 
liveness properties of systems. However, using partial order semantics seems preferable because it 
captures in a natural way «true concurrency». Partial order semantics of Petri nets is most often 
represented by means of the so-called causal net processes, which include events and conditions 
related by causal dependence and concurrency. This information can be useful for formal 
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verification of the system behavior or for reducing the number of analyzed system states, without 
taking into account all interleaving sequences. Partial order semantics is put forward for safe TPNs 
with strong and clocks-on-transitions semantics in [5]. The presented in [6] approach to construct a 
partial order and non-deterministic representation of the behavior of safe TPNs with strong and 
clocks-on-tokens semantics consists in transforming time characteristics into net structure, i.e. 
representing them by additional places, transitions, and arcs. This allows for removing the 
restrictions of diverging time and of finite upper time bounds for transitions. In [7], the authors 
inspect free choice TPNs (i.e. net transitions sharing an input place do have exactly the same input 
places), develop and compare partial order representations of runs, based on various clocks-on-
tokens semantics.  
In this paper, we deal with dense-time Petri nets with weak and intermediate policies. Our intention 
here is twofold. First, we develop a discrete representation of the interleaving behavior (runs) of the 
TPN by transforming its runs with real-number time elapsings to parametric sequences with time 
variables that are then assigned natural-number values. Second, partial order clocks-on-tokens 
semantics in terms of time causal processes of the TPN, by converting time elapsings into net 
structure, is elaborated. Also, for the TPN, a bijective mapping between its runs and computations 
(called linearizations) of its time causal processes is constructed, in order to demonstrate the 
correctness of the partial order semantics w.r.t. interleaving one. Partial order semantics allow for 
taking into account the processes' timing behavior in addition to their degrees of relative 
concurrency. 
The paper is organized as follows. In Section 2, we consider some definitions for TPNs and their 
interleaving semantics in terms of runs – sequences of changes in states by time elapsings and 
transition firings. In the following section, it is established that the discretization of TPN’s state 
space is possible by demonstrating that in the TPN for any run with transition firings and real-
number time elapsings there exists a run having the same transition firings and only natural-number 
(even unit) time elapsings. In Section 4, we introduce and examine properties of a casual net, its 
linearization, and a time causal process of the TPN, consisting of a casual net and its homomorphism 
into the TPN. In the next section, a bijective mapping from a set of linearizations of causal nets of  
time processes of the TPN to its set of runs is developed and studied. Section 6 concludes the paper. 

2 Time Petri Nets 
In this section, some terminology concerning the model of Petri nets with timing constraints (time 
intervals on the firings of transitions) are defined. We start with recalling the definitions of the 
structure and behavior of Petri nets. 

The Petri net (PN) consists of two different sets of elements – places and transitions; a flow relation 
representing arrows between the elements; an initial marking – a subset of places initially containing 
tokens; and a labeling function mapping each transition to an action from the alphabet ݐܿܣ of actions. 
A state of the PN is called a marking – a subset of places that receive tokens when the net functions. 
A transition is enabled at a marking if the input places of the transition contain tokens. The firing of 
a transition enabled at a marking results in the new marking in which tokens are consumed from the 
input places and tokens are produced to the output places of the transition. A sequence of changes 
in markings is called a run of the PN. Definition 1. A (labeled over ݐܿܣ) Petri net (PN) is a tuple ࣨ =  (ܲ, ܶ, ,ܨ ,଴ܯ  where ܲ is a ,(ܮ

finite set of places and ܶ is a finite set of transitions such that ܲ ∩  ܶ = ∅ and ܲ ∪  ܶ ≠ ⊇ ܨ ;∅  (ܲ ×  ܶ)  ∪ (ܶ ×  ܲ) is a flow relation; ∅ ≠ ଴ܯ   ⊆   ܲ is an initial marking; ܮ ∶ ∋ ݔ is a labeling function. For ݐܿܣ→ ܶ   ܲ ∪  ܶ, let ⦁ݔ = ,ݕ)|ݕ}  (ݔ ∈ = ⦁ݔ and {ܨ ,ݔ)|ݕ} ∋ (ݕ  {ܨ
be the preset and postset of ݔ, respectively. For ܺ ⊆  ܲ ∪  ܶ, define ⦁ܺ = ⋃ ௫∈௑ݔ⦁  and ܺ⦁ =⋃ ௫∈௑⦁ݔ . 
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A marking ܯ of a Petri net ࣨ is any subset of ܲ. A transition ݐ ∈  ܶ is enabled at a marking ܯ 
if ⦁ݐ ⊆  .ܯ be the set of transitions enabled at (ܯ)݊ܧ Let .ܯ

The firing of a transition ݐ enabled at a marking ܯ leads to the new marking ܯ′ (denoted ܯ௧→ ᇱܯ iff (′ܯ = (ݐ⦁\ܯ) ∪ ܯ We write .⦁ݐ ణ→ ߴ iff ′ܯ = ଵݐ … ଴ܯ= ܯ ௞ andݐ ௧భ→ ଵܯ … ௞ିଵܯ ௧ೖ→ ௞ܯ = ݇) ′ܯ ≥ 0). In this case, ߴ is a run of ࣨ from ܯ (to ܯ′), and ܯ′ is 
a reachable marking of ࣨ from ܯ. Let ℛℳ(ࣨ) be the set of all reachable markings of ࣨ from ܯ଴. 

The time Petri net (TPN) consists of an underlying PN and a static timing function mapping each 
transition to a time interval with non-negative rational boundaries. With that, each transition is 
assumed to have its own local clock. A marking alone is not enough to describe a state of the TPN, 
so a dynamic timing function is added to indicate the clock values of the transition enabled at a 
current marking. In fact, the clocks of enabled transitions show the times passed since then as the 
transitions become enabled. The initial state consists of the initial marking and the dynamic timing 
function with zero clock values for all enabled transitions. When the TPN is running, there are two 
ways to change states: either by time elapsings or by transition firings. Following the approach of 
[3], we consider TPNs with weak semantics. This means that any time elapsing is allowed, i.e. any 
time can be added to the clock values of enabled transitions. A transition can fire from a current state 
only if the transition is enabled at the current marking and its clock value belongs to its time interval. 
The firing of a transition that can fire from a state results in a new state, i.e. a new marking and new 
dynamic timing function with the clock values reset to zero for the newly enabled transitions and 
with the old clock values for the transitions which continue to be enabled. We deal with TPNs with 
intermediate memory policy, i.e. the predicate ↑ ,ᇱݐ)݈ܾ݀݁ܽ݊݁ ,ܯ  determining a newly enabled (ݐ
transition ݐᇱ after the firing of a transition ݐ at a marking ܯ has a true value if and only if ݐ′ is 
disabled at intermediary marking (i.e. the marking between consumption and production of tokens 
by the firing of t) and becomes enabled at the new marking (i.e. the marking after production of 
tokens by the firing of t). A sequence of changes in states is called a run of the TPN. The runs from 
the initial state represent interleaving semantics of the TPN. Definition 2. A (labeled over ݐܿܣ) time Petri net (TPN) is a pair ࣮ࣨ =  (ࣨ, ,ܲ) = ࣨ where ,(ܦ ܶ, ,ܨ ,଴ܯ :ܦ is the underlying Petri net and (ܮ ܶ → ℚஹ଴ × (ℚஹ଴ ∪ {∞}) is a static timing 

function mapping each transition to a closed non-empty interval with non-negative rational 
boundaries; right open infinite boundaries are allowed. For a transition ݐ ∈  ܶ, the boundaries of 
the interval (ݐ)ܦ are called the earliest firing time (ݐ݂ܧ) and latest firing time (ݐ݂ܮ) of ݐ. 

A state of  ࣮ࣨ is a pair S = (ܯ, :ܫ is a marking and ܯ where ,(ܫ (ܯ)݊ܧ → ℝஹ଴ is a dynamic 
timing function. The initial state of ࣮ࣨ is a pair ܵ଴  = ,଴ܯ)   ଴ is the initial markingܯ ଴), whereܫ 
and  ܫ଴(ݐ)  =  0, for all ݐ ∈  .(଴ܯ)݊ܧ 

A transition ݐ can fire from a state ܵ = ,ܯ)  ∋ ݐ if (ܫ (ݐ)ݐ݂ܧ and (ܯ)݊ܧ   ≤ (ݐ)ܫ   ≤  .(ݐ)ݐ݂ܮ 

In the TPN, two types of state changes are possible by: 

a) the elapsing of time ߬ ∈ ℝஹ଴, defined as follows: (ܯ, (ܫ ఛ→ ,ܯ) ᇱݐ∀  ᇱ) iffܫ ∈ (ܯ)݊ܧ ∶ (ᇱݐ)ᇱܫ  = (ᇱݐ)ܫ +  ߬; 
b) the firing of a transition ݐ ∈  ܶ, defined as follows: 

,ܯ) (ܫ ௧→ ,ᇱܯ) ᇱ) iffܫ ൞ ,ܯ) can fire from ݐ ,(ܫ andܯᇱ = (ݐ⦁\ܯ) ∪ ,⦁ݐ and∀ݐᇱ ∈ (ᇱܯ)݊ܧ ∶ (ᇱݐ)ᇱܫ  = ൜ 0,  if ↑ ,ᇱݐ)݈ܾ݀݁ܽ݊݁ ,ܯ ,(ᇱݐ)ܫ,(ݐ otherwise,   
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where the predicate ↑ ,ᇱݐ)݈ܾ݀݁ܽ݊݁ ,ܯ (ݐ = ᇱݐ ∈ (ݐ⦁\ܯ))݊ܧ ∪ ′ݐ)˄(⦁ݐ ∉ (ݐ⦁\ܯ)݊ܧ ∨ ݐ =  (′ݐ

indicates whether we need to reset the clock of ݐᇱ after the firing of ݐ at ܯ. 

We use the notation ܵ ఙ→  ܵ′ iff ߪ = ଵഥݐ  … ௞ഥݐ  ∈  (ܶ ∪  ℝஹ଴)௞ and ܵ =  ܵ଴ ௧భതതത→ ܵଵ … ܵ௞ିଵ ௧ೖതതത→ ܵ௞  = ܵ′ (݇ ≥  0). In this case, ߪ is a run of ࣮ࣨ from ܵ (to ܵ′), and ܵ′ is a reachable state of ࣮ࣨ from ܵ. Let ℱ࣭(࣮ࣨ) be the set of all runs of ࣮ࣨ from ܵ଴, ℛ࣭(࣮ࣨ) be the set of all reachable states of ࣮ࣨ from ܵ଴. We write ܷ݊(ߪ)݀݁݉݅ݐ to denote the projection ߪ on ܶ, i.e. the untimed part of ߪ. 

Consider some properties of TPNs. We call ࣮ࣨ safe, iff  (݌)ܯ  1, for all ܵ = ,ܯ)  (ܫ ∈ ܴܵ(࣮ࣨ)  
and ݌ ∈ ܲ; contact-free iff whenever ݐ can fire from a state ܵ = ,ܯ)  (ݐ⦁\ܯ) then ,(ܫ ∩ = ⦁ݐ  ∅ for 
all ܵ ∈ ℛ࣭(࣮ࣨ); ܶ-restricted iff ⦁t ≠ ∅ and t⦁ ≠ ∅ for all transitions in the underlying Petri net.  

Notice that the definition of the marking of the underlying PN as a subset, rather than a multiset, of 
the net places (see Definition 1) ensures that each place has at most one token when the TPN is 
functioning, i.e. it is safe. This leads to the fact that any transition can be enabled at most once at 
any marking ܯ and can fire at most once from a corresponding state (ܯ,  is really a ܫ is a set, rather than a multiset, of transitions, and the dynamic timing function (ܯ)݊ܧ ,As a consequence .(ܫ
function, rather than a relation. The contact-freeness property says that a transition cannot fire from 
a state, if at least one output place (which is not the input place) of the transition already contains a 
token at the corresponding marking. In the case when the TPN is not contact-free, after the firing of 
an enabled transition from a state, two or more tokens can accumulate in the output places of the 
transition.  However, some of the tokens may be lost, as the marking is defined as a subset, rather 
than a multiset, of places. Due to the T-restrictedness property, each net transition has at least one 
input place and at least one output place. This allows us to avoid livelock (useless work) situations 
as the transitions without input and output places can fire (work) infinitely many times without 
consuming and producing any tokens (results). So, the above properties facilitate the correct 
definitions and results concerning TPNs. In what follows, we will consider only safe, contact-free 
and T-restricted TPNs. Example 1. A (labeled over ݐܿܣ =  {ܽ, ܾ}) time Petri net ࣮෪ࣨ  is shown in Fig. 1. Here, the places 
are represented by circles and transitions by squares; the names are depicted near the elements. The 
elements included in the flow relation are connected by arrows, and each place contained in the 
initial marking is that with a token (bold point). The values of the labeling and static timing functions 
are printed next to the transitions. It is easy to see that ࣮෪ࣨ  is really safe, contact-free and    ܶ-restricted.  Show that ߪ =   .ଷ is a run of ࣮ࣨ from ܵ଴ݐଶ(1.5)ݐଷ(2.3)ݐଵݐ

− ܵ଴ = ,଴ܯ) ଴ܯ ଴), whereܫ = ,ଵ݌} ,{ଶ݌ (଴ܯ)݊ܧ = ,ଵݐ} ݐ∀ ଷ} andݐ ∈ (଴ܯ)݊ܧ ∶ (ݐ)଴ܫ  = 0. 

− Due to ݐଵ ∈ (ଵݐ)ݐ݂ܧ and (଴ܯ)݊ܧ = 0 ≤ (ଵݐ)଴ܫ  = 0 ≤ (ଵݐ)ݐ݂ܮ  = 1, we have that ݐଵ can fire from (ܯ଴, ଴). Then, ܵ଴ܫ  ௧భ→ ଵܵ = ,ଵܯ) ଵܯ ଵ), whereܫ = (ଵݐ⦁\଴ܯ) ∪ ⦁ଵݐ = ,ଶ݌} (ଵܯ)݊ܧ ,{ଷ݌ = (ଷݐ)ଵܫ and {ଷݐ} = (ଷݐ)଴ܫ = 0, because ↑ ,ଷݐ)݈ܾ݀݁ܽ݊݁ ,଴ܯ (ଵݐ =  .݁ݏ݈݂ܽ

− Due to ݐଷ ∈ (ଷݐ)ݐ݂ܧ and (ଵܯ)݊ܧ = 0 ≤ (ଷݐ)ଵܫ  = 0 ≤ (ଷݐ)ݐ݂ܮ  = 2, we have that ݐଷ can fire from (ܯଵ, ଵ). Then, ܵ଴ܫ  ௧భ௧యሱۛሮ ܵଶ = ,ଶܯ) ଶܯ ଶ), whereܫ = (ଷݐ⦁\ଵܯ) ∪ ⦁ଷݐ = ,ଷ݌} (ଶܯ)݊ܧ ,{ସ݌ = (ଶݐ)ଶܫ and {ଶݐ} = 0, because ↑ ,ଶݐ)݈ܾ݀݁ܽ݊݁ ,ଵܯ (ଷݐ =  .݁ݑݎݐ

− ܵ଴  ௧భ௧య(2.3)ሱۛ ۛۛ ۛۛ ሮ ܵଷ = ,ଷܯ) ଷܯ ଷ), whereܫ = ଶܯ = ,ଷ݌} (ଷܯ)݊ܧ ,{ସ݌ = (ଶݐ)ଷܫ and {ଶݐ} = (ଷݐ)ଶܫ +2.3 = 2.3. 

− Due to ݐଶ ∈ (ଶݐ)ݐ݂ܧ and (ଷܯ)݊ܧ = 1 ≤ (ଶݐ)ଷܫ  = 2.3 ≤ (ଶݐ)ݐ݂ܮ  = 3, we have that ݐଶ can fire from (ܯଷ, ଷ). Then, ܵ଴ܫ  ௧భ௧య(ଶ.ଷ)௧మሱۛ ۛۛ ۛۛ ሮۛ ܵସ = ,ସܯ) ସܯ ସ), whereܫ = (ଶݐ⦁\ଷܯ) ∪ ⦁ଶݐ = ,ଵ݌}  ,{ଶ݌
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(ସܯ)݊ܧ = ,ଵݐ} (ଵݐ)ସܫ ଷ} andݐ = (ଷݐ)ସܫ = 0, because ↑ ,ଵݐ)݈ܾ݀݁ܽ݊݁ ,ଷܯ (ଶݐ =  ↑ ,ଷݐ)݈ܾ݀݁ܽ݊݁ ,ଷܯ (ଶݐ =  .݁ݑݎݐ

− ܵ଴  ௧భ௧య(ଶ.ଷ)௧మ(ଵ.ହ)ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮۛ  ܵହ = ,ହܯ) ହܯ ହ), whereܫ = ସܯ = ,ଵ݌} (ହܯ)݊ܧ ,{ଶ݌ = ,ଵݐ} (ଵݐ)ହܫ ଷ} andݐ (ଵݐ)ସܫ= + 1.5 = (ଷݐ)ହܫ ,1.5 = (ଷݐ)ସܫ + 1.5 = 1.5. 

− Due to ݐଷ ∈ (ଷݐ)ݐ݂ܧ and (ହܯ)݊ܧ = 0 ≤ (ଷݐ)ହܫ  = 1.5 ≤ (ଷݐ)ݐ݂ܮ  = 2, we have that ݐଷ can fire from (ܯହ, ହ). Then, ܵ଴ܫ  ௧భ௧య(ଶ.ଷ)௧మ(ଵ.ହ)௧యሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ܵ଺ = ,଺ܯ) ଺ܯ ଺), whereܫ = (ଷݐ⦁\ହܯ) ∪ ⦁ଷݐ ,ଵ݌}= (଺ܯ)݊ܧ ,{ସ݌ = (ଵݐ)଺ܫ and {ଵݐ} = (ଵݐ)ହܫ = 1.5, because  ↑ ,ଵݐ)݈ܾ݀݁ܽ݊݁ ,ହܯ (ଷݐ =  .݁ݏ݈݂ܽ

Therefore, ߪ =  ◻                                                            .ଷ is a run of ࣮ࣨ from ܵ଴ݐଶ(1.5)ݐଷ(2.3)ݐଵݐ

 
Fig. 1. A time Petri net ࣮෪ࣨ = (෪ࣨ,  (ܦ

In order to display that every TPN can be transform into that with natural-valued boundaries of the 
intervals associated with its transitions, we need a notion of time equivalence. Two TPNs are 
considered time equivalent if they have the same underlying Petri net, and for each transition, its 
earliest and latest firing times in the TPNs are either proportional to a non-zero constant or its latest 
firing times are together equal to infinity. Definition 3. Two time Petri nets ࣮ ଵࣨ  =  (ࣨ, ࣮ ଵ) andܦ ଶࣨ  =  (ࣨ,  ଶ) are time equivalent iffܦ

there exists a non-negative constant ܿ ≠  0 such that for any transition ݐ in ࣨ it holds: 
(ݐ)ଶݐ݂ܧ −  = (ݐ)ଵݐ݂ܧ   ∙  ܿ,  

(ݐ)ଶݐ݂ܮ − = ൜ ∞, if ݐ݂ܮଵ(ݐ) = (ݐ)ଵݐ݂ܮ,∞  ∙ ܿ, otherwise.  We next establish that for any TPN there is a time equivalent TPN with time intervals having 
natural-valued boundaries. Theorem 1. Given a TPN ࣮ ଵࣨ  =  (ࣨ =  (ܲ, ܶ, ,ܨ ,଴ܯ ,(ܮ ࣮ ଵ), there exists a TPNܦ ଶࣨ  = (ࣨ, ܶ :ଶܦ ଶ), withܦ → ℕ × (ℕ ∪ {∞}), such that ࣮ ଵࣨ and ࣮ ଶࣨ are time equivalent. Moreover, for 
any ߪଵ  ∈  ℱ࣭(࣮ ଵࣨ), there is ߪଶ ∈ ℱ࣭(࣮ ଶࣨ) with the same transition firings and time elapsings 
multiplied by a constant ܿ, and vice versa. Proof. Construct the set ࣞ of the denominators of the boundaries from ܦଵ as follows: ࣞ =ቄ݊ ቚ ݐ݂ܧଵ(ݐ) =  ௠௡ ; ∋ ݐ    ܶ; ݉, ݊ ∈ ℕவ଴ቅ ∪ ቄ݊ ቚ ݐ݂ܮଵ(ݐ) =  ௠௡ ; ∋ ݐ    ܶ;  ݉, ݊ ∈ ℕவ଴ቅ. Calculate 

the least common multiple of the denominators: ܿ = ൜ 1, if ࣞ = Øܯܥܮ(ࣞ), otherwise. Due to ܿ being the 

least common multiple, we have non-negative constant ܿ ≠  0. Define ܦଶ: ܶ → ℕ × (ℕ ∪ {∞}) as 
follows: 
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(ݐ)ଶݐ݂ܧ −  = (ݐ)ଵݐ݂ܧ   ∙  ܿ,  

(ݐ)ଶݐ݂ܮ − = ൜ ∞, if ݐ݂ܮଵ(ݐ) = (ݐ)ଵݐ݂ܮ,∞  ∙ ܿ, otherwise,  

(ݐ)ଶܦ −  = ,(ݐ)ଶݐ݂ܧ)   .((ݐ)ଶݐ݂ܮ

So, ࣮ ଵࣨ and ࣮ ଶࣨ are time equivalent. 

Take an arbitrary ߪଵ = ଵഥݐ … ௞ഥݐ  ∈  ℱ࣭(࣮ ଵࣨ), with (ܯ଴, (଴ܫ ௧భതതത→ ,ଵܯ) (ଵܫ ,௞ିଵܯ) … (௞ିଵܫ ௧ೖതതത→ ,௞ܯ)  .(௞ܫ
Construct ߪଶ = ଵᇱഥݐ … ௞ᇱഥݐ  such that  ݐపഥ ∈ ܶ ⟹ పᇱഥݐ = పഥݐ పഥ andݐ  ∈ ℝஹ଴ ⟹ పᇱഥݐ = పഥݐ  ∙ ܿ, for all 1 ≤ ݅ ≤ ݇. 

We shall prove that ߪଶ ∈  ℱ࣭(࣮ ଶࣨ), with (ܯ଴ᇱ , ଴ᇱܫ ) ௧భᇲതതത→ ,ଵᇱܯ) (ଵᇱܫ ௞ିଵᇱܯ) … , ௞ିଵᇱܫ ) ௧ೖᇲതതത→ ௞ᇱܯ) , ௞ᇱܫ ), by 
induction on 1 ≤ ݅ ≤ ݇. ݅ = 0. Then, ܯ଴ᇱ = ࣮ ଴, due toܯ ଵࣨ and ࣮ ଶࣨ having the same underlying Petri net; and ܫ଴ᇱ (ݐ) = 0, 
for all ݐ ∈ ଴ᇱܯ)݊ܧ ), due to Definition 2.  ݅ > 0. By the induction hypothesis, we have that (ܯ଴ᇱ , ଴ᇱܫ ) ௧భᇲതതത…௧ഢషభᇲതതതതതതሱۛ ۛۛ ሮۛ ௜ିଵᇱܯ) , ௜ିଵᇱܫ ). Thanks to the 
construction of ߪଶ, we obtain that ܯ௝ᇱ = (௝ᇱܯ൫݊ܧ ,௝, and, henceܯ = ௝൯ , for all 0ܯ)݊ܧ ≤ ݆ ≤ ݅ − 1, 
due to Definition 2. Then, it holds that  ↑ ܾ݈݁݊ܽ݁݀൫ݐ, ௝ିଵᇱܯ , ఫᇱഥ൯ݐ = ↑ ܾ݈݁݊ܽ݁݀൫ݐ, ,௝ିଵܯ ݐ ఫഥ൯, for allݐ ௝ିଵᇱܯ)݊ܧ∋ ) = and for all 1 (௝ିଵܯ)݊ܧ ≤ ݆ ≤ ݅, i.e. the prefixes of ߪଵ and ߪଶ have the same clock 
resets for enabled transitions. This implies that ܫ௝ᇱ(ݐ) = (ݐ)௝ܫ ∙ ܿ, for all ݐ ∈ and 0 (௝ᇱܯ)݊ܧ ≤ ݆ ≤ ݅ −1, due to Definition 2 and the construction of ߪଶ. Show that (ܯ௜ିଵᇱ , ௜ିଵᇱܫ ) ௧ഢᇲഥ→ (ܯ௜ᇱ,  ௜ᇱ). Two cases areܫ
admissible. 

పᇱഥݐ .1 ∈ ℝஹ଴. Then, ݐపᇱഥ = పഥݐ  ∙ ܿ, by the construction of ߪଶ. As ߪଵ ∈  ℱ࣭(࣮ ଵࣨ), we have that ܯ௜ ݐ∀ ௜ିଵ andܯ= ∈ (௜ିଵܯ)݊ܧ ∶ (ݐ)௜ܫ  = (ݐ)௜ିଵܫ  + (ݐ)௜ܫ  పഥ, due to Definition 2. Then, it holds thatݐ ∙ ܿ = (ݐ)௜ିଵܫ ∙ ܿ + పഥݐ ∙ ܿ = ௜ିଵᇱܫ  (ݐ) + పᇱഥݐ = ݐ for all ,(ݐ)௜ᇱܫ ∈ ௜ିଵᇱܯ)݊ܧ = ௜ିଵᇱܯ) ,௜ᇱ), Thereforeܯ , ௜ିଵᇱܫ ) ௧ഢᇲഥ→ ,௜ᇱܯ)       .௜ᇱ), according to Definition 2ܫ
పᇱഥݐ .2 ∈ ܶ. Then, ݐపᇱഥ = ଵߪ ଶ. Asߪ పഥ, by the construction ofݐ  ∈  ℱ࣭(࣮ ଵࣨ), we have that ݐనഥ ∈  (௜ିଵܯ)݊ܧ

and ݐ݂ܧଵ(ݐపഥ)  ≤ (పഥݐ)௜ିଵܫ ≤ ,௜ିଵܯ) నഥ can fire fromݐ because ,(పഥݐ)ଵݐ݂ܮ నᇱഥݐ ௜ିଵ). Hence, we obtain thatܫ ∈ ௜ିଵᇱܯ)݊ܧ ) and ݐ݂ܧଶ(ݐపᇱഥ) = (పഥݐ)ଵݐ݂ܧ ∙ ܿ ≤ (పഥݐ)௜ିଵܫ ∙ ܿ = ௜ିଵᇱܫ  (పᇱഥݐ) = (పഥݐ)௜ିଵܫ ∙ ܿ ≤ ൜ ∞, if ݐ݂ܮଵ(ݐపഥ) = (పഥݐ)ଵݐ݂ܮ,∞  ∙ ܿ, otherwise. ൠ  = ࣮ due to ,(పᇱഥݐ)ଶݐ݂ܮ  ଵࣨ and ࣮ ଶࣨ being time equivalent with 

a proportionality constant ܿ. So, ݐపᇱഥ  can fire from (ܯ௜ିଵᇱ , ௜ିଵᇱܫ ). Since ߪଵ ∈  ℱ࣭(࣮ ଵࣨ), we have 

that  ܯ௜ = (పഥݐ ⦁\௜ିଵܯ) ݐ∀ పഥ⦁ andݐ ∪ ∈ (௜ܯ)݊ܧ ∶ (ݐ)௜ܫ  = ൜ 0,  if ↑ ,ݐ)݈ܾ݀݁ܽ݊݁ ,௜ିଵܯ ,(ݐ)௜ିଵܫ,(పഥݐ otherwise , 

by Definition 2. Then, it holds that (ܯ௜ିଵᇱ (పᇱഥݐ ⦁\ ∪ ⦁పᇱഥݐ  = ௜ᇱܯ = ݐ∀ ௜  andܯ  ∈ (௜ᇱܯ)݊ܧ ∶ (ݐ)௜ܫ  ∙ܿ = ൜ 0,  if ↑ ,ݐ)݈ܾ݀݁ܽ݊݁ ௜ିଵᇱܯ , (ݐ)௜ିଵܫ,(పᇱഥݐ ∙ ܿ = ௜ିଵᇱܫ ,(ݐ) otherwise = ௜ିଵᇱܯ) ,Therefore .(ݐ)௜ᇱܫ , ௜ିଵᇱܫ ) ௧ഢᇲഥ→ (ܯ௜ᇱ,     .௜ᇱ), thanks to Definition 2ܫ
Thus, (ܯ଴ᇱ , ଴ᇱܫ ) ఙమ→ ௞ᇱܯ) , ௞ᇱܫ ), i.e. ߪଶ ∈ ℱ࣭(࣮ ଶࣨ).  
Reasoning analogously, we can show that for each ߪଶ ∈ ℱ࣭(࣮ ଶࣨ), there exists ߪଵ  ∈  ℱ࣭(࣮ ଵࣨ) 
such that ߪଵ and ߪଶ have the same untimed part.                        ◻            Example 2. Consider the PN ࣨ ෩  whose structure is shown in Fig. 1. Define the TPN ࣮ ଵࣨ෫ = ( ෩ࣨ ,  ,(ଵܦ
with ܦଵ(ݐଵ)  =  [0, ଵସ], ܦଵ(ݐଶ)  =  [ଵସ , ଷସ], ܦଵ(ݐଷ)  =  [0, ଵଶ]. Construct a TPN ࣮ ଶࣨ෫ = ( ෩ࣨ , :ଶܦ ଶ), withܦ ܶ →  ℕ ×  (ℕ ∪ {∞}) such that ࣮ ଵࣨ෫ and ࣮ ଶࣨ෫ are time equivalent. Define the set ࣞ as follow: ࣞ = ቄ݊ ቚ ݐ݂ܧଵ(ݐ) =  ௠௡ , ∋ ݐ  ܶ, ݉, ݊ ∈ ℕவ଴ቅ ∪ ቄ݊ ቚ ݐ݂ܮଵ(ݐ) =  ௠௡ , ∋ ݐ  ܶ, ݉, ݊ ∈ ℕவ଴ቅ = {2, 4}. 
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Let ܿ = (ࣞ)ܯܥܮ  = ,2)ܯܥܮ  4) = (ଵݐ)ଶܦ ,4 =  ቂݐ݂ܧଵ(ݐଵ) ∗ ܿ = 0 ∗ 4, (ଵݐ)ଵݐ݂ܮ ∗ ܿ = ଵସ ∗ 4 ቃ =[0, 1], (ଶݐ)ଶܦ =  ቂݐ݂ܧଵ(ݐଶ) ∗ ܿ = ଵସ ∗ 4, (ଶݐ)ଵݐ݂ܮ ∗ ܿ = ଷସ ∗ 4 ቃ = [1, 3],  and ܦଶ(ݐଷ) =  ቂݐ݂ܧଵ(ݐଷ) ∗ܿ = 0 ∗ 4, (ଷݐ)ଵݐ݂ܮ ∗ ܿ = ଵଶ ∗ 4 ቃ = [0, 2]. Then, the time intervals of ࣮ ଶࣨ෫ have natural-valued 
boundaries. Moreover, ࣮ ଵࣨ෫ and ࣮ ଶࣨ෫ are time equivalent, because the static functions in the TPNs 
are proportional to the non-zero constant 4. As a consequence, for example, for the run ߪଵ ࣮ ଷ ofݐଶ(0.125)ݐଷ(0.25)ݐଵݐ=  ଵࣨ෫, there exists the run ߪଶ  = ࣮ ଷ ofݐଶ(0.5)ݐଷ(1)ݐଵݐ ଶࣨ෫, with time 
elapsings that are four longer times. Conversely, for the run  ߪଶ of  ࣮ ଶࣨ෫, there is the run ߪଵ  of ࣮ ଵࣨ෫ 
with time elapsings that are four times shorter.                                                                                         ◻ 

So, if two time Petri nets are time equivalent, then each run of the one TPN can be obtained from 
some run of the other TPN with the same untimed part and with time elapsings multiplied by the 
proportionality constant. In other words, time in the one TPN goes slower (or faster) than in the 
other TPN. With that, it is worth stressing that the TPNs have the same behavioral properties (e.g., 
safeness, liveness, marking reachability, etc.). 

In the sequel, we will consider only TPNs with time intervals having natural-valued boundaries. 

3. State Space Discretization for ञघ 
In this section, we demonstrate that in the TPN for any run there exists a run with the same untimed 
part and with natural-value time (and even unit time) elapsings.  

For the TPN ࣮ࣨ, let ℱ෢࣭ (࣮ࣨ) be the set of all runs from ℱ࣭(࣮ࣨ) of the form: ߪො  = ߬଴ ݐଵ ߬ଵ . . .  ߬௞ିଵ ݐ௞ ߬௞, i.e. time elapsings and transition firings alternate in the runs. So, in ࣮ࣨ for 
the run ߪො  ∈  ℱ෢࣭ (࣮ࣨ), we have the following changes in states: (ܯ଴, (଴ܫ ఛబ→ ,଴ܯ) ଴ᇱܫ ) ௧భ→ ,ଵܯ) (ଵܫ ఛభ→ ,ଵܯ) . (ଵᇱܫ . . ,௞ିଵܯ) (௞ିଵܫ ఛೖషభሱۛ ሮ ,௞ିଵܯ) →௞ିଵ) ௧ೖ′ܫ ,௞ܯ) (௞ܫ ఛೖ ሱሮ ,௞ܯ) ௞ᇱܫ ). 
As we will see later (in the proof of Corollary 2), any run from ℱ࣭(࣮ࣨ) can be represented in the 
above form. Define the set ࣯ℱ෣࣭ (࣮ࣨ) = ොߪ|(ොߪ)݀݁݉݅ݐܷ݊} ∈ ℱ෢࣭ (࣮ࣨ)}. 

Next, for an untimed sequence from ࣯ℱ෣࣭ (࣮ࣨ), we construct the parametric run (which is, in fact, 
a modification of a run, with variables instead of the time elapsing values) and a set of conditions 
on the values of these variables, by induction of the number of the variables. At each induction step, 
we define a prefix of the parametric run and the conditions for the values of its variables, increasing 
the run’s length by one variable. Definition 4. Let ࣮ࣨ = ((ܲ, ܶ, ,ܨ ,଴ܯ ,(ܮ ଵݐ ,be a time Petri net  (ܦ … ௞ݐ  ∈  ࣯ℱ෣࣭ (࣮ࣨ) and  ܺ = ,଴ݔ} … , ,௞} be a set of variables. We construct a finite sequence of the tuples of the form (߱௜ݔ ,ఠ೔ܤ ,ఠ೔ܯ ఠ೔ ), by induction on 0′ܫ ≤ ݅ ≤ ݇. ݅ =  0. Then, 

− ߱଴ =  ;଴ݔ
ఠబܤ − = ∅; 
ఠబܯ − =  ;଴ܯ
(ݐ)ఠబ′ܫ − = ,଴ݔ for all ݐ ∈ < ݅ .(ఠబܯ)݊ܧ  0. Assume that (߱௜ିଵ, ,ఠ೔షభܤ ,ఠ೔షభܯ  ,ఠ೔షభ ) is already constructed. Then′ܫ
− ߱௜  = ߱௜ିଵݐ௜ݔ௜; 
ఠ೔ܤ −  = ఠ೔షభܤ   ∪ (௜ݐ)ݐ݂ܧ} ≤ (௜ݐ) ఠ೔షభ′ܫ  ≤  ;{(௜ݐ)ݐ݂ܮ 
ఠ೔ܯ − = (௜ݐ⦁\ఠ೔షభܯ) ∪  ;⦁௜ݐ
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(ݐ)ఠ೔′ܫ − = ቊ ,௜ݔ if ↑ ܾ݈݁݊ܽ݁݀൫ݐ, ,ఠ೔షభܯ (ݐ)ఠ೔షభ′ܫ,௜൯ݐ + ,௜ݔ ,݁ݏ݅ݓݎℎ݁ݐ݋  for all ݐ ∈  .(ఠ೔ܯ)݊ܧ 
Then,  ߱ = ߱௞ = ଵݔଵݐ଴ݔ … ఠܤ ௞ is a parametric run of  ࣮ࣨ, andݔ௞ݐ  = ఠೖܤ ∪ {0 ≤ ௞ݔ < ∞} 
is the set of conditions on the values of the variables from ܺ. 
We use ℬఠ  = (௜ݐ)ݐ݂ܧ)|(௜ݐ)ఠ೔షభ′ܫ} ≤ (௜ݐ)ఠ೔షభ′ܫ  ≤ ((௜ݐ)ݐ݂ܮ  ∈ ,ఠܤ 1 ≤  ݅ ≤  ݇} ∪  to {௞ݔ}
denote the set of the variable parts of the inequalities from ܤఠ.  Example 3. Contemplate the TPN ࣮෪ࣨ  = ൫(ܲ, ܶ, ,ܨ ,଴ܯ ,(ܮ  ൯, shown in Fig. 1. For the transitionܦ

sequence ܷ݊݀݁݉݅ݐ(ߪො) = ොߪ ଶ, obtained from the runݐ ଷݐ ଵݐ = ଶ(1.7) of ࣮෪ࣨݐଷ(2.3)ݐଵ(0.5)ݐ(0.5)  , 
we construct the sequence of the following tuples (߱௜, ,ఠ೔ܤ ,ఠ೔ܯ ≥ ఠ೔ ), with  0′ܫ ݅ ≤  3. 

− ݅ =  0. Set ߱଴ = ఠబܤ  ;଴ݔ = ∅; ఠబܯ   = ଴ܯ = ,ଵ݌} ;{ଶ݌ ఠబ൯ܯ൫݊ܧ   = ,ଵݐ} ;{ଷݐ  and  ܫ′ఠబ(ݐଵ) (ଷݐ)ఠబ′ܫ      = =  .଴ݔ
− ݅ =  1.  Set  ߱ଵ = ߱଴ݐଵݔଵ = ఠభܤ       ;ଵݔଵݐ଴ݔ = ఠబܤ ∪ ൛ݐ݂ܧ(ݐଵ) = 0 ≤ (ଵݐ)ఠబ′ܫ ≤ (ଵݐ)ݐ݂ܮ = 1ൟ = ఠబܤ  ∪ {0 ≤ ଴ݔ ≤ ఠభܯ       ;{1 = (ଵݐ⦁\ఠబܯ) ∪ ⦁ଵݐ = ,ଷ݌} ఠభ൯ܯ൫݊ܧ ଶ} and݌ = (ଷݐ)ఠభ′ܫ        ;{ଷݐ} = (ଷݐ)ఠబ′ܫ + ଵݔ = ଴ݔ + ↑ ଵ, asݔ ܾ݈݁݊ܽ݁݀൫ݐଷ, ,ఠభܯ  .ଵ൯ is falseݐ
− ݅ =  2. Set  ߱ଶ =  ߱ଵݐଷݔଶ = ఠమܤ      ;ଶݔଷݐଵݔଵݐ଴ݔ = ఠభܤ ∪ ൛ݐ݂ܧ(ݐଷ) = 0 ≤ (ଷݐ)ఠభ′ܫ ≤ (ଷݐ)ݐ݂ܮ = 2ൟ = ఠభܤ  ∪ {0 ≤ ଴ݔ + ଵݔ ≤ ఠమܯ      ;{2 = (ଷݐ⦁\ఠభܯ) ∪ ⦁ଷݐ = ,ଷ݌} ఠమ൯ܯ൫݊ܧ ସ} and݌ = (ଶݐ)ఠమ′ܫ      ;{ଶݐ} = ↑ ଶ, asݔ ܾ݈݁݊ܽ݁݀൫ݐଶ, ,ఠమܯ  .ଷ൯ is trueݐ
− ݅ = ଷ߱  ݐ݁ܵ .3  =  ߱ଶݐଶݔଷ = ఠయܤ       ;ଷݔଶݐଶݔଷݐଵݔଵݐ଴ݔ = ఠమܤ  ∪ ൛ݐ݂ܧ(ݐଶ) = 1 ≤ (ଶݐ)ఠమ′ܫ ≤ (ଶݐ)ݐ݂ܮ = 3ൟ = ఠమܤ ∪ {1 ≤ ଶݔ ≤ ఠయܯ      ;{3 = (ଶݐ⦁\ఠమܯ) ∪ ⦁ଶݐ = ,ଵ݌} ఠయ൯ܯ൫݊ܧ ଶ} and݌ = ,ଵݐ} (ଵݐ)ఠయ′ܫ      ;{ଷݐ = (ଷݐ)ఠయ′ܫ = ↑ ଷ, asݔ ܾ݈݁݊ܽ݁݀൫ݐଵ, ,ఠయܯ ↑ ଶ൯ andݐ ܾ݈݁݊ܽ݁݀൫ݐଷ, ,ఠయܯ  .ଶ൯ are trueݐ

Then, the parametric run has the form ߱ = ߱ଷ = ܺ  ଷ, whereݔଶݐଶݔଷݐଵݔଵݐ଴ݔ  = ,଴ݔ} … ,  ௞} is theݔ
set of the real variables. Moreover, it holds that 

ఠܤ = ఠయܤ = ൞ 0 ≤ ଴ݔ  ≤ 1,0 ≤ ଴ݔ  + ଵݔ ≤ 2,1 ≤ ଶݔ ≤ 3,0 ≤ ଷݔ < ∞ ൢ, and 

ℬఠ ,଴ݔ}=  ଴ݔ + ,ଵݔ ,ଶݔ  ◻   .{ଷݔ

A function ߚ: ܺ = ,଴ݔ} … , {௞ݔ  → ℝஹ଴ is called assignment of ߱. We write [߱]ఉ  ([ܫ′ఠ೔షభ(ݐ௜)]ఉ) for 
a parametric run ߱ (for the value of a linear function ܫ′ఠ೔షభ(ݐ௜)  ∈ ℬఠ) under the assignment ߚ.The 
mapping ߚ is a solution of ܤఠ iff ݐ݂ܧ(ݐ௜)  ≤ ఉ[(௜ݐ) ఠ೔షభ′ܫ]  ≤ ߱ ℬఠ. Example 4. Consider the parametric run ∋ (௜ݐ) ఠ೔షభ′ܫ for all ,(௜ݐ)ݐ݂ܮ  = ଷ, the set ℬఠݔଶݐଶݔଷݐଵݔଵݐ଴ݔ  ,଴ݔ} = ଴ݔ + ,ଵݔ ,ଶݔ  ,{ଷݔ
from Example 3, and  an assignment ߚ: ,଴ݔ} … , {ଷݔ  → ℝஹ଴ such that ߚ(ݔ଴) =  0.7, (ଵݔ)ߚ  = 0.3, (ଶݔ)ߚ  = (ଷݔ)ߚ  ,1.4   =  2. Then, we obtain that [߱]ఉ =  ,ଶ(2). Moreoverݐଷ(1.4)ݐଵ(0.3)ݐ(0.7)
we get: ݐ݂ܧ(ݐଵ) = 0 ≤ ఉ[଴ݔ] = 0.7 ≤ (ଵݐ)ݐ݂ܮ = (ଷݐ)ݐ݂ܧ ,1 = 0 ≤ ଴ݔ]  + ଵ]ఉݔ = 1 ≤ (ଷݐ)ݐ݂ܮ (ଶݐ)ݐ݂ܧ ,2= = 1 ≤ ఉ[ଶݔ] = 1.4 ≤ (ଶݐ)ݐ݂ܮ = 3. Therefore, ߚ is a solution of ܤఠ.       
◻  
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We next establish that any solution of ܤఠ maps a parametric run ߱ of the TPN to its run. Lemma 1. Let ࣮ࣨ be a TPN, ߱ = .ଵݔଵݐ଴ݔ  . .  ఠ be the set ofܤ ௞ be a parametric run of ࣮ࣨ, andݔ௞ݐ
conditions on the values of the variables  ݔ଴, ,ଵݔ . . . , ఠ, then [߱]ఉܤ is a solution of ߚ ௞. Ifݔ ∈ ℱ෢࣭ (࣮ࣨ). Moreover, for any ܫ′ఠ೔షభ(ݐ௜) ∈ ℬఠ, [ܫ′ఠ೔షభ(ݐ௜)]ఉ is the value of  ܫ′௜ିଵ(ݐ௜) in the run  [߱]ఉ, 
when ࣮ࣨ functions along the run. 

Proof. See Appendix.                       ◻ 

Next, for an arbitrary run ߪො from ℱ෢࣭ (࣮ࣨ) with real-value time elapsings, we construct a natural-
value assignment ߚఠ to the variables in the corresponding parametric run ω of ࣮ࣨ, by induction on 
the number of the variables in ω (i.e. the number of time elapsings in the run ߪො). Starting from the 
end of the run ߪො, at each induction step, we round, the value of the corresponding time elapsing of ߪො, down or up to a natural number nearest to the value and agreed with the values of the other time 
elapsings in ߪො. Definition 5. Let ࣮ࣨ be a TPN, ߬଴ݐଵ߬ଵ … ௞߬௞ݐ  ∈ ℱ෢࣭ (࣮ࣨ), ߱ = .ଵݔଵݐ଴ݔ  . .  ௞ be the parametricݔ௞ݐ

run of ࣮ࣨ, ܤఠ be the set of conditions on the values of the variables from ܺ = ,଴ݔ} . . . ,  ఠ. We construct a sequence ofܤ ௞}, and  ℬఠ be the set of the variable parts of the inequalities fromݔ
functions ߚ௜: ܺ →  ℝஹ଴ by induction on 0 ≤  ݅ ≤ ݇. ݅ =  0. Then, for all 0 ≤  ݆ ≤ ௝൯ݔ଴൫ߚ ,݇ = ቊ⌊ ௝߬⌋ if ݆ = ݇,௝߬  otherwise . ݅ >  0. In the construction of  ߚ௜, we use auxiliary functions defined for all 0 ≤  ݆ ≤ ݇ as 
follows: ߚ௜(ݔ௝)  = ቊඋߚ௜ିଵ൫ݔ௝൯ඏ if ݆ = ݇ − ௝൯ݔ௜ିଵ൫ߚ,݅ otherwise;   and  ߚ௜(ݔ௝)  = ቊඃߚ௜ିଵ൫ݔ௝൯ඇ if ݆ = ݇ − ௝൯ݔ௜ିଵ൫ߚ,݅ otherwise.    

If  ∃ ܫ′ఠ೗షభ(ݐ௟) ∈ ℬఠ (1 ≤  ݈ ≤ ݇) such that ⌈ [ܫ′ఠ೗షభ(ݐ௟)]ఉ೔⌉ <  ,⌊ఉబ[(௟ݐ)ఠ೗షభ′ܫ] ⌋ 
then ߚ௜ = ௜ߚ ௜, elseߚ =  .௜ߚ

Define a natural-value assignment ߚఠ: ܺ → ℕ as follows: ߚఠ = ௞. Example 5. Consider the TPN ࣮෪ࣨߚ  from Example 1, the run ߪො = ଶ(1.7)ݐଷ(2.3)ݐଵ(0.5)ݐ(0.5)  ∈ℱ෢࣭ ൫࣮෪ࣨ ൯, the parametric run ߱ = ଷ and the set ℬఠݔଶݐଶݔଷݐଵݔଵݐ଴ݔ  ,଴ݔ} =  ଴ݔ + ,ଵݔ ,ଶݔ  ଷ} fromݔ
Example 3. Using Definition 5, construct the sequence of the assignments ߚ௜ by induction on  0 ≤݅ ≤  3. 

− ݅ = 0. We set ߚ଴൫ݔ௝൯, for all 0 ≤  ݆ ≤ ݇ =  3, as follows: ߚ଴(ݔ଴) =  ߬଴ = (ଵݔ)଴ߚ ,0.5 =  ߬ଵ (ଶݔ)଴ߚ ,0.5= =  ߬ଶ = 2.3, and ߚ଴(ݔଷ) =  ⌊߬ଷ = 1.7⌋ = 1, because  ݆ = ݇ = 3.  

− ݅ = 1. Construct auxiliary functions ߚଵ൫ݔ௝൯ and ߚଵ൫ݔ௝൯, for all 0 ≤  ݆ ≤ ݇ = 3, as follows: ߚଵ(ݔ଴) = (଴ݔ)ଵߚ = (଴ݔ)଴ߚ  = (ଵݔ)ଵߚ ,0.5 = (ଵݔ)ଵߚ = (ଵݔ)଴ߚ  = (ଷݔ)ଵߚ ,0.5 = (ଷݔ)ଵߚ (ଷݔ)଴ߚ = = 1, and ߚଵ(ݔଶ) = ⌊(ଶݔ)଴ߚ⌋  = (ଶݔ)ଵߚ ,2 = ⌈(ଶݔ)଴ߚ⌉  = 3, because ݆ = ݇ − ݅ = 2.  

Moreover, we get: ⌈[ݔ଴]ఉభ⌉ = 1 ⌊ఉబ[଴ݔ]⌋ ≤ = ଴ݔ]⌉ ,0  + ⌈ଵ]ఉభݔ = 1 ଴ݔ]⌋ ≤ + ⌊ଵ]ఉబݔ = ⌈ఉభ[ଶݔ]⌉  ,1  = 2 ≥ ⌊ఉబ[ଶݔ]⌋ =  2. Then, ߚଵ =   .ଵߚ

− ݅ = 2. Construct ߚଶ൫ݔ௝൯ and ߚଶ൫ݔ௝൯, with 0 ≤  ݆ ≤ 3, as follows: ߚଶ(ݔ଴) = (଴ݔ)ଶߚ = (଴ݔ)ଵߚ  =



Вирбицкайте И.Б., Зубарев А.Ю. Временные причинные процессы во временных сетях Петри со слабой семантикой. Труды ИСП 
РАН, том 32, вып. 4, 2020 г., стр. 259-282 

271 

(ଶݔ)ଶߚ ,0.5 = (ଶݔ)ଶߚ = (ଶݔ)ଵߚ = (ଷݔ)ଶߚ  ,2 = (ଷݔ)ଶߚ = (ଷݔ)ଵߚ  = 1 and ߚଶ(ݔଵ) ⌊(ଵݔ)ଵߚ⌋ = = (ଵݔ)ଶߚ  ,0 = ⌈(ଵݔ)ଵߚ⌉ = 1, because ݆ = ݇ − ݅ = 1.  

Moreover, we get:  ⌈[ݔ଴]ఉమ⌉ = 1 ⌊ఉబ[଴ݔ]⌋ ≤ = ଴ݔ]⌉ ,0  + ⌈ଵ]ఉమݔ = 1 ଴ݔ]⌋ ≤ + ⌊ଵ]ఉబݔ = ⌈ఉమ[ଶݔ]⌉ ,1  = 2 ≥ ⌊ఉబ[ଶݔ]⌋ =  2. Then, ߚଶ =  .ଶߚ

− ݅ = 3. Construct ߚଷ൫ݔ௝൯ and ߚଷ൫ݔ௝൯, with 0 ≤  ݆ ≤ 3, as follows: ߚଷ(ݔଵ) = (ଵݔ)ଷߚ = (ଵݔ)ଶߚ  (ଶݔ)ଷߚ ,0= = (ଶݔ)ଷߚ = (ଶݔ)ଶߚ = (ଷݔ)ଷߚ ,2 = (ଷݔ)ଷߚ  = (ଷݔ)ଶߚ  = 1 and ߚଷ(ݔ଴) = ⌊(଴ݔ)ଶߚ⌋  (଴ݔ)ଷߚ  ,0= = ⌈(଴ݔ)ଶߚ ⌉ = 1, because ݆ = ݇ − ݅ = 0.  

Moreover, we have ⌈[ݔ଴]ఉయ⌉ = 0 ⌊ఉబ[଴ݔ]⌋ ≤ = ଴ݔ]⌉ ,0  + ⌈ଵ]ఉయݔ = 0 < ଴ݔ]⌋ + ⌊ଵ]ఉబݔ = ⌈ఉయ[ଶݔ]⌉ ,1  = 2 ≥ ⌊ఉబ[ଶݔ]⌋ =  2. Then, there exists ܫ′ఠభ(ݐଷ)  ∈ ℬఠ  such that ⌈ ൣܫ′ఠభ(ݐଷ)൧ఉయ⌉ ଷߚ ,Therefore  .⌊൧ఉబ(ଷݐ)ఠభ′ܫൣ⌋ > =  .ଷߚ

Then, ߚఠ = ଷ, and we obtain the sequence [߱]ఉഘߚ   =  ◻         .ଶ(1)ݐଷ(2)ݐଵ(0)ݐ(1) 

Next, we show that the assignment ߚఠ  is a solution of  ߱, i.e. ߚఠ satisfies the inequalities from ܤఠ. Proposition 1. ߚఠ is a solution of ܤఠ. 
Proof. See Appendix.                        ◻ 

Thanks to Lemma 1 and Proposition 1, the theorem below follows immediately. Theorem 2. Let ࣮ࣨ be a time Petri net and ߱ = .ଵݔଵݐ଴ݔ  . .  ,௞ be a parametric run of ࣮ࣨ. Thenݔ௞ݐ
there exists a mapping ߚఠ ∶  ܺ = ,଴ݔ} . . . , {௞ݔ  →ℕ such that [߱]ఉഘ ∈ ℱ෢࣭ (࣮ࣨ). Proof. Consider the mapping ߚఠ ∶  ܺ = ,଴ݔ} . . . , {௞ݔ  →ℕ from Definition 5.  By Proposition 1, ߚఠ 
is a solution of ܤఠ, and, moreover, [߱]ఉഘ ∈ ℱ෢࣭ (࣮ࣨ), due to Lemma 1.                                                                ◻ 

We are now ready to show that in the TPN for any run, there exists a run with the same untimed part 
and with unit time elapsings.  Corollary 2. Let ࣮ࣨ be a time Petri net and ߪ ∈  ℱ࣭( ࣮ࣨ). Then, there is ߪ′ ∈ ℱ࣭( ࣮ࣨ) with 
unit-value time elapsings such that ܷ݊(ߪ)݀݁݉݅ݐ  =  :Proof. Due to Definition 2, we obtain the following properties for time elapsings .(′ߪ)݀݁݉݅ݐܷ݊ 

a) ܵ ଴→  ܵ; 

b) if ܵ ఛ→  ܵ′ and ܵ′ ఛᇲ→  ܵ′′, with ߬, ߬′ ∈ ℝஹ଴, then ܵ ఛାఛᇲሱۛ ሮ  ܵ′′; 
c) if ܵ ఛ→  ܵ′, then for every ߬′, ߬′′ ∈ ℝஹ଴ such that ߬ =  ߬ᇱ +  ߬′′, ܵ ఛᇲ→  ܵ′′ ఛᇲᇲሱሮ  ܵ′ for some ܵᇱᇱ. 
By items a) and b), there exists ߪො  ∈  ℱ෢࣭ ( ࣮ࣨ) such that ܷ݊(ߪ)݀݁݉݅ݐ = ෡′ߪ being a finite sequence. Due to Theorem 2, there is a run ߪ thanks to ,(ොߪ)݀݁݉݅ݐܷ݊  ∈  ℱ෢࣭ ( ࣮ࣨ) with natural-value time 
elapsings such that ܷ݊݀݁݉݅ݐ(ߪො)  = ෡′ߪ )݀݁݉݅ݐܷ݊  ). Thanks to c), we can construct ߪ′ ∈  ℱ࣭( ࣮ࣨ) 
with unit time elapsings such that ܷ݊݀݁݉݅ݐ൫ ߪᇱ෡ ൯ = (ߪ)݀݁݉݅ݐܷ݊ Therefore, we obtain that .(′ߪ)݀݁݉݅ݐܷ݊   =                     .(′ߪ)݀݁݉݅ݐܷ݊ 
◻ 

Thanks to Corollary 2, in the sequel, we will consider time Petri nets with unit time elapsings 
(denoted by √). 
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4. Time Processes of ञघ 
In this section, the concept of causality-based net process is presented and studied in the context of 
TPNs with weak semantics. We start with definitions related to casual nets that contain events and 
conditions connected by causal dependence and concurrency (absence of causality). Definition 6. A (labeled over ݐܿܣ ∪ = ܰܶ casual net is a finite, acyclic net ({݇ܿ݅ݐ} ,ܤ)  ,ܧ ,ܩ ݈) 

with a set B of conditions; a set E of events; a flow relation ܩ ⊆ ܤ)  × (ܧ ∪ ܧ) × |⦁ܾ| such that (ܤ ≤ 1 ∧ |⦁ܾ| ≤ 1, for all ܾ ∈ ݈ a labeling function ;ܤ  ∶ → ܧ  ݐܿܣ ∪  .{݇ܿ݅ݐ}

Informally speaking, the «tick» label means a clock ticking. 
Casual nets ܶܰ = ,ܤ)  ,ܧ ,ܩ ݈) and ܶܰᇱ = ,ᇱܤ)  ,ᇱܧ ,ᇱܩ ݈ᇱ) are called isomorphic (denoted ܶܰ ≃ܶܰ′) iff there exists a bijective mapping  ߛ ∶ ∪ ܤ  → ܧ  ∪ ′ܤ   :such that ′ܧ 

(ܤ)ߛ − = (ܧ)ߛ and ′ܤ =  ;′ܧ
ݕ ܩ ݔ − ⇔ ,(ݕ)ߛ ᇱܩ (ݔ)ߛ for all ݔ, ∋ ݕ ܤ  ∪  ;ܧ
− ݈ (݁) = ݈ᇱ൫ߛ(݁)൯, for all ݁ ∈  .ܧ

Introduce auxiliary notions and notations for the casual net ܶܰ = ,ܤ)  ,ܧ ,ܩ ݈).  
The set ⦁ܾ (ܾ⦁) is associated with a single event, for any ܾ ∈ ܰܶ⦁ Let .ܤ  = {ܾ ∈ = ܾ⦁ | ܤ  ∅}. 
Define ≺= ,ାܩ ≼= ⊇ ′ܧ A subset .(causality) ∗ܩ ݁ is a downward closed set of events iff ܧ ∈  ′ܧ
implies ݁′ ∈ ≻ ′݁ for all ,′ܧ  ݁. In this case, ݐݑܥ(ܧᇱ) =    .ᇱܧ⦁ \ (⦁ᇱܧ ∪ ܰܶ⦁) 
A subset ܤ′ ⊆ ܾ)¬ is a co-set (a subset of concurrent conditions) iff ܤ ≺ ܾ′) and ¬(ܾ′ ≺ ܾ), for all ܾ, ܾ′ ∈   .A cut is a maximal (w.r.t. set inclusion) co-set .′ܤ 
A sequence ߩ = ݁ଵ … ݁௡ (݊ ≥  0) of events is a linearization of ܶܰ [5] if each event of ܶܰ appears 
in the sequence exactly once, and the following holds: ݁௜  ≺  ௝݁ ⇒  ݅ <  ݆, for all 1 ≤ ݅, ݆ ≤  ݊. For 
a linearization ߩ = ݁ଵ … ݁௡ (݊ ≥  0) of ܶܰ, define the following: 
௞ߩ ଴ is the empty sequence andߩ − = ݁ଵ … ݁௞ (1 ≤  ݇ ≤ ݊); 
଴ܧ − =  ∅ and ܧ௞ = ⋃ ݁௜ଵஸ௜ஸ௞  (1 ≤  ݇ ≤ ݊).  
By the construction of the linearization, ܧ௞ is a downward closed set of events, for all 0 ≤  ݇ ≤ ݊. 
As we will see later (in Lemma 2), ݐݑܥ(ܧ௞) is a cut, for all 1 ≤  ݇ ≤ ݊. 
Informally speaking, a linearization is an interleaving representation of a “computation” of ܶܰ and 
the value of the function ݐݑܥ of any prefix of the linearization is a “marking” of  ܶܰ, reachable after 
occurring the events from the prefix. Example 6. Fig. 2 shows a causal net ܶ෪ܰ  = ,ܤ)  ,ܧ ,ܩ ݈), with ܤ = {ܾଵ, … , ܾଵ଴}; ܧ   ={݁ଵ, … , ݁ହ}; ܩ   = {(ܾଵ, ݁ଵ), (݁ଵ, ܾଷ), (ܾଷ, ݁ଶ), (ܾଶ, ݁ଶ), … , (݁ହ, ܾଽ), (݁ହ, ܾଵ଴)};   ݈(݁ଵ) = ݈(݁ଷ) = ܾ,݈(݁ଶ) = ݈(݁ସ) = ,݇ܿ݅ݐ ݈(݁ହ) = ܽ. We see that |⦁ܾ| ≤ 1 ∧  |ܾ⦁| ≤ 1, for all ܾ ∈ and ⦁ܶ෪ܰ ,ܤ  ={ܾଵ, ܾଶ}. Clearly, ݁ଵ  ≺ ݁ଶ ≺ ݁ଷ ≺ ݁ସ ≺ ݁ହ. Moreover, {ܾଵ, ܾଶ}, {ܾଶ, ܾଷ}, …, {ܾଽ, ܾଵ଴} are cuts in ܶ෪ܰ . 
It is easy to check that ߩ෤ = ݁ଵ, ݁ଶ, ݁ଷ, ݁ସ, ݁ହ is a linearization of ܶ෪ܰ , because each event of ܶ෪ܰ  
appears in the sequence exactly once, and if ݁௜  ≺  ௝݁, then ݅ <  ݆, for all 1 ≤ ݅, ݆ ≤  5. Define the 
downward closed sets ܧ௜ = ⋃ ௝݁ଵஸ௝ஸ௞  and the sets ݐݑܥ(ܧ௜) = ௜ܧ⦁ \ (⦁௜ܧ ∪ ܰܶ⦁) = ({ܾଵ, ܾଶ} ௜, for all 0ܧ⦁ \ (⦁௜ܧ ∪  ≤ ݅ ≤  5, as follows: 

଴ܧ − =  ∅, (଴ܧ)ݐݑܥ = ({ܾଵ, ܾଶ}  ∪  ∅) \ ∅ =  {ܾଵ, ܾଶ}; 

ଵܧ − = {݁ଵ}, (ଵܧ)ݐݑܥ = ({ܾଵ, ܾଶ} ∪ {ܾଷ}) \ {ܾଵ} =  {ܾଶ, ܾଷ}; 

ଶܧ − = {݁ଵ, ݁ଶ},   ݐݑܥ(ܧଶ) = ({ܾଵ, ܾଶ} ∪  {ܾଷ, ܾସ, ܾହ}) \ {ܾଵ, ܾଶ, ܾଷ} =  {ܾସ, ܾହ}; 

ଷܧ − =  {݁ଵ, ݁ଶ, ݁ଷ},   ݐݑܥ(ܧଷ) = ({ܾଵ, ܾଶ} ∪ {ܾଷ, ܾସ, ܾହ, ܾ଺}) \ {ܾଵ, ܾଶ, ܾଷ, ܾହ} =  {ܾସ, ܾ଺}; 

ସܧ − =  {݁ଵ, ݁ଶ, ݁ଷ, ݁ସ},  ݐݑܥ(ܧସ) = ({ܾଵ, ܾଶ} ∪ {ܾଷ, ܾସ, ܾହ, ܾ଺, ܾ଻, ଼ܾ}) \ {ܾଵ, ܾଶ, ܾଷ, ܾସ, ܾହ, ܾ଺} =



Вирбицкайте И.Б., Зубарев А.Ю. Временные причинные процессы во временных сетях Петри со слабой семантикой. Труды ИСП 
РАН, том 32, вып. 4, 2020 г., стр. 259-282 

273 

 {ܾ଻, ଼ܾ}; 

ହܧ − =  {݁ଵ, ݁ଶ, ݁ଷ, ݁ସ, ݁ହ},   ݐݑܥ(ܧହ) = ,ଵܾ} \ ܤ ܾଶ, ܾଷ, ܾସ, ܾହ, ܾ଺, ܾ଻, ଼ܾ} =  {ܾଽ, ܾଵ଴}.    ◻ 

 
Fig. 2. A casual net ܶ෪ܰ  Proposition 2.  Any casual net ܶܰ has a linearization ߩ = ݁ଵ … ݁௡. Proof. Take the maximal (w.r.t. set inclusion) set ݉݅݊(ܧ) ⊆ ݁ such that if ܧ  ∈ then ¬(݁ᇱ ,(ܧ)݊݅݉ ≺ ݁), for all ݁ᇱ ∈ (ᇱܧ)݊݅݉ we get that ,ܧ After removing an event ݁௠௜௡ from .ܧ (′ܧ)݊݅݉ ௠௜௡ or݁ \ (ܧ)݊݅݉=  = (௠௜௡݁ \ (ܧ)݊݅݉)  ∪ (݁௠௜௡⦁)⦁, where ܧᇱ =  ௠௜௡. Construct a݁ \ ܧ 

sequence ߩ = ݁ଵ … ݁௡ of events, by selecting a minimal event and removing it from ܧ, at each step. 
By the construction, any event of ܶܰ appears in the sequence exactly once and ݁௜ ≺ ௝݁ ⇒  ݅ <  ݆, 
for all 1 ≤  ݅, ݆ ≤  ݊, due to ܶܰ being a causal net.                   ◻ 

The results of the below lemma will be useful to establish the relationships between “markings” 
(values of the function ݐݑܥ) of a causal net ܶܰ and markings of a time Petri net ࣮ࣨ, and between 
linearizations of ܶܰ and runs of ࣮ࣨ, when we construct partial order semantic for time Petri nets. Lemma 2. Let ܶܰ be a casual net and ߩ = ݁ଵ … ݁௡ its linearization. Then, it holds: 
a) ݐݑܥ(ܧ௞) = (௞݁⦁ \(௞ିଵܧ)ݐݑܥ)  ∪ ݁௞⦁ , for all 1 ≤  ݇ ≤ ݊; 
b) ⦁݁௞  ⊆ ,(௞ିଵܧ)ݐݑܥ  for all 1 ≤  ݇ ≤ ݊; 
c) if ݐݑܥ(ܧ௞) ≠ ∅, then ݐݑܥ(ܧ௞) is a cut of ܶܰ, for all 0 ≤  ݇ ≤ ݊. Proof.  See Appendix.                       ◻ 
Next, we introduce a notion of a homomorphism from a causal net to a time Petri net, in order to 
define the concept of time processes of the time Petri net. Definition 7. Let ࣮ࣨ =  ((ܲ, ܶ, ,ܨ ,଴ܯ ,(ܮ ܰܶ be a TPN and (ܦ = ,ܤ) ,ܧ ,ܩ ݈) be a casual net. A 

homomorphism1 from ܶܰ to ࣮ࣨ is a mapping ߮ ∶ ∪ ܤ)  (ܧ   →  (ܲ ∪  ܶ ∪ {√}) such that it 
holds the following: 

(ܤ)߮ − ⊆  ܲ and ߮(ܧ) ⊆  (ܶ ∪ {√}); 
− for all ݁ ∈ (݁)߮ such that ܧ ∈ ܶ, 

o the restriction of ߮ to ⦁݁ is a bijection between ⦁݁ and ⦁߮(݁), 
o the restriction of ߮ to ݁⦁ is a bijection between ݁⦁ and ߮(݁)⦁; 

− for all ݁ ∈ (݁)߮ such that ܧ = √, 

 
1 In fact, ߮ is a homomorphism from ܶܰ to ࣮ࣨᇱ = ൫(ܲ, ܶ, ,ᇱܨ ,଴ܯ ,(′ܮ ⊇ ′ܨ ൯, whereܦ  (ܲ × ܶ ∪ {√})  ∪ (ܶ ∪ {√}  ×  ܲ) such that ܨᇱ = ܨ ∪ ,݌)} √), (√, ݌ | (݌ ∈ ܲ}, and ܮᇱ ∶ ܶ ∪ {√}  → ݐܿܣ ∪ (ݔ)′ܮ such that ,{݇ܿ݅ݐ} = ൜ ,(ݔ)ܮ if ݔ ∈ ,݇ܿ݅ݐܶ  otherwise.  In this case, we can see that ߮ is a structure-preserving mapping. However, 

following the traditions of terms and definitions in the literature on TPNs, we omit this construction of ࣮ࣨᇱ. 
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o the restriction of ߮ to ⦁݁ and the restriction of ߮ to ݁⦁ are injections, 
o ⦁݁ and ݁⦁ are cuts of ܶܰ and ߮(⦁݁) =  ߮(݁⦁); 

− the restriction of ߮ to ⦁ܶܰ is a bijection between ⦁ܶܰ and ܯ଴; 

− ݈(݁) = ൜ܮ൫߮(݁)൯, if ߮(݁)  ∈ ,݇ܿ݅ݐܶ  otherwise , , for all ݁ ∈  .ܧ

Then, the pair ߨ = (ܶܰ, ߮) is called a time process of  ࣮ࣨ. 

Time processes ߨ = (ܶܰ, ߮) =  ൫(ܤ, ,ܧ ,ܩ ݈), ߮൯ and  ߨᇱ = (ܶܰᇱ, ߮ᇱ) =  ൫(ܤᇱ, ,ᇱܧ ,ᇱܩ ݈ᇱ), ߮ᇱ൯ of ࣮ࣨ are isomorphic (denoted ߨ ≃ ߛ ᇱ) if there is an isomorphismߨ ∶  ܶܰ ≃ ܶܰ′ such that ߮(ݔ)  = ߮ᇱ((ݔ)ߛ), for all ݔ ∈ ܤ ∪ Example 7. Consider the TPN ࣮෪ࣨ .ܧ  depicted in Fig. 1, the casual net ܶ෪ܰ  shown in Fig. 2, and a 
mapping ߮ defined as follows: ߮(ܾଵ) = ߮(ܾଽ) = ,ଵ݌  ߮(ܾଶ) = ߮(ܾହ) =  ߮(ܾଵ଴) = ,ଶ݌ ߮(ܾଷ) =߮(ܾସ) =  ߮(ܾ଻) = ,ଷ݌ ߮(ܾ଺) = ߮(଼ܾ) = ,ସ݌ ߮(݁ଵ) = ,ଵݐ  ߮(݁ହ) = ,ଶݐ  ߮(݁ଷ) = ,ଷݐ  ߮(݁ଶ) =߮(݁ସ) = √; Then, we have that ߮(ܤ) ⊆  ܲ, (ܧ)߮ ⊆  (ܶ ∪ {√}), and the restriction of ߮ to ⦁ܶܰ ={ܾଵ, ܾଶ}  is a bijection between {ܾଵ, ܾଶ} and ܯ଴ = ,ଵ݌} ݁ ଶ} . Moreover, it holds the following: for all݌ ∈ (݁)߮ such that ܧ ∈ ܶ, the restriction of φ to ⦁e (݁⦁) is a bijection between ⦁e (݁⦁) and ⦁φ(e) (߮(݁)⦁); and for all ݁ ∈ (݁)߮ such that ܧ = √, the restriction of ߮  to ⦁݁  (݁⦁) is an injection, ⦁݁ and ݁⦁ are cuts of ܶ ܰ and ߮ (⦁݁) =  ߮(݁⦁). For example, consider the events ݁ ଵ and ݁ ଶ. We know 
that ߮(݁ଵ) = ଵ and ߮(݁ଶ)ݐ  = √. The restriction of ߮ to ⦁݁ଵ = {ܾଵ}  (݁ଵ⦁ = {ܾଷ}) is a bijection 
between {ܾଵ}  ({ܾଷ}) and ߮(ܾଵ) = (ଷܾ)߮) {ଵ݌} = Furthermore, the restriction of ߮ to ⦁݁ଶ  .({ଷ݌} ={ܾଶ, ܾଷ}  (݁ଶ⦁ = {ܾସ, ܾହ}) is an injection, {ܾଶ, ܾଷ}  and {ܾସ, ܾହ} are cuts of ܶܰ and ߮({ܾଶ, ܾଷ}) = ߮({ܾହ, ܾସ} ) = ,ଶ݌} (݁)݈ ଷ}  .  We see that݌ = ൜ܮ൫߮(݁)൯, if ߮(݁)  ∈  ܶtick, otherwise , for all ݁ ∈  ߮ ,Therefore .ܧ

is the homomorphism from  ܶ෪ܰ  to ࣮෪ࣨ , and, hence, ߨ = (ܶ෪ܰ , ߮) is a time process of ࣮෪ࣨ .    ◻ 

For a time process ߨ = (ܶܰ, ߮) of ࣮ࣨ, we introduce the function ݁݃ܣ that defines “age” of each 
condition ܾ of ܶܰ. More specifically, if  ܾ ∈ • ܶܰ is an input condition in ܶܰ, i.e. the place ߮(ܾ) 
contains a token at the initial marking of ࣮ ࣨ, then the “age” of ܾ  is equal to 0. Also, if ܾ  is an output 
condition of an event ݁ that corresponds to the firing of the transition ߮(݁) of ࣮ࣨ, i.e. the place ߮(ܾ) of ࣮ࣨ got a token immediately after the firing of ߮(݁), then the “age” of ܾ is equal to 0. 
Otherwise, i.e. if ܾ is an output condition of an event ݁  that corresponds to time elapsing, then the 
“age” of ܾ is the increased by 1 “age” of the input condition ܾ’ of ݁, such that ߮(ܾ) = ߮(ܾ’), i.e. ܾ 
and ܾ’ match in the same place of ࣮ࣨ. 

(ܾ)݁݃ܣ = ቊ 0,  ݂݅ ܾ ∈ ⦁ܶܰ  (ܾ ∈ ݁⦁, ߮(݁) ∈ (ᇱܾ)݁݃ܣ,(ܶ  + 1,  ݂݅ ܾ ∈ ݁⦁, ߮(݁)  = √, ܾᇱ ∈ ⦁݁, ߮(ܾᇱ) =  ߮(ܾ). 
Notice that if ܾ ∈ ݁⦁ and ߮(݁) = √, then there exists the only one condition  ܾᇱ ∈ ⦁݁  such that ߮(ܾᇱ)  =  ߮(ܾ), due to Definition 7. In this case, the definition of the function ݁݃ܣ is correct. 
Informally speaking, the function ݁݃ܣ matches each condition ܾ of ܶܰ to the amount of time that 
has elapsed since the corresponding place ߮(ܾ) of ࣮ࣨ got a token, when ࣮ࣨ progresses. 

For a co-set ܤ′ of conditions of ܶܰ and a transition ݐ of  ࣮ࣨ such that ݐ is enabled at the marking ߮(ܤ′), determine the function ۱ܓ܋ܗܔ  whose value is equal to the minimum “age” of the conditions 
from ܤ′, that correspond the input places of ܤ)ܓ܋ܗܔ۱  .ݐᇱ, (ݐ  = ൜ ⊥, = ݐ⦁ ݂݅ ∅ ,min{݁݃ܣ(ܾ) | ߮(ܾ) ∈ ,ݐ⦁ ܾ ∈ ,{ᇱܤ  .݁ݏ݅ݓݎℎ݁ݐ݋
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Informally speaking, the function ۱ܓ܋ܗܔ  matches ܤᇱ and ݐ to the amount of time that has elapsed 
since a token from the marking ߮(ܤ′) appeared in the last input place of the transition ݐ, i.e. since 
the transition ݐ became enabled at ߮(ܤ′). Later, we will establish a correspondence between the 
function ۱ܓ܋ܗܔ and the dynamic timing function ܫ, when the TPN progresses. 

We are now ready to introduce the concept of an admissible (correct) time process of ࣮ࣨ. Definition 8. Let ࣮ࣨ be a time Petri net. A time process ߨ = (ܶܰ, ߮) of ࣮ࣨ is admissible iff for 
all ݁ ∈ (݁)߮ :it holds ܧ   ∈  ܶ ⇒ ((݁)߮)ݐ݂ܧ ≤ ,݁⦁)ܓ܋ܗܔ۱ ߮(݁))  ≤ from Example 7 of ࣮෪ࣨ ߨ Example 8. Verify that the time process .((݁)߮ )ݐ݂ܮ   shown in Fig. 1 is admissible. 

By definitions, we have: 

,ଵ݁⦁)ܓ܋ܗܔ۱ − ߮(݁ଵ))  = (ଵܾ)݁݃ܣ   =  0; 
,൫⦁݁ଷܓ܋ܗܔ۱ − ߮(݁ଷ)൯ = (ହܾ)݁݃ܣ  = (ଶܾ)݁݃ܣ  = 0 +  1 =  1; 
,ହ݁⦁)ܓ܋ܗܔ۱ − ߮(݁ହ))  =  min{݁݃ܣ(ܾ଻ ), {(଼ܾ)݁݃ܣ  =  min{݁݃ܣ(ܾସ) + 1, (଺ܾ)݁݃ܣ = 0 + 1}  = min{(݁݃ܣ(ܾଷ ) = 0 +  1) + 1, 1}  =  1. 

Then, we obtain: 

(ଵݐ)ݐ݂ܧ −  =  0 ≤ ,ଵ݁⦁)ܓ܋ܗܔ۱  ߮(݁ଵ) = (ଵݐ  ≤ 1 =  ,((ଵ݁)߮)ݐ݂ܮ 
(ଷݐ)ݐ݂ܧ −  =  0 ≤ ,ଷ݁⦁)ܓ܋ܗܔ۱  ߮(݁ଷ) = (ଷݐ  ≤ 2 =  ,(ଷݐ)ݐ݂ܮ 
(ଶݐ)ݐ݂ܧ −  =  1 ≤ ,ହ݁⦁)ܓ܋ܗܔ۱  ߮(݁ହ) = (ଶݐ  ≤ 3 =  .(ଶݐ)ݐ݂ܮ 
So, ߨ is an admissible time process of ࣮෪ࣨ .                 ◻ 

5. Relating Runs and Time Processes of ञघ 
In this section, relationships between runs and linearizations (computations) of admissible time 
processes are investigated, in the context of time Petri nets. For this purpose, we define a mapping ܵܨ from a linearization ߩ = ݁ଵ … ݁௡ of a time process ߨ = (ܶܰ, ߮) of the TPN ࣮ࣨ to the sequence 
of the form: (ߩ)ܵܨ  =  ߮(݁ଵ) … ߮(݁௡). Here, ܶܰ is a causal net and ߮ is a homomorphism from ܶܰ 
to ࣮ࣨ. 

First, we prove that if ܵܨ maps a prefix ߩ௜ (0 ≤ ݅ ≤  ݊) of the linearization ߩ to the run of ࣮ࣨ and (ܯ௜,  of this prefix to ݐݑܥ ௜) is the state reachable by the run, then ߮ maps the value of the functionܫ
the marking ܯ௜. Moreover, for any transition ݐ enabled at ܯ௜, the value of the dynamic timing 
function ܫ௜(ݐ) is equal to ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), ߨ ௜. Lemma 3. Letߩ ௜ is the set of events fromܧ where ,(ݐ = (ܶܰ, ߮) be a time process of the TPN ࣮ࣨ and ߩ = ݁ଵ … ݁௡  be a linearization 
of ܶܰ. If ܵܨ(ߩ௜)  =  ߮(݁ଵ). . . ߮(݁௜) is the run of ࣮ࣨ from (ܯ଴, ,௜ܯ) ଴) toܫ  ௜)  for some 0ܫ  ≤ ݅ ≤ ݊, then it holds: a) the restriction of ߮ to ݐݑܥ(ܧ௜) is a bijection between ݐݑܥ(ܧ௜) and ܯ௜; 
b) ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), (ݐ  = ,(ݐ)௜ܫ  for all ݐ ∈  ;(௜ܯ)݊ܧ
c) if ݅ <  ݊ and ߮(݁௜ାଵ)  ∈ ,(௜ܯ)݊ܧ  then ۱ܓ܋ܗܔ(⦁݁௜ାଵ, ߮(݁௜ାଵ) =  ◻                                                                                                                                        .௜(߮(݁௜ାଵ)). Proof.  See Appendixܫ  
We are now ready to establish an important property of the ܵܨ mapping – any linearization of a time 
process of the TPN is mapped to its runs. Theorem 3. Given an admissible time process ߨ = (ܶܰ, ߮) of ࣮ࣨ and a linearization ߩ = ݁ଵ … ݁௡ 
of ܶܰ,  .࣮ࣨ  is a run of (ߩ)ܵܨ
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Proof. We shall prove by induction on 0 ≤  ݅ ≤ ݊ that ܵܨ(ߩ௜) is a run of ࣮ࣨ. ݅ = 0. Then, ܵܨ(ߩ଴) is the empty run. ݅ > 0. By the induction hypothesis, ܵܨ(ߩ௜ିଵ) is a run of ࣮ࣨ. If ߮(݁௜) = √, then ܵܨ(ߩ௜)  is a run of ࣮ࣨ, due to Definition 2. Assume ߮(݁௜) ∈ ܶ. By Lemma 2(b), we have ߮(⦁݁௜) ⊆  .((௜ିଵܧ)ݐݑܥ)߮
As the restriction of ߮  to ⦁݁ is a bijection between ⦁݁ and ⦁߮(݁), we obtain ⦁߮(݁௜) ⊆  .((௜ିଵܧ)ݐݑܥ)߮
Thus, we get ߮(݁௜) ∈ ௜ିଵ(߮(݁௜))ܫ due to Lemma 3(a). Thanks to Lemma 3(c), we have that ,(௜ିଵܯ)݊ܧ = ⦁)ܓ܋ܗܔ۱ ௜݁, ߮(݁௜)). Then, it holds that ݐ݂ܧ(߮(݁௜)) ≤ ௜ିଵ(߮(݁௜))ܫ ≤  by ,((௜݁)߮)ݐ݂ܮ
Definition 8. Therefore, ߮(݁௜) can fire from (ܯ௜ିଵ,  ◻                    .࣮ࣨ is a run of (௜ߩ)ܵܨ .௜ିଵ), i.eܫ

Next, we show that the mapping ܵܨ is a surjection, i.e. for an arbitrary run ߪ of ࣮ࣨ, there is exists 
an admissible time process ߨ∗ = (ܶܰ∗, ߮∗) of ࣮ ࣨ and a linearization ߩ∗ of ܶ ܰ∗ such that (∗ߩ)ܵܨ ࣮ࣨ Definition 9. Let  .∗ߩ and ∗ߨ The following definition provides constructions of .ߪ = =  ((ܲ, ܶ, ,ܨ ,଴ܯ ,(ܮ ߪ be a time Petri net and (ܦ = . ଵݐ . ௡ݐ  .   ∈  (ܶ ∪ {√})௡ 

be a run of ࣮ࣨ. 
We construct a finite sequence of tuples (ܧ௜, ,௜ܤ ,௜ܩ ௜) by induction on 0ܥ ≤ ݅ ≤ ݊. ݅ = 0. Then, set: 
଴ܧ − =  ∅; 
଴ܤ − = {ܾ଴,௣| ݌ ∈  ;{଴ܯ
଴ܩ − =  ∅; 
଴ܥ − = ݅ ;଴ܤ > 0. Assume that (ܧ௜ିଵ, ,௜ିଵܤ ,௜ିଵܩ  :௜ିଵ) is already constructed. Then, setܥ
௜ܧ − = ௜ିଵܧ ∪ {݁௜}; 

௜ܤ − = ௜ିଵܤ ∪ ቊ{ܾ௜,௣ | ௝ܾ,௣ ∈ ,{௜ିଵܥ ௜ݐ ݂݅   = √,൛ܾ௜,௣ ห݌ ∈ ,{⦁௜ݐ ݁ݏ݅ݓݎℎ݁ݐ݋ ; 
௜ܩ − = ௜ିଵܩ ∪ {(݁௜, ܾ௜,௣ )| ܾ௜,௣ ∈ {௜ܤ ∪ ቊ {൫ ௝ܾ,௣, ݁௜൯ห ௝ܾ,௣  ∈ ,{௜ିଵܥ ௜ݐ ݂݅  = √,{൫ ௝ܾ,௣, ݁௜൯ห ௝ܾ,௣ ∈ ,௜ିଵܥ ݌ ∈ ,{௜ݐ⦁  ;݁ݏ݅ݓݎℎ݁ݐ݋ 

௜ܥ − = (௜ିଵ\⦁݁௜ܥ) ∪ ݁௜⦁. 

Define ߨ∗ =  (ܶܰ∗, ߮∗)  = ,ܤ))  ,ܧ ,ܩ ݈∗), ߮∗) as follows: 
ܤ • = ,௡ܤ ܧ = ,௡ܧ = ܩ  ;௡ܩ 
• ߮∗( ௜݁) = ,௜ݐ for all ݁௜ ∈ ,ܧ and ߮∗(ܾ௜,௣) = ,݌ for all ܾ௜,௣ ∈  ;ܤ

• ݈∗(݁) = ቊ ,݇ܿ݅ݐ  ݂݅߮∗(݁) = ,൫߮∗(݁)൯ܮ,√ ݁ݏ݅ݓݎℎ݁ݐ݋ , ݁ ݈݈ܽ ݎ݋݂ ∈  .ܧ

Determine ߩ∗ = ݁ଵ . . . ݁௡. Example 9. Consider the time Petri net ࣮෪ࣨ  depicted in Fig. 1 and its run ߪ =  ଶ. Weݐ√ଷݐ√ଵݐ
construct the sequence of the following tuples (ܧ௜, ,௜ܤ ,௜ܩ ௜), with 0ܥ ≤ ݅ ≤ 5. 
− ݅ = 0. Set ܧ଴ = ଴ܥ ;∅  = ଴ܤ = ൛ܾ଴,௣ห݌ ∈ ଴ܯ = ,ଵ݌} {{ଶ݌ = {ܾ଴,௣భ, ܾ଴,௣మ}; ܩ଴ =  ∅. 
− ݅ = 1. Set ܧଵ = ଴ܧ ∪ {݁ଵ}; ܤଵ = ଴ܤ ∪ ൛ܾଵ,௣ ห ݌ ∈ ⦁ଵݐ = {{ଷ݌} = {ܾଵ,௣య}; ܩଵ = ଴ܩ  ∪{(݁ଵ, ܾଵ,௣ )| ܾଵ,௣ ∈ {ଵܤ  ∪ {൫ ௝ܾ,௣, ݁ଵ൯ ห ௝ܾ,௣ ∈ ,଴ܥ ݌ ∈ ଵݐ⦁ = {{ଵ݌} = ଴ܩ ∪{(݁ଵ, ܾଵ,௣య), (ܾ଴,௣భ, ݁ଵ)} ;   ܥଵ = (଴ \ ⦁݁ଵܥ) ∪ ݁ଵ⦁ = {ܾ଴,௣మ, ܾଵ,௣య} . 
− ݅ = 2. Set ܧଶ = ଵܧ ∪ {݁ଶ}; ܤଶ = ଵܤ ∪ ൛ܾଶ,௣ ห ௝ܾ,௣ ∈ {ଵܥ = {ܾଶ,௣మ, ܾଶ,௣య}; ܩଶ = ଵܩ  ∪{(݁ଶ, ܾଶ,௣ )| ܾଶ,௣ ∈ {ଶܤ  ∪  {൫ ௝ܾ,௣, ݁ଶ൯ ห ௝ܾ,௣  ∈ {ଵܥ = ଵܩ ∪{(݁ଶ, ܾଶ,௣య), (݁ଶ, ܾଶ,௣మ), (ܾଵ,௣య, ݁ଶ), (ܾ଴,௣మ, ݁ଶ)} ;    ܥଶ = (ଵ \ ⦁݁ଶܥ) ∪ ݁ଶ⦁ = {ܾଶ,௣య, ܾଶ,௣మ}. 
− ݅ = 3. Set ܧଷ = ଶܧ ∪ {݁ଷ}; ܤଷ = ଶܤ ∪ ൛ܾଷ,௣ ห ݌ ∈ ⦁ଷݐ = {{ସ݌} = {ܾଷ,௣ర}; ܩଷ = ଶܩ  ∪



Вирбицкайте И.Б., Зубарев А.Ю. Временные причинные процессы во временных сетях Петри со слабой семантикой. Труды ИСП 
РАН, том 32, вып. 4, 2020 г., стр. 259-282 

277 

{൫݁ଷ, ܾଷ,௣ ൯ | ܾଷ,௣ ∈ {ଷܤ  ∪ {൫ ௝ܾ,௣, ݁ଷ൯ ห ௝ܾ,௣ ∈ ,ଶܥ ݌ ∈ ଷݐ⦁ = {{ଶ݌} = ଷܩ ∪{(݁ଷ, ܾଷ,௣ర), (ܾଶ,௣మ, ݁ଷ)}; ܥଷ = (ଶ \ ⦁݁ଷܥ) ∪ ݁ଷ⦁ = {ܾଶ,௣య, ܾଷ,௣ర}. 
− ݅ = 4. Set ܧସ = ଷܧ ∪ {݁ସ}; ܤସ = ଷܤ ∪ ൛ܾସ,௣  ห ௝ܾ,௣ ∈ {ଷܥ = {ܾସ,௣య, ܾସ,௣ర}; ܩସ = ଷܩ  ∪{(݁ସ, ܾସ,௣ )| ܾସ,௣ ∈ {ସܤ  ∪  {൫ ௝ܾ,௣, ݁ସ൯ ห ௝ܾ,௣  ∈ {ଷܥ = ଷܩ ∪{(݁ସ, ܾସ,௣య), (݁ସ, ܾସ,௣ర), (ܾଶ,௣య, ݁ସ), (ܾଷ,௣ర, ݁ସ)}; ܥସ = (ଷ \ ⦁݁ସܥ) ∪ ݁ସ⦁ = {ܾସ,௣య, ܾସ,௣ర}. 
− ݅ = 5. Set ܧହ = ସܧ ∪ {݁ହ}; ܤହ = ସܤ ∪ ൛ܾହ,௣ ห ݌ ∈ ⦁ଶݐ = ,ଵ݌} {{ଶ݌ = {ܾହ,௣భ, ܾହ,௣మ}; ܩହ = ସܩ  ∪{൫݁ହ, ܾହ,௣ ൯ | ܾହ,௣ ∈ {ହܤ  ∪ {൫ ௝ܾ,௣, ݁ହ൯ ห ௝ܾ,௣ ∈ ,ସܥ ݌ ∈ ଶݐ⦁ = ,ଷ݌} {{ସ݌ = ସܩ ∪{(݁ହ, ܾହ,௣భ), (݁ହ, ܾହ,௣మ), (ܾସ,௣య, ݁ହ), (ܾସ,௣ర, ݁ହ)} ; ܥହ = (ସ \ ⦁݁ହܥ) ∪ ݁ହ⦁ = {ܾହ,௣భ, ܾହ,௣మ}. 

Determine the following: ߮∗(݁௜) = ௜, for all ݁௜ݐ  ∈ ହ,  ߮∗൫ܧ ௝ܾ,௣൯ = for all ௝ܾ,௣ ,݌ ∈ ହ, ݈∗(݁௜)ܤ =ቊ ,݇ܿ݅ݐ ݂݅ ߮∗( ௜݁)  = ,൫߮∗(݁௜)൯ܮ,√ ,݁ݏ݅ݓݎℎ݁ݐ݋ for all ݁௜ ∈ ∗ߨ ହ. Identifyܧ  =  (ܶܰ∗෪ = ,ହܧ) ,ହܤ ,ହܩ ,ହܥ ݈∗), ߮∗) and ߩ∗ =݁ଵ. . . ݁௡. Notice that  ܶ෪ܰ ∗ and  ܶ෪ܰ  from Example 6 are equal up to renaming their conditions.    
◻ 

The following lemmas demonstrate important properties of the constructions from Definition 9. Lemma 4.  
a) ܶܰ∗ is a casual net; 
b) ߩ∗ = ݁ଵ. . . ݁௡ is a linearization of  ܶܰ∗; 
c) ܥ௜ = for all 0 ,(௜ܧ)ݐݑܥ ≤ ݅ ≤ ݊. Proof.  See Appendix.                        ◻ Lemma 5.  The mapping ߮∗ is a homomorphism from ܶܰ∗ to ࣮ࣨ. Proof.  See Appendix.                                                                                                                                         ◻ 
We are now ready to establish that ܵܨ is a surjective mapping. Theorem 4. Given a run ߪ of a time Petri net ࣮ࣨ, there exists an admissible time process ߨ∗  = (ܶܰ∗, ߮∗) of  ࣮ࣨ and a linearization ߩ∗ =  ݁ଵ. . . ݁௡ of  ܶܰ∗ such that ߪ = (∗ߩ)ܵܨ  = ߮∗(݁ଵ) … ߮∗(݁௡). Proof. Consider the construction of ߨ∗ from Definition 9. According to Lemma 4(a) and Lemma 5, ߨ∗ is a time process of ࣮ࣨ. Take an arbitrary 1 ≤ ݅ ≤ ݊ such that ߮∗(݁௜) ∈ ܶ. Then, ۱ܓ܋ܗܔ(⦁݁௜, ߮∗(݁௜))  = ((௜݁)∗߮ )ݐ݂ܧ being a run of ࣮ࣨ, we obtain that ߪ ௜ିଵ(߮∗(݁௜)), by Lemma 3(c). Due toܫ  ≤ ,௜݁⦁)ܓ܋ܗܔ۱ ߮∗(݁௜)) ≤ ∗ߩ ,is an admissible time process of ࣮ࣨ. Thanks to Lemma 4(b) ∗ߨ ,Hence .((௜݁)∗߮)ݐ݂ܮ   =  ݁ଵ. . . ݁௡ is a linearization of ܶܰ∗. By the construction of ߮∗, we 
get that (∗ߩ)ܵܨ =                         .ߪ
◻ 

The following theorem shows that ܵܨ is an injection, i.e. the constructed in Definition 9 time process ߨ∗ = (ܶܰ∗, ߮∗) is unique up to isomorphism. Theorem 5. Let ߪ be a run of ࣮ࣨ. The time process ߨ =  (ܶܰ, ߮) of ࣮ࣨ with linearization ߩ = ݁ଵ. . . ݁௡ of ܶܰ, such that ߪ = (ߩ)ܵܨ  = ߮(݁ଵ) … ߮(݁௡) is unique up to isomorphism. Proof. Take arbitrary time process ߨ′ =  (ܶܰ′ = ,ᇱܤ)  ,ᇱܧ ,ᇱܩ ݈′), ߮′) of ࣮ࣨ and linearization ߩᇱ =݁ᇱଵ … ݁′௡ (݊ ≥ 0) of ܶܰ′ such that (′ߩ)ܵܨ = ᇱܧ ,Then .ߪ = {݁′ଵ, . . . , ݁′௡ }, by the definition of the 
linearization. 

Moreover, ܤᇱ =  ⦁ܶܰᇱ ⊕ ݁ᇱଵ⦁ ⊕ … ⊕ ݁′௡⦁, due to ܶܰ′ being an acyclic net. Set ܤ଴ᇱ = ⦁ܶܰᇱ and ܤ௜ᇱ = ௜ିଵᇱܤ  ∪ ݁௜′⦁, for 1 ≤ ݅ ≤ ݊. By Definition 7, the restriction of ߮ ′ to ⦁ܶܰ′ is a bijection between 
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⦁ܶܰᇱand ܯ଴. Then, w.l.o.g. assume ܤ′଴ = {ܾ′଴,௣|݌ ∈ ଴}, with ߮′(ܾ′଴,௣)ܯ = Take an arbitrary 1 .݌  ≤  ݅ ≤ ݊. Suppose ߮′(݁′௜) ∈ ܶ. Then, due to the restriction of ߮′ to ݁′௜⦁ being a bijection between ݁′௜⦁ and ߮ ′(݁′௜)⦁, w.l.o.g. assume ݁′௜⦁ = {ܾᇱ௜,௣ |݌ ∈ ߮′(݁ᇱ௜)⦁}.  If ߮′(݁ᇱ௜) = √, then ݁ ′௜⦁  is a cut, i.e. ݁′௜⦁ ≠ ∅, thanks to Definition 7. In addition, we have that ݁′௜⦁ ⊆ ⦁′is cut, by Lemma 2(c), i.e. ݁௜ (௜′ܧ)ݐݑܥ by Lemma 2(a), and ,(௜′ܧ)ݐݑܥ  = ௜ܯ Thanks to Definition 2, it holds that .(௜′ܧ)ݐݑܥ  according ,((௜ିଵ′ܧ)ݐݑܥ)′߮ ௜ିଵ. Hence, the restriction of ߮′ to ݁௜′⦁ is a bijection between ݁௜ᇱ⦁ andܯ =
to Lemma 3(a). W.l.o.g. suppose ݁௜ᇱ⦁ = {ܾᇱ௜,௣ | ݌ ∈ Thus, for all 1 .{((௜ିଵ′ܧ)ݐݑܥ)′߮ ≤ ݅ ≤ ݊, we 
obtain the following: 

௜ᇱܤ − = ௜ିଵᇱܤ  ∪ ቊ݁௜ᇱ⦁ = {ܾᇱ௜,௣ | ݌ ∈ ,{((௜ିଵ′ܧ)ݐݑܥ)′߮ ݂݅ ߮′(݁௜ᇱ) = √,݁௜ᇱ⦁ = {ܾᇱ௜,௣ | ݌ ∈ ߮′(݁௜ᇱ)⦁}, ݁ݏ݅ݓݎℎ݁ݐ݋ ; 
− ߮′(ܾᇱ௜,௣)  = ,݌  for all ܾᇱ௜,௣ ∈  .௜ᇱܤ
Compare the time process ߨ′ of ࣮ࣨ and the time process ߨ∗ = ,ܤ))  ,ܧ ,ܩ ݈∗), ߮∗) of ࣮ࣨ of ܶܰ∗ 
(from Definition 9). Clearly, ܧᇱ and ܧ have the same cardinality. Due to (′ߩ)ܵܨ =  we ,(∗ߩ)ܵܨ
obtain that ߮′(݁௜ᇱ) =  ߮∗( ݁௜), for all 1 ≤  ݅ ≤ ݊. According Lemma 3(a) and Lemma 4(c), it holds 
that ߮′(ݐݑܥ(ܧ௜ିଵ)) = ௜ିଵܯ  = (௜ିଵܧ)ݐݑܥ)∗߮  = ,(௜ିଵܥ for all 1 ≤  ݅ ≤ ݊. Hence, ܤ௜ and ܤ௜ᇱ have 
the same cardinality, for all 0 ≤  ݅ ≤ ݊. 
Thanks to the definitions of ܧᇱ (ܧ∗) and ܤᇱ (ܤ∗), we can construct a bijective mapping ߛ ᇱܧ) ∶ ∪ (ᇱܤ  → ܧ)  ∪ (௜ᇱ݁)ߛ with ,(ܤ  =  ݁௜, for all ݁ ௜ᇱ ∈ ൫ܾᇱ௝,௣ ൯ߛ ᇱ, andܧ = ௝ܾ,௣, for all ܾ ᇱ௝,௣ ∈  ᇱ suchܤ
that ߛ( ܤᇱ) = (ᇱܧ)ߛ and ܤ  = (ݔ)Clearly, ߮ᇱ .ܧ  = ߮∗൫(ݔ)ߛ൯, for all ݔ ∈ ᇱܤ ∪ ᇱ, and hence, ݈ᇱ(݁௜ᇱ)ܧ = ݈∗൫ߛ(݁௜ᇱ)൯, for all ݁௜ᇱ  ∈ Take an arbitrary 1 .ܩ ᇱ is isomorphic toܩ ᇱ. It remains to show thatܧ ≤  ݅ ≤ ݊. Due to the definitions of ܤ௜ and ܤᇱ௜ , we have that ൫݁௜ᇱ, ܾᇱ௝,௣൯ ∈ ᇱܩ ⇔ ܾᇱ௝,௣  ∈ ᇱ௜ܤ ⇔௝ܾ,௣  ∈ ௜ܤ  ⇔ ൫ ݁௜, ௝ܾ,௣൯ ∈ ,Check that ൫ܾᇱ௝,௣ .ܩ  ݁௜ᇱ൯ ∈ ᇱܩ ⇔  ൫ ௝ܾ,௣, ݁௜൯ ∈ Claim. ௝ܾ,௣  .ܩ   ∈ (௜ିଵܧ)ݐݑܥ ⇔  ܾᇱ௝,௣  ∈ Proof. We prove the case with ௝ܾ,௣ .(ᇱ௜ିଵܧ)ݐݑܥ  ∈ the case with ܾᇱ௝,௣) (௜ିଵܧ)ݐݑܥ  ∈  .(is symmetric (ᇱ௜ିଵܧ)ݐݑܥ
Then, there exists ܾᇱ௝ᇱ,௣  ∈ according to Lemma 3(a). Suppose a contrary, i.e. ݆ᇱ ,(ᇱ௜ିଵܧ)ݐݑܥ ≠ ݆. 
W.l.o.g. assume ݆ < ݆ᇱ <  ݅. As ߛ ∶ ᇱܤ   → is bijection, there exists ௝ܾᇱ,௣ ܤ  =  Due to .(ᇱ௝ᇱ,௣ܾ)ߛ
Definition 9, we have that ௝ܾ,௣ ∈ ⦁ܶܰ, if ݆ = 0, or ௝ܾ,௣ ∈  ௝݁⦁ ⊆ ݆ ௝⦁, ifܧ > 0, and ௝ܾᇱ,௣ ∈  ௝݁ᇱ⦁ , 
because ݆ᇱ > ݆. Then,  ௝ܾᇱ,௣ ∈ by Lemma 2(a). However, ௝ܾ,௣ ,(௝ᇱܧ)ݐݑܥ  ∉  thanks to ,(௝ᇱܧ)ݐݑܥ
Lemma 3(a). Since ܧ௝⦁ ⊆ ௝ᇱ⦁ , we get that ௝ܾ,௣ܧ   ∈ ⦁ܶܰ ∪ ௝ᇱ⦁. Hence, ௝ܾ,௣ܧ  ∈  ௝ᇱ, due to theܧ⦁
definition of ݐݑܥ(ܧ௝ᇱ). This implies that ௝ܾ,௣  ∈ ௜ିଵ, contradicting ௝ܾ,௣ܧ⦁  ∈       .(௜ିଵܧ)ݐݑܥ
◻ 
According to Lemma 2(b), we have ⦁݁௜ᇱ  ⊆ ௜ିଵᇱܧ)ݐݑܥ ). Assume that ߮ᇱ(݁௜ᇱ) = √. Then, ⦁݁௜ᇱ is a cut, 
i.e ⦁݁௜ᇱ ≠ ∅, due to Definition 7. Moreover, we have that ݐݑܥ(ܧᇱ௜ିଵ) is cut, by Lemma 2(c), i.e. ⦁݁௜ᇱ ,Therefore, (ܾᇱ௝,௣ .(ᇱ௜ିଵܧ)ݐݑܥ = ݁௜ᇱ)  ∈ ᇱܩ  ⇔ ܾᇱ௝,௣  ∈ (ᇱ௜ିଵܧ)ݐݑܥ  ⇔  ௝ܾ,௣  ∈ (௜ିଵܧ)ݐݑܥ  ⇔ ( ௝ܾ,௣,  ݁௜) ∈ ߮ thanks to Claim. Assume ,ܩ ′(݁௜ᇱ) ∈ ܶ. Then, it holds that ⦁݁௜ᇱ = {ܾᇱ௝,௣ | ݌ ∈ ⦁߮′(݁௜ᇱ) ∧ ܾᇱ௝,௣ ∈  .due to the restriction of ߮′ to ⦁݁௜ᇱ being a bijection between ⦁݁௜ᇱ and ⦁߮′(݁௜ᇱ) ,{(ᇱ௜ିଵܧ)ݐݑܥ
By virtue of Claim, we get that ൫ܾᇱ௝,௣, ݁௜ᇱ൯ ∈ ᇱܩ  ⇔ ݌  ∈ ⦁߮′(݁௜ᇱ) ∧  ܾᇱ௝,௣ ∈ (ᇱ௜ିଵܧ)ݐݑܥ  ⇔ ݌  ∈⦁߮∗(݁௜)  ∧  ௝ܾ,௣  ∈ (௜ିଵܧ)ݐݑܥ  ⇔ ( ௝ܾ,௣,  ݁௜)  ∈  .ܩ
Therefore, we obtain that ߛ: ′ߨ ≃                     .∗ߨ
◻ 

Thus, we have demonstrated that ܵܨ is a bijective mapping between linearizations of time processes 
and runs from the initial state, in the context of the TPN ࣮ࣨ. 
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6. Conclusion 
In this paper, we have introduced and studied partial order semantics for TPNs with weak time 
elapsing and intermediate memory policies. First, we have developed a state space discretization 
technique for the TPN, i.e. we have shown that any of its run with real-value time elapsings can be 
represented as that with the same untimed part and with only unit time elapsings. This allows us to 
transform time elapsings into the structure of a causal net with tick-events. Second, partial order 
semantics of the TPN has been proposed in the terms of time causal processes which consist of 
causal nets and their homomorphism into the TPN. Partial order semantics is useful for taking into 
account the processes' timing behavior in addition to their degrees of relative concurrency. Also, in 
the context of the TPN, a bijective mapping has been proved to exist between interleaving runs and 
computations (linearizations) of time causal processes, demonstrating that the partial order 
semantics is correct w.r.t. the interleaving that. 
As for future work, we plan to extend the results obtained to atomic memory and back in time 
policies. As well, we believe that partial order semantics developed here allows us to elaborate and 
investigate behavioral equivalences of TPNs with weak semantics, in interleaving – partial order 
dichotomy. 
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Appendix Proof of Lemma 1.  Let ߚ is a solution of ܤఠ. We shall prove, that (ܯ଴, (଴ܫ ⟶[ఠ೔]ഁ ,ఠ೔ܯ) ఠ೔ᇱܫ] ]ఉ), for 
all 0 ≤ ݅ ≤ ݇, by induction on ݅. ݅ = 0. Due to Definition 4, we get: ߱଴ = ఠబܯ ;଴ݔ = ݐ∀ ;଴ܯ ∈ ఠబ൯ܯ൫݊ܧ ∶ ఠబᇱܫ (ݐ) = ,଴ܯ) ,଴. Henceݔ (଴ܫ ⟶[ఠబ]ഁ ,ఠబܯ) ఠబᇱܫ] ]ఉ), thanks to Definition 2. ݅ > 0. By the induction hypothesis, we have that (ܯ଴, (଴ܫ ⟶[ఠ೔షభ]ഁ ,ఠ೔షభܯ) ఠ೔షభᇱܫ] ]ఉ). Due to 
Definition 4, it holds: 
− ߱௜ = ߱௜ିଵݐ௜ݔ௜; 
:ఠ೔ܯ − = (௜ݐ⦁\ఠ೔షభܯ) ∪ ௜ݐ .௜⦁   (i.eݐ ∈  ;((ఠ೔షభܯ)݊ܧ

(௜ݐ)ݐ݂ܧ − ≤ ఠ೔షభᇱܫ (௜ݐ) ≤  ;ఠܤ in (௜ݐ)ݐ݂ܮ

ݐ∀ − ∈ ఠ೔ᇱܫ ,ఠ೔൯ܯ൫݊ܧ (ݐ) − ௜ݔ =  ቊ 0, if ↑ ,ݐ)݈ܾ݀݁ܽ݊݁ ,ఠ೔షభܯ ఠ೔షభᇱܫ(௜ݐ ,(ݐ) otherwise . 
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Then, ݐ݂ܧ(ݐ௜) ≤ ఠ೔షభᇱܫ] ఉ[(ݐ) ≤  ௜ can fire fromݐ ,ఠ.  Thereforeܤ is a solution of ߚ because ,(௜ݐ)ݐ݂ܮ
the state (ܯఠ೔షభ, ఠ೔షభᇱܫ] ]ఉ).   By Definition 2, we have that (ܯ଴, (଴ܫ ⟶[ఠ೔షభ]ഁ ,ఠ೔షభܯ) ఠ೔షభᇱܫ] ]ఉ) ⟶௧೔ ,ఠ೔ܯ) ఠ೔ᇱܫ] ]ఉ − ((௜ݔ)ߚ ⟶ఉ(௫೔) ,ఠ೔ܯ) ఠ೔ᇱܫ] ]ఉ). Hence, it is true that (ܯ଴, (଴ܫ ⟶[ఠ]ഁ ,ఠܯ) ఠᇱܫ] ]ఉ). Moreover, for all 1 ≤ ݅ ≤ ݇, we have [ܫ′ఠ೔షభ(ݐ௜)]ఉ   .Proof of Proposition 1  ◻    .(௜ݐ)௜ିଵ′ܫ =
Let ߱ = .ଵݔଵݐ଴ݔ  . . ≥ ௜ be the functions from Definition 5, with 0ߚ ;௞ݔ௞ݐ  ݅ ≤ ఠߚ ;݇ =  ௞; and ℬఠߚ
be the set of the variable parts of the inequalities from ܤఠ. In order to show that the assignment ߚఠ  
is a solution of  ߱, we consider an important property of the mappingߚ ݏ௜, for all 0 ≤  ݅ ≤ ݇. Claim. For all ݃ ∈ ℬఠ and 0 ≤  ݅ ≤ ݇, it holds that ⌈ [݃]ఉ೔⌉ ≥  ⌊[݃]ఉబ⌋ and ⌊[݃]ఉ೔⌋  ≤  ⌈[݃]ఉబ⌉.  
Proof. We shall prove by induction on ݅. ݅ =  0. Obvious. ݅ >  0. Take an arbitrary  ݃ ∈ ℬఠ. By the induction hypothesis, we have that ⌈ [݃]ఉ೔షభ⌉ ≥  ⌊[݃]ఉబ⌋ 
and  ⌊[݃]ఉ೔షభ⌋  ≤  ⌈[݃]ఉబ⌉. Let ߚ௜ be the function from Definition 5.   
Assume that does not exist ℎ ∈ ℬఠ ݏ. .ݐ ⌈ [ℎ]ఉ೔⌉ <  ⌊[ℎ]ఉబ⌋. Then, [݃]ఉ೔ = [݃]ఉ೔ and  [݃]ఉ೔ ≤[݃]ఉ೔షభ, due to Definition 5. Then ⌈ [݃]ఉ೔⌉ = ⌈ [݃]ఉ೔⌉ ≥  ⌊[݃]ఉబ⌋ and ⌊[݃]ఉ೔⌋  ≤  ⌊[݃]ఉ೔షభ⌋ ≤  ⌈⌊݃⌋ఉబ⌉. 
Assume that there is exists ℎ ∈ ℬఠ ݏ. .ݐ ⌈ [ℎ]ఉ೔⌉ <  ⌊[ℎ]ఉబ⌋. Then, [݃]ఉ೔ ≥ [݃]ఉ೔షభ, by Definition 5. 
Therefore,  ⌈[݃]ఉ೔⌉ ≥ ⌈[݃]ఉ೔షభ⌉ ≥ ⌊[݃]ఉబ⌋. Suppose a contrary, i.e. ⌊[݃]ఉ೔⌋ > ⌈[݃]ఉబ⌉. Then, [݃]ఉ೔ ≥⌊[݃]ఉ೔⌋ ≥ ඃ[݃]ఉబඇ + 1. According to Definition 5, ݔ௞ି௜ appears in ݃ and ℎ and, moreover, [ℎ]ఉ೔  = [ℎ]ఉ೔షభ − (௞ି௜ݔ)௜ିଵߚ + (௞ି௜ݔ)௜ߚ  =  [ℎ]ఉ೔షభ − (௞ି௜ݔ)௜ିଵߚ + ⌈(௞ି௜ݔ)௜ିଵߚ⌉  ≤  [ℎ]ఉ೔షభ (௞ି௜ݔ)௜ିଵߚ −  + ⌊(௞ି௜ݔ)௜ିଵߚ ⌋ +  1 =  [ℎ]ఉ೔   +  1. As [ℎ]ఉ೔ + 1 ≤  ⌈ [ℎ]ఉ೔⌉ + 1 ≤  ⌊[ℎ]ఉబ⌋, we have [ℎ]ఉ೔ ≤ ⌊[ℎ]ఉబ⌋. Let ܵ ∶  ℕ ×  ℕ → ℝஹ଴ be such that ܵ(ܽ, ܾ)  = ∑ ௝௕௝ୀ௔ݔ , if ܽ <  ܾ, and ܵ(ܽ, ܾ)  = 0, otherwise. Due to Definition 4, it holds that ℎ =  ܵ(݉, ݊) and ݃ =  ܵ(݉ᇱ, ݊′), where 0 ≤ ݉, ݉ᇱ ≤  ݇ −  ݅ ≤ ݊, ݊′ ≤  ݇. By the construction of ߚ௞, we have that [ܵ(ܽ, ܾ)]ఉ೎  =  [ܵ(ܽ, ܾ)]ఉబ, 
if 0 ≤ ܾ <  ݇ −  ܿ ≤ ݇; and [ܵ(ܽ, ܾ)]ఉ೎  =  [ܵ(ܽ, ܾ)]ఉೖ, if 0 ≤  ݇ −  ܿ ≤  ܽ ≤  ݇. Therefore, we 
obtain the following: 

(1) [ܵ(݇ − ݅, ݊)]ఉ೔  ≤ ⌊[ܵ(݇ − ݅, ݊)]ఉబ⌋, due to [ܵ(݉, ݇ − ݅ − 1)]ఉ೔ =  [ܵ(݉, ݇ − ݅ −1)]ఉబ and  [ℎ]ఉ೔ ≤  ⌈ [ℎ]ఉ೔⌉ <  ⌊[ℎ]ఉబ⌋; 
(2) [ܵ(݇ − ݅, ݊′)]ఉ೔ ≥ ⌈[ܵ(݇ − ݅, ݊′)]ఉబ⌉ + 1, due to [ܵ(݉ᇱ, ݇ − ݅ − 1)]ఉ೔  =  [ܵ(݉ᇱ, ݇ − ݅ − 1)]ఉబ and [݃]ఉ೔ ≥  ⌈[݃]ఉబ⌉  +  1; 

(3) [ܵ(݉ᇱ, ݊)]ఉೖష೙షభ =  [ܵ(݉ᇱ, ݊)]ఉబ; 

(4) [ܵ(݉, ݊′)]ఉೖష೙ᇲషభ =  [ܵ(݉, ݊′)]ఉబ; 

(5) [ܵ(݊ + 1, ݊′)]ఉೖష೙షభ =  [ܵ(݊ + 1, ݊′)]ఉ೔ = [ܵ(݊ + 1, ݊′)]ఉೖ; 

(6) [ܵ(݊ᇱ + 1, ݊)]ఉೖష೙ᇲషభ =  [ܵ(݊ᇱ + 1, ݊)]ఉ೔ = [ܵ(݊ᇱ + 1, ݊)]ఉೖ. 

Three cases are admissible: 

− ݊ =  ݊ᇱ. Then, (1) contradicts (2). 

− ݊ <  ݊ᇱ. Then, it holds that [݃]ఉೖష೙షభ = [ܵ(݉ᇱ, ݊)]ఉೖష೙షభ + [ܵ(݊ + 1, ݊′)]ఉೖష೙షభ =(ଷ) [ܵ(݉ᇱ, ݇ − ݅ − 1)]ఉబ+[ܵ(݇ − ݅, ݊)]ఉబ + [ܵ(݊ + 1, ݊′)]ఉೖష೙షభ   ≥(ଵ),(ହ)   [ܵ(݉ᇱ, ݇ − ݅ −1)]ఉబ + [ܵ(݇ − ݅, ݊)]ఉ೔ + [ܵ(݊ + 1, ݊′)]ఉ೔ ≥(ଶ)  ⌈[݃]ఉబ⌉ +  1. This contradicts the induction 
hypothesis, because ݇ −  ݊ ≤  ݅. 
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− ݊ >  ݊ᇱ. Then, it holds that [ℎ]ఉೖష ೙ᇲషభ  =  [ܵ(݉, ݊′)]ఉೖష ೙ᇲషభ  +  [ܵ(݊ᇱ +1, ݊)]ఉೖష ೙ᇲషభ  =(ସ)  [ܵ(݉, ݇ − ݅ − 1)]ఉబ + [ܵ(݇ − ݅, ݊′)]ఉబ + [ܵ(݊ᇱ + 1, ݊)]ఉೖష ೙ᇲషభ  ≤(ଶ),(଺)  [ܵ(݉, ݇ − ݅ − 1)]ఉబ + [ܵ(݇ − ݅, ݊′)]ఉ೔ − 1 + [ܵ(݊ᇱ + 1, ݊)]ఉ೔ ≤(ଵ) ⌊[ℎ]ఉబ⌋ − 1 . We get a 
contradiction the induction hypothesis, because ݇ −  ݊′ ≤  ݅.            ◻ 

By Definition 4, ݔ௞ does not appear in ܤఠ. Then, ߚ଴ is a solution of ܤఠ, according to Definition 5. 
Take an arbitrary ݃ from ℬఠ. Then, it holds that (ܽ ≤ ݃ ≤  ܾ)  ∈ ,ܽ ఠ, whereܤ  ܾ ∈  ℤ. By Claim, 
we have ⌊[݃]ఉబ⌋  ≤  [݃]ఉഘ ≤ ⌈[݃]ఉబ⌉.  Due to ߚ଴ being a solution, we obtain ܽ ≤ [݃]ఉబ ≤ ܾ and, 
moreover ܽ ≤ ⌊[݃]ఉబ⌋, ⌈[݃]ఉబ⌉ ≤ ܾ, because ܽ, ܾ ∈  ℕ ∪ ∞. Thus, it holds that ܽ ≤ ⌊[݃]ఉబ⌋  ≤ [݃]ఉഘ ≤ ⌈[݃]ఉబ⌉ ≤ ܾ. Therefore, ߚఠ is a solution of ܤఠ.                                                        ◻ Proof of Lemma 2. 
a) Take an arbitrary 1 ≤  ݇ ≤ ݊. By definitions, we have that ݐݑܥ(ܧ௞) = ௞ܧ⦁ \(⦁௞ܧ ∪ ܰܶ⦁) = (⦁ܶܰ ∪ ⦁௞ିଵܧ  ∪ ݁௞⦁)\(⦁ܧ௞ିଵ ∪ ⦁݁௞). As ܶܰ is an acyclic net, we obtain that ⦁݁௞ ∩ ݁௞⦁ = ∅ 

and ⦁ܧ௞ିଵ ∩ ݁௞⦁ = ∅. Then, it holds that ݐݑܥ(ܧ௞) = (௞݁⦁\(௞ିଵܧ⦁\(⦁௞ିଵܧ ∪ ܰܶ⦁))) ∪ ݁௞⦁ (௞݁⦁\(௞ିଵܧ)ݐݑܥ)= ∪ ݁௞⦁. 

b) Take arbitrary 1 ≤  ݇ ≤ ݊. The case with ⦁݁௞ = ∅ is trivial. Suppose ܾ ∈ ⦁݁௞. By definition, we 
have that ݐݑܥ(ܧ௞ିଵ) = ܾ ,௞ିଵ. Due to ܶܰ being a causal netܧ⦁\(⦁௞ିଵܧ ∪ ܰܶ⦁) ∉ ⦁݁௜, for all 1 ≤  ݅ < ݇. Hence, ܾ ∉ ܾ ௞ିଵ. Ifܧ⦁ ∈ ⦁ܶܰ, then ܾ ∈ ܾ Consider the case when .(௞ିଵܧ)ݐݑܥ ∉⦁ܶܰ. Then, there is ݁௜ such that ܾ ∈ ݁௜⦁. Clearly, ݁௜ ≺ ݁௞. This implies that ݅ <  ݇, in the 
linearization ߩ. Hence, ܾ ∈ ܾ ௞ିଵ⦁ andܧ ∈  .(௞ିଵܧ)ݐݑܥ

c) As ݐݑܥ(ܧ଴) =  ⦁ܶܰ = {ܾ ∈ = ܾ⦁ | ܤ   ∅}, we have ݐݑܥ(ܧ଴) is a co-set. Suppose a contrary, 
i.e. there are ܾ, ܾ′ ∈ for some 1 ,(௞ܧ)ݐݑܥ  ≤  ݇ ≤ ݊, such that ܾ ≺  ܾ′. As ߩ is a linearization, we 
have ܾ݁ܩ௜ … ௝݁ ܾܩ′, with ݅ ≤  ݆. Due to ݐݑܥ(ܧ௞) = (⦁ܶܰ ∪ ,ܾ ௞, we getܧ⦁ \(⦁௞ܧ  ܾᇱ ∉ ௞ and ܾᇱܧ⦁  ∈ = ′ܾ⦁ ௞⦁. Sinceܧ  ௝݁ , it holds that ݆ ≤ ݇, i.e. ݅ ≤ ݇. This means that ܾ ∈ ⦁݁௜ ⊆  ,௞ܧ⦁
contradicting ܾ ∉ ܾ)¬ ,௞. Thusܧ⦁  ≺  ܾ′). 

We shall show that ݐݑܥ(ܧ௞) is a cut, for all 0 ≤  ݇ ≤ ݊. Suppose a contrary, i.e. there exists ܾ ∉ݐݑܥ(ܧ௞), for some 0 ≤  ݇ ≤ ݊, such that ¬(ܾ ≺  ܾᇱ) and ¬(ܾᇱ ≺  ܾ), for all ܾᇱ  ∈  .(௞ܧ)ݐݑܥ
W.l.o.g. assume ܾ ∈ ≥ for some 0 ,(௜ܧ)ݐݑܥ ݅ ≠  ݇ ≤ ݊. Thanks to item a), ݐݑܥ൫ܧ௝൯ = ൫ݐݑܥ൫ܧ௝ିଵ൯\ ⦁ ௝݁൯ ∪ ௝݁⦁, for all 1 ≤  ݆ ≤  ݊. If ݅ <  ݇, then we get that ܾ݁ܩ௟ … ݁௠ܾܩᇱ, for 
some ܾᇱ  ∈ > ݅ and (௞ܧ)ݐݑܥ  ݈ ≤ ݉ ≤  ݇, i.e. ܾ ≺  ܾ′, because ܶܰ is a causal net. If ݅ >  ݇, 
then we have that ܾᇱ݁ܩ௟ … ݁௠ܾܩ, for some ܾᇱ ∈ > ݇ and (௞ܧ)ݐݑܥ  ݈ ≤ ݉ ≤  ݅, i.e. ܾ′ ≺  ܾ, 
again because ܶܰ is a causal net. Thus, ݐݑܥ(ܧ௞) is a cut, for all 0 ≤  ݇ ≤ ݊.        
◻ Proof of Lemma 3. 

a), b) We shall verify the items by induction on 0 ≤  ݅ ≤ ݊. ݅ =  0. By definitions, it holds that ݐݑܥ(ܧ଴) = ⦁ܶܰ. 
a) The restriction of ߮ to ݐݑܥ(ܧ଴)  is a bijection between ݐݑܥ(ܧ଴) and ܯ଴, due to 

Definition 7. 
b) As ݁݃ܣ(ܾ)  =  0, for all ܾ ∈ ,(଴ܧ)ݐݑܥ)ܓ܋ܗܔ۱ ,ܰܶ⦁ (ݐ =  0 = ݐ for all ,(ݐ)଴ܫ  ∈  ,(଴ܯ)݊ܧ

thanks to ࣮ࣨ being ܶ-restricted. ݅ >  0. By the induction hypothesis, the items hold for ݅ − 1. We now check them for ݅. 
Two cases are admissible. 
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Case 1: ߮(݁௜) = √. Then, it holds that ܯ௜ିଵ =  ௜, by Definition 2. According toܯ
Definition 7, we have that ߮(݁௜⦁) = ߮(⦁݁௜) and ⦁݁௜, ݁௜⦁ are cuts, i.e. ⦁݁௜ ≠ ∅, ݁௜⦁ ≠ ∅. In 
addition, we have that ⦁݁௜  ⊆ ⦁௜݁ ,(௜ିଵܧ)ݐݑܥ ⊆  are (௜ܧ)ݐݑܥ ,(௜ିଵܧ)ݐݑܥ and ,(௜ܧ)ݐݑܥ
cuts, due to Lemma 2. Hence, we get that ⦁݁௜  = (௜ܧ)ݐݑܥ and (௜ିଵܧ)ݐݑܥ  =  ݁௜⦁, and, 
moreover, ߮(ݐݑܥ(ܧ௜)) = ((௜ିଵܧ)ݐݑܥ)߮ = ௜ିଵܯ  =  .௜ܯ
a) As the restriction of ߮ to ݁௜⦁ is an injection, by Definition 7, the restriction of ߮ to ݐݑܥ(ܧ௜) is a bijection between ݐݑܥ(ܧ௜) and ܯ௜. 
b) Take an arbitrary ݐ ∈ ݐ According to Definition 2, we have that .(௜ܯ)݊ܧ ∈  (௜ିଵܯ)݊ܧ

and  ܫ௜ିଵ(ݐ) +  ߮(݁௜) = (ܾ)݁݃ܣ ,By definition .(ݐ)௜ܫ    = (′ܾ)݁݃ܣ + ߮(݁௜), with ܾ′ ∈ (ܾ)߮ and (௜ିଵܧ)ݐݑܥ  =  ߮(ܾ′), for all ܾ ∈ ݁௜⦁ ∈  ࣮ࣨ Then, due to .(௜ܧ)ݐݑܥ
being ܶ-restricted, we obtain that ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), (ݐ = (ܾ)߮|(ܾ)݁݃ܣ})݊݅݉ ∈ ܾ,ݐ⦁ ∈ ({(௜ܧ)ݐݑܥ  = (ܾ)݁݃ܣ})݊݅݉  + ߮(݁௜)|߮(ܾ)  ∈ ,ݐ⦁ ܾ ∈ ({(௜ିଵܧ)ݐݑܥ ,(௜ିଵܧ)ݐݑܥ)ܓ܋ܗܔ۱ =  (ݐ  +  ߮(݁௜)  = (ݐ)௜ିଵܫ  +  ߮(݁௜) =  .(ݐ)௜ܫ  

Case 2: ߮(݁௜) ∈ ܶ. Then, ܯ௜ = (௜ିଵ \ ⦁߮(݁௜)ܯ) ∪ ߮(݁௜)⦁, according to Definition 2. 
Due to Definition 7, the restrictions of ߮ to  ⦁݁௜ ( ௜݁⦁) are bijections between ⦁݁௜ (݁௜⦁)  
and ⦁߮(݁௜) (߮(݁௜)⦁). 

a) By the inductive hypothesis, the restriction of ߮ to ݐݑܥ(ܧ௜ିଵ) is a bijection between ݐݑܥ(ܧ௜ିଵ) and ܯ௜ିଵ. Then, due to Definition 2, we get that ܯ௜ = ((௜݁)߮⦁ \ ((௜ିଵܧ)ݐݑܥ)߮) ∪ ߮(݁௜)⦁ = (௜݁⦁\ (௜ିଵܧ)ݐݑܥ))߮   ∪ ݁௜⦁)  =  using ,((௜ܧ)ݐݑܥ)߮ 
Lemma 2(a). Since ࣮ࣨ is contact-free, we obtain that ߮(ݐݑܥ(ܧ௜ିଵ)\⦁݁௜) ∩߮(݁௜⦁) = ∅. Therefore, the restriction of ߮ to ݐݑܥ(ܧ௜) is a bijection between ݐݑܥ(ܧ௜) and ܯ௜. 

b) Take an arbitrary ݐ ∈ ↑ Assume that .(௜ܯ)݊ܧ ,ݐ)݈ܾ݀݁ܽ݊݁ ,௜ିଵܯ ߮(݁௜)) is true. Then, 
we have that ݐ ∉ = ݐ or (௜ିଵ\⦁߮(݁௜)ܯ)݊ܧ  ߮(݁௜), by Definition 2. If ݐ =  ߮(݁௜), 
then ݐ ∈ ∌ ݐ and (௜ିଵܯ)݊ܧ (ݐ⦁\௜ିଵܯ)݊ܧ   = ݐ ,So .(௜ିଵ\⦁߮(݁௜)ܯ)݊ܧ ∉ (௜ܯ)݊ܧ Due to Definition 2, it is true that .(௜ିଵ\⦁߮(݁௜)ܯ)݊ܧ = (௜ିଵ \ ⦁߮(݁௜)ܯ))݊ܧ ∪ ߮(݁௜⦁)). 
Thanks to ࣮ࣨ is ܶ-restricted, we get ⦁ݐ ≠ ∅ and ߮(݁௜⦁) ≠ ∅. Since ݐ ∈ ݐ and (௜ܯ)݊ܧ ∉ ݐ⦁ we have that ,(௜ିଵ\⦁߮(݁௜)ܯ)݊ܧ ∩ ߮(݁௜⦁) ≠ ∅. According to Lemma 2(a), it 
holds that ݁௜⦁ ⊆ ܾ Hence, there is .(௜ܧ)ݐݑܥ ∈ (ܾ)߮ such that (௜ܧ)ݐݑܥ ∈ (ܾ)݁݃ܣ and ݐ⦁  =  0. Therefore, due to ࣮ࣨ being ܶ-restricted, it is true that ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), (ݐ =  (min {݁݃ܣ(ܾ)|߮(ܾ) ∈ ,ݐ⦁ ܾ ∈ ({(௜ܧ)ݐݑܥ  =  0. 
Thus, ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), (ݐ =  .due to Definition 2 ,(ݐ)௜ܫ 
Suppose that ↑ ,ݐ)݈ܾ݀݁ܽ݊݁  ,௜ିଵܯ ߮(݁௜)) is false. Then, we get that ݐ ∈ ݐ and (௜ିଵ\⦁߮(݁௜)ܯ)݊ܧ ≠  ߮(݁௜), by Definition 2. Hence, ⦁߮(݁௜) ∩ = ݐ⦁ ∅, i.e. ߮(⦁݁௜) ∩ (௜ିଵ\⦁߮(݁௜)ܯ) As ࣮ࣨ is contact-free, it holds that .∅= ݐ⦁ ∩ ߮(݁௜)⦁ =  ∅. This means 
that, ߮(݁௜)⦁ ∩ = ݐ⦁ ∅, i.e. ߮(݁௜⦁) ∩ = ݐ⦁ ∅,. Therefore, if ߮(ܾ) ∈ ܾ then ,ݐ⦁ ∉ ݁௜⦁ 
and ܾ ∉ ⦁݁௜. By the induction hypothesis, we have that ܫ௜ିଵ(ݐ) ,(௜ିଵܧ)ݐݑܥ)ܓ܋ܗܔ۱ =  (ݐ  = (ܾ)߮|(ܾ)݁݃ܣ})݊݅݉  ∈ ,ݐ⦁ ܾ ∈ ({(௜ିଵܧ)ݐݑܥ (ܾ)߮ |(ܾ)݁݃ܣ})݊݅݉ =  ∈ ,ݐ⦁ ܾ ∈ (௜݁⦁\(௜ିଵܧ)ݐݑܥ) ∪ ݁௜⦁}). Thanks to Lemma 2(a), we 
obtain that ܫ௜ିଵ(ݐ)  = ,(௜ܧ)ݐݑܥ)ܓ܋ܗܔ۱  (ݐ)௜ܫ Thus, it holds that .(ݐ = (ݐ)௜ିଵܫ  ,(௜ܧ)ݐݑܥ)ܓ܋ܗܔ۱ =   .due to Definition 2 ,(ݐ

c)  Assume that ݅ <  ݊ and ߮(݁௜ାଵ) ∈ Then, ߮(݁௜ାଵ) .(௜ܯ)݊ܧ ∈  due to item ,(((௜ܧ)ݐݑܥ)߮)݊ܧ
a). By definition, due to ࣮ࣨ being ܶ-restricted, we have that ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), ߮(݁௜ାଵ)) (ܾ)߮|(ܾ)݁݃ܣ})݊݅݉ =  ∈  ⦁߮(݁௜ାଵ), ܾ ∈ ܾ Take an arbitrary .({(௜ܧ)ݐݑܥ ∈ (ܾ)߮ such that (௜ܧ)ݐݑܥ ∈  ⦁߮(݁௜ାଵ). Thanks to the definition of a homomorphism, it holds that ߮(ܾ) ∈ ߮(⦁݁௜ାଵ). Hence, ܾ ∈ ⦁݁௜ାଵ, due to item a). By virtue of Lemma 2(b), ⦁݁௜ାଵ ⊆  This .(௜ܧ)ݐݑܥ
implies that ۱ݐݑܥ)ܓ܋ܗܔ(ܧ௜), ߮(݁௜ାଵ))  = ,௜ାଵ݁⦁)ܓ܋ܗܔ۱  ߮(݁௜ାଵ)). Therefore, ۱ܓ܋ܗܔ(⦁݁௜ାଵ, ߮(݁௜ାଵ))  =                  .௜(߮(݁௜ାଵ)), due to item (b)ܫ
◻ 
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Proof of Lemma 4. 
a) By the construction of ܶܰ∗, we have the following. First, ܤ and ܧ are finite sets. Second, ܩ ܤ) ⊇ × (ܧ ∪ ܧ) × ௜ܩis a flow relation such that ௝݁ (ܤ ௝ܾ,௣ܩ௜݁௜, i.e. ݆ < ݅. Hence, ܶܰ∗ is acyclic. 

Third, ݈∗: ܧ → ∪ ݐܿܣ we obtain that ⦁ܾ଴,௣ ,ܩ is a labeling function. By the construction of {݇ܿ݅ݐ} = ∅ and ⦁ܾ௜,௣  = {݁௜}, for all 1 ≤ ݅ ≤ ݊. Therefore, |⦁ܾ௜,௣| ≤ 1, for all 0 ≤ ݅ ≤ ݊. Suppose 
a contrary, i.e. | ௝ܾ,௣⦁| > 1, for some ௝ܾ,௣  ∈ ≠ ݅ Then, there exists .ܤ  ݅′ such that { ௝ܾ,௣} ∈ ⦁݁௜ and { ௝ܾ,௣} ∈ ⦁݁௜ᇲ . Hence, by the construction of ܩ, we get that ݆ < ݅, ௝ܾ,௣ ∈ ݆ ௜ିଵ  andܥ < ݅′, ௝ܾ,௣ ∈ ݅ ௜ᇲିଵ . W.l.o.g. assumeܥ < ݅′. As ܥ௟ = ⦁\௟ିଵܥ) ௟݁) ∪ ݁௟⦁, for all 1 ≤ ݈ ≤ ݊, there exists ݅ ≤݇ ≤ ݅ᇱ − 1 such that ௝ܾ,௣ ∈ ݁௞⦁. According to the construction of ܩ௞, ݆ =  ݇, contradicting ݆ <݇. 

b) Due to Definition 9, every event of ܶܰ∗ appears in the sequence ߩ∗ = ݁ଵ. . . ݁௡ exactly once. By 
the construction of ܩ, it holds that ݁௜ ≺ ௝݁ implies ݅ < ݆. 

c) As ܥ଴ = ⦁ܶܰ∗, we get ܥ଴ = ௜ܥ Thanks to items a), b) and Lemma 2(a), we obtain .(଴ܧ)ݐݑܥ for 0 ,(௜ܧ)ݐݑܥ= ≤ ݅ ≤ ݊.                                  
◻ Proof of Lemma 5. Claim. The restriction of ߮∗ to ܥ௜  is a bijection between ܥ௜  and ܯ௜, for all 0 ≤ ݅ ≤ ݊. Proof. We prove by induction on 0 ≤ ݅ ≤ ݊. ݅ = 0. Then, ܥ଴ = ଴ܤ = {ܾ଴,௣| ݌ ∈ ݅ .଴ܯ ଴ andܥ ଴ is a bijection betweenܥ ଴}, i.e. the restriction of ߮∗ toܯ > 0. By the induction hypothesis, the restriction of ߮ ∗ to ܥ௜ିଵ is a bijection between ܥ௜ିଵ and ܯ௜ିଵ. 

Two cases are admissible. 
Let ߮∗(݁௜) = ௜ݐ   = √. By Definition 2, we have ܯ௜  = ௜ܩ ௜ିଵ. Thanks to the construction ofܯ  and ܥ௜, it holds that ܥ௜ = ⦁\௜ିଵܥ) ௜݁) ∪ ݁௜⦁ = ݁௜⦁ = ௜ܥ ௜ିଵ. Then, the restriction of ߮∗ toܥ  is a bijection 
between ܥ௜  and ܯ௜. 
Let ߮∗(݁௜) = ௜ݐ   ∈  ܶ. By Definition 2, we have that ܯ௜ = (௜ିଵ\⦁߮∗(݁௜)ܯ) ∪ ߮∗(݁௜)⦁. Take an 
arbitrary ݌ ∈ ⦁߮∗(݁௜) (it exists because ࣮ࣨ is ܶ-restricted). Then, ݌ ∈  ௜ିଵ and, moreover, thereܯ
exists ௝ܾ,௣ ∈ ௜, we get that ⦁݁௜ܩ ௜ିଵ, due to the induction hypothesis. Thanks to the construction ofܥ = { ௝ܾ,௣| ݌ ∈ ⦁߮∗(݁௜)  ∧  ௝ܾ,௣ ∈ ⦁௜ିଵ} and ௜݁ܥ = {ܾ௜,௣| ݌ ∈ ߮∗(݁௜)⦁}. Hence, the restriction of ߮∗ to ⦁݁௜ (݁௜⦁) is a bijection between ⦁݁௜ (݁௜⦁) and ⦁߮∗(݁௜) (߮∗(݁௜)⦁). Then, ߮∗(ܥ௜) (௜ିଵ\⦁݁௜ܥ))∗߮= ∪ ݁௜⦁)  = ⦁)∗߮\(௜ିଵܥ)∗߮)  ௜݁)) ∪ ߮∗( ௜݁⦁) = (௜ିଵ\⦁߮∗(݁௜)ܯ)  ∪ ߮∗(݁௜)⦁ =  ௜. Dueܯ
to ࣮ࣨ being contact-free, we obtain ൫ܯ௜ିଵ\⦁߮∗(݁௜)൯ ∪ ߮∗( ௜݁)⦁ = ∅. 
Therefore, the restriction of ߮∗ to ܥ௜  is a bijection between ܥ௜  and ܯ௜.        ◻ 

By definition, we have that ߮∗(ܤ) ⊆  ܲ, (ܧ)∗߮  ⊆  (ܶ ∪ {√}), and ݈∗(݁) = ቊ ,݇ܿ݅ݐ ݂݅߮∗(݁) = ,൫߮∗(݁)൯ܮ,√ ݁ݏ݅ݓݎℎ݁ݐ݋ ,for all ݁ ∈   .ܧ
Take an arbitrary 1 ≤ ݅ ≤ ݊. 
Assume ߮∗(݁௜) ∈ ܶ. Due to Claim, the restriction of ߮∗to ⦁݁௜ (݁௜⦁) is a bijection between ⦁݁௜ (݁௜⦁) 
and ⦁߮∗( ௜݁) (߮∗(݁௜)⦁). 
Assume ߮∗(݁௜) = √. Thanks to the construction of ܩ௜ and ܥ௜, we have that ܥ௜ିଵ = ⦁݁௜ = ݁௜⦁ =  .௜ܥ
By Claim, the restriction of ߮ to ⦁݁௜  and the restriction of ߮ to ݁௜⦁ are injections. As ࣮ࣨ is ܶ-
restricted, we obtain ⦁݁௜ ≠ ∅ and ݁ ௜⦁ ≠ ∅. According to Lemma 4(c), we have that ⦁݁௜ =  (௜ିଵܧ)ݐݑܥ 
and ݁௜⦁ =  .Due to Lemma 2(c), ⦁݁௜ and ݁௜⦁ are cuts .(௜ܧ)ݐݑܥ 
As ⦁ܶܰ∗  =  ,଴ܯ ଴, by construction, the restriction of ߮∗ to ⦁ܶܰ∗ is a bijection between ⦁ܶܰ∗ andܥ
due to Claim. 
Thus, ߮∗ is a homomorphism from ܶܰ∗ to ࣮ࣨ, by virtue of Lemma 4(a).         
◻ 

Virbitskaite I.B., Zubarev A.Yu. Time Causal Processes in Time Petri Nets with Weak Semantics. Trudy ISP RAN/Proc. ISP RAS, vol. 32, 
issue 4, 2020, pp. 259-282 
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