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Abstract. B jgaHHOW craTbe mNpeanaraeTcst MeToJ| PEAyKLMH IPOCTPAHCTBA COCTOSHUH HENPEPHIBHO-
Bpemennbix cereit Ilerpu (HBCII) — pacmmpenus cereid IleTpu, rae KakIoMy IIE€pexXoay CTaBUTCS B
COOTBETCTBHE BPEMEHHOW HHTEpBal ero cpadaTsiBaHus. TeXHHKH KOHTPOJISL BPEMEHHU U MaMATH OIPEIeNIIOT
pasznuuHble ceManTuku Juii HBCII, koTopble BIMSIOT Ha pa3pelIMMOCTh MHOTHX CTaHAAPTHBIX HpoOieM
ananmsa nosejenust HBCIL. B o0uiem ciiyuae, npoctpanctBo coctosiuuii HBCIT GeckoHEUHO U HECUETHO, H,
CIIeOBaTeNIbHO, aHAIU3 HX IOBEICHUS JIOBOJNBHO ciokeH. C Ielblo pa3peleHHs NAaHHOW HpoOIIeMBbI
BBITIOJHSETCS JUCKPETH3ALHS IPOCTPAHCTBA COCTOSHUM U OTIPeIeIIeTCs CEeMaHTHKA YaCTHIHOTO IIOPSIKA UL
HBCII co «cnaboit» TEeXHHMKOH IpPOJABHKEHHUS BPEMEHH (IIPOJABIXKEHHE BPEMEHHM HEOTPAHMYEHO) U
«IIPOMEKYTOYHOM» TEXHUKOH KOHTPOIS IaMATHU (C y4eTOM IIPOMEXYTOUHBIX Pa3METOK IIPU CcpabaTbIBAHHU
CETEeBBIX NIEPEXO/IOB).
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1 Introduction

Dense-Time Petri Nets (TPNs) are now a well-established model to describe and study safety-critical
systems that often require verification of real time (quantitative) characteristics, in addition to
functional (qualitative) properties. In the TPN, each transition is associated with a time interval.
With that, each transition is assumed to have its own local clock. A state of the TPN contains a
current marking and readings of the local clocks of enabled transitions (i.e. transitions whose all
input places have enough tokens at the marking). A transition can fire from a state only if the
transition is enabled at the corresponding marking and its clock reaches a moment in time that is
within the interval associated. So, the firing of an enabled transition can be suspended for a certain
time. Along with that, the firing itself takes no time. State changes are divided in two types: either
time elapses, i.e. the clocks of enabled transitions go forward, or a transition fires, i.e. a current
marking is changed to a new one (in which tokens are consumed from the input places and tokens
are produced to the output places of the transition that fires) and the clocks of the transitions that
become enabled at the new marking (newly enabled transitions) are reset to zero.

There are two policies of time elapsing in TPNs, which define strong and weak semantics. In the
former semantics, time elapsing cannot exceed the upper bounds of enabled transitions and,
therefore, an enabled transition must fire no later than the upper bound of its time interval is reached.
On the contrary, any time elapsing is allowed in the latter semantics and, therefore, enabled
transitions are not forced to fire. In [1], the authors have proven that the two semantics are
incomparable w.r.t. timed weak bisimulation.

Memory policies in TPNs determine when the local clocks of enabled transitions are reset.
Intermediate and atomic memory policies are put forward in the literature. The former treats
intermediary marking, i.e. the marking after consumption of tokens from the input places and before
production of tokens to the output places of a transition t that fires. A transition t' is regarded as
newly enabled and its clock is reset to zero after the firing of t whenever t’ is disabled at the
intermediary marking and becomes enabled at the new marking, i.e. after production of tokens to
the output places of t. Instead, the latter policy considers a firing as one-step. The clock of t’ is reset
to zero only if it is disabled at the marking before t fires and becomes enabled at the new marking
after t fires. The memory policies were studied in [2] for strong semantic and in [3] for weak
semantics. It was shown that the marking reachability/coverability and boundedness problems are
undecidable for time Petri nets with strong semantics and any memory policy, whereas the problems
are decidable in the case of TPNs with weak intermediate semantics but not with weak atomic
semantics.

The state space of the TPN is infinite and non-discrete, in general, that increases the difficulty of the
model analysis. In the work [4], a transformation to the behavior with only integer time elapsings
has been suggested for TPNs with strong semantics, while the discretization of the state space for
weak semantics has hitherto not be treated in the literature, to the best of our knowledge.

The classical interleaving behavior of the TPN is described by runs — sequences of changes in states
by time elapsings or transition firings. Interleaving semantics allows for analyzing some safety and
liveness properties of systems. However, using partial order semantics seems preferable because it
captures in a natural way «true concurrency». Partial order semantics of Petri nets is most often
represented by means of the so-called causal net processes, which include events and conditions
related by causal dependence and concurrency. This information can be useful for formal

262



Bup6uukaiite 1.5., 3y6apes A.1O. BpeMeHHBIE NPHYHHHO-YTOPSAI0YEHHBIE MPOLECCHI BPEMEHHBIX ceTel TleTpu co «c1aboit» ceMaHTHKOM.
Tpyowr UCIT PAH, Tom 32, Beim. 4, 2020 1., cTp. 261-284

verification of the system behavior or for reducing the number of analyzed system states, without
taking into account all interleaving sequences. Partial order semantics is put forward for safe TPNs
with strong and clocks-on-transitions semantics in [5]. The presented in [6] approach to construct a
partial order and non-deterministic representation of the behavior of safe TPNs with strong and
clocks-on-tokens semantics consists in transforming time characteristics into net structure, i.e.
representing them by additional places, transitions, and arcs. This allows for removing the
restrictions of diverging time and of finite upper time bounds for transitions. In [7], the authors
inspect free choice TPNs (i.e. net transitions sharing an input place do have exactly the same input
places), develop and compare partial order representations of runs, based on various clocks-on-
tokens semantics.

In this paper, we deal with dense-time Petri nets with weak and intermediate policies. Our intention
here is twofold. First, we develop a discrete representation of the interleaving behavior (runs) of the
TPN by transforming its runs with real-number time elapsings to parametric sequences with time
variables that are then assigned natural-number values. Second, partial order clocks-on-tokens
semantics in terms of time causal processes of the TPN, by converting time elapsings into net
structure, is elaborated. Also, for the TPN, a bijective mapping between its runs and computations
(called linearizations) of its time causal processes is constructed, in order to demonstrate the
correctness of the partial order semantics w.r.t. interleaving one. Partial order semantics allow for
taking into account the processes' timing behavior in addition to their degrees of relative
concurrency.

The paper is organized as follows. In Section 2, we consider some definitions for TPNs and their
interleaving semantics in terms of runs — sequences of changes in states by time elapsings and
transition firings. In the following section, it is established that the discretization of TPN’s state
space is possible by demonstrating that in the TPN for any run with transition firings and real-
number time elapsings there exists a run having the same transition firings and only natural-number
(even unit) time elapsings. In Section 4, we introduce and examine properties of a casual net, its
linearization, and a time causal process of the TPN, consisting of a casual net and its homomorphism
into the TPN. In the next section, a bijective mapping from a set of linearizations of causal nets of
time processes of the TPN to its set of runs is developed and studied. Section 6 concludes the paper.

2 Time Petri Nets

In this section, some terminology concerning the model of Petri nets with timing constraints (time
intervals on the firings of transitions) are defined. We start with recalling the definitions of the
structure and behavior of Petri nets.

The Petri net (PN) consists of two different sets of elements — places and transitions; a flow relation
representing arrows between the elements; an initial marking — a subset of places initially containing
tokens; and a labeling function mapping each transition to an action from the alphabet Act of actions.
A state of the PN is called a marking — a subset of places that receive tokens when the net functions.
A transition is enabled at a marking if the input places of the transition contain tokens. The firing of
a transition enabled at a marking results in the new marking in which tokens are consumed from the
input places and tokens are produced to the output places of the transition. A sequence of changes
in markings is called a run of the PN.

Definition 1. A (labeled over Act) Petri net (PN) is a tuple N' = (P,T,F, M,, L), where P is a
finite set of places and T is a finite set of transitions suchthat P N T =@ and P U T # @;
F € (P xXT)U (T x P)is aflow relation;  # My, S P is an initial marking; L : T —
Act is a labeling function. Forx € P U T, let ex = {y|(y,x) € F}and x» = {y|(x,y) € F}
be the preset and postset of x, respectively. For X € P U T, define eX = U,ex *x and Xe =
UxEX Xe.
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A marking M of a Petri net V' is any subset of P. A transitiont € T is enabled at a marking M
if ot € M. Let En(M) be the set of transitions enabled at M.

The firing of a transition t enabled at a marking M leads to the new marking M’ (denoted M
¢ 9
> M) iff M = (M\et)Ute. We write M->M iff 9=t,..t; and M =

¢ ¢
M° 3 M. M1 5 Mk = M’ (k > 0). In this case, 9 is a run of N from M (to M’), and M’ is
a reachable marking of V" from M. Let RM (V') be the set of all reachable markings of V" from
M,.

The time Petri net (TPN) consists of an underlying PN and a static timing function mapping each
transition to a time interval with non-negative rational boundaries. With that, each transition is
assumed to have its own local clock. A marking alone is not enough to describe a state of the TPN,
so a dynamic timing function is added to indicate the clock values of the transition enabled at a
current marking. In fact, the clocks of enabled transitions show the times passed since then as the
transitions become enabled. The initial state consists of the initial marking and the dynamic timing
function with zero clock values for all enabled transitions. When the TPN is running, there are two
ways to change states: either by time elapsings or by transition firings. Following the approach of
[3], we consider TPNs with weak semantics. This means that any time elapsing is allowed, i.e. any
time can be added to the clock values of enabled transitions. A transition can fire from a current state
only if the transition is enabled at the current marking and its clock value belongs to its time interval.
The firing of a transition that can fire from a state results in a new state, i.e. a new marking and new
dynamic timing function with the clock values reset to zero for the newly enabled transitions and
with the old clock values for the transitions which continue to be enabled. We deal with TPNs with
intermediate memory policy, i.e. the predicate T enabled(t',M,t) determining a newly enabled
transition t’ after the firing of a transition t at a marking M has a true value if and only if t’ is
disabled at intermediary marking (i.e. the marking between consumption and production of tokens
by the firing of 7) and becomes enabled at the new marking (i.e. the marking after production of
tokens by the firing of 7). A sequence of changes in states is called a run of the TPN. The runs from
the initial state represent interleaving semantics of the TPN.

Definition 2. A (labeled over Act) time Petri net (TPN) is a pair TN = (I,D), where N' =
(P,T,F,M,,L) is the underlying Petri net and D: T — Q¢ X (Qxo U {0}) is a static timing
function mapping each transition to a closed non-empty interval with non-negative rational
boundaries; right open infinite boundaries are allowed. For a transition t € T, the boundaries of
the interval D (t) are called the earliest firing time (Eft) and latest firing time (Lft) of t.

A state of TNV is a pair S = (M, ), where M is a marking and I: En(M) — R, is a dynamic
timing function. The initial state of TN is a pair S, = (M,, I,), where M, is the initial marking
and [(t) = 0, forallt € En(M,).

A transition t can fire from a state S = (M,I) ift € En(M) and Eft(t) < I(t) < Lft(¢t).
In the TPN, two types of state changes are possible by:
a) the elapsing of time T € Ry, defined as follows:
(M,1)> (M, I')iff Vt' € En(M) : I'(t") = [(t") + T;
b) the firing of a transition t € T, defined as follows:

t can fire from (M, I), and
M' = (M\st) U te,and
, P G A if T enabled(t',M,t),
ve' € En(M') : I'(t) = {I(t’), otherwise,

(M, 1) S M, 1) e
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where the predicate
T enabled(t',M,t) = t' € En((M\et) U te)a(t' € En(M\et) Vit =t")
indicates whether we need to reset the clock of t’ after the firing of t at M.

We use the notation S = §' iff g = t; ..ty € (T U Ry and § = so8gt  ge1lgr
S’ (k = 0). In this case, o is a run of TNV from S (to S"), and S' is a reachable state of TN from
S. Let FS(TNV) be the set of all runs of TNV from Sy, RS (TN') be the set of all reachable states of
TN from S,. We write Untimed (o) to denote the projection o on T, i.e. the untimed part of o.

Consider some properties of TPNs. We call TNV safe, iff M(p) <1, forallS = (M,I) € RS(TN)
andp € P; contact-free iff whenever t can fire from astate S = (M, I), then (M\t) Nte = @ for
all S € RS(TN); T-restricted iff ot # @ and ¢ # @ for all transitions in the underlying Petri net.

Notice that the definition of the marking of the underlying PN as a subset, rather than a multiset, of
the net places (see Definition 1) ensures that each place has at most one token when the TPN is
functioning, i.e. it is safe. This leads to the fact that any transition can be enabled at most once at
any marking M and can fire at most once from a corresponding state (M,[). As a consequence,
En(M) is a set, rather than a multiset, of transitions, and the dynamic timing function I is really a
function, rather than a relation. The contact-freeness property says that a transition cannot fire from
a state, if at least one output place (which is not the input place) of the transition already contains a
token at the corresponding marking. In the case when the TPN is not contact-free, after the firing of
an enabled transition from a state, two or more tokens can accumulate in the output places of the
transition. However, some of the tokens may be lost, as the marking is defined as a subset, rather
than a multiset, of places. Due to the T-restrictedness property, each net transition has at least one
input place and at least one output place. This allows us to avoid livelock (useless work) situations
as the transitions without input and output places can fire (work) infinitely many times without
consuming and producing any tokens (results). So, the above properties facilitate the correct
definitions and results concerning TPNs. In what follows, we will consider only safe, contact-free
and T-restricted TPNGs.

Example 1. A (labeled over Act = {a, b}) time Petri net TV is shown in Fig. 1. Here, the places
are represented by circles and transitions by squares; the names are depicted near the elements. The
elements included in the flow relation are connected by arrows, and each place contained in the
initial marking is that with a token (bold point). The values of the labeling and static timing functions
are printed next to the transitions. It is easy to see that TV is really safe, contact-free and
T-restricted. Show that ¢ = t;t3(2.3)t,(1.5)t3 is a run of TNV from S,,.

- So = My, Iy), where My = {p,,p,}, En(My) = {t;,t3} and Vt € En(M,) : I,(t) = 0.

— Due to t; € En(M,) and Eft(t;) =0 < Iy(t;) =0 < Lft(t;) =1, we have that t; can
fire from (My, ). Then, S, 3 S1 = My, 1), where M; = (Mg\*t;) U tie = {p,,p3},
En(M;) = {ts} and I, (t3) = I,(t3) = 0, because T enabled(t;, My, t;) = false.

— Due to t; € En(M;) and Eft(t;) =0 < I;(t3) =0 < Lft(t3) = 2, we have that t; can

fire from (My,1;). Then, S, afs Sy = (M,, 1), where M, = (M;\*t3) Utse = {p3,p4},
En(M,) = {t,} and I,(t,) = 0, because T enabled(t,, My, t3) = true.
t1t3(2.3)
= Sy —> S3 = (Ms, I3), where M3 = M, = {p3,p4}, En(M3) = {¢t,} and I3(t;) = I,(t3) +
2.3 =2.3.

— Due to t, € En(M3) and Eft(t,) =1 < I(t,) = 2.3 < Lft(t,) = 3, we have that t, can
t1t3(2.3)t
fire from (Ms, ). Then, Sy =3 5, = (My,1,), where M, = (Ms\et;) U tze = {py,pa),
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En(M,) = {ty, t3} and I,(t;) = 1,(t3) = 0, because T enabled(ty, M3, t;) =
T enabled(t;, M3, t,) = true.
t1t3(2.3)t2(1.5)
- Sg — > S5 = (M5, I5), where M5 = M, = {py,p,}, En(Ms) = {t1,t3} and I5(ty) =
I,(t) + 1.5 =1.5,15(t3) = I,(t3) + 1.5 = 1.5.
— Due to t; € En(Ms) and Eft(t3) =0 < I5(t3) = 1.5 < Lft(t;) = 2, we have that t; can

. t1t3(2.3)t2(1.5)t3
fire from (Ms,Is). Then, Sy ——————— Sg = (Mg, Ig), where Mg = (Ms\et3) Utye =

{P1, 04} En(Mg) = {t,} and Ig(ty) = I5(ty) = 1.5, because
T enabled(t,, Ms, t3) = false.
Therefore, 0 = t;t5(2.3)t,(1.5)t; is a run of TNV from §,,. |

"® ®

t1,0 [][0,1] t3,0[][0,2]

1.3]

Pa Pa

Fig. 1. 4 time Petri net TN = (N, D)

In order to display that every TPN can be transform into that with natural-valued boundaries of the
intervals associated with its transitions, we need a notion of time equivalence. Two TPNs are
considered time equivalent if they have the same underlying Petri net, and for each transition, its
earliest and latest firing times in the TPNs are either proportional to a non-zero constant or its latest
firing times are together equal to infinity.

Definition 3. Two time Petri nets TN; = (N,D;) and TN, = (I, D,) are time equivalent iff
there exists a non-negative constant ¢ # 0 such that for any transition t in V" it holds.
- Efty(t) = Efty(t) - c,
_ 0, ifLft;(t) = oo,
Lt = {Lft1 (t)-c,  otherwise.
We next establish that for any TPN there is a time equivalent TPN with time intervals having
natural-valued boundaries.

Theorem 1. Given a TPN TN, = (W = (P,T,F,M,,L),D;), there exists a TPN TN, =
(W, D,), with D,: T = N X (N U {c0}), such that TJV; and TN;, are time equivalent. Moreover, for
any o; € FS(TN;), there is o, € FS(TN,) with the same transition firings and time elapsings
multiplied by a constant ¢, and vice versa.

Proof. Construct the set D of the denominators of the boundaries from D; as follows: D =

{n | Eft,(t) = %; t e T;mne N>0} U {n | Lft,(t) = %; teT, mne N>0}. Calculate
1, ifD=0@

the least common multiple of the denominators: ¢ = { . Due to ¢ being the

LCM(D), otherwise
least common multiple, we have non-negative constant ¢ # 0. Define D,: T = N X (N U {o0}) as
follows:

266



Bup6uukaiite 1.5., 3y6apes A.1O. BpeMeHHBIE NPHYHHHO-YTOPSAI0YEHHBIE MPOLECCHI BPEMEHHBIX ceTel TleTpu co «c1aboit» ceMaHTHKOM.
Tpyowr UCIT PAH, Tom 32, Beim. 4, 2020 1., cTp. 261-284

- Efty(t) = Efty(0) - c, ELFe ()
_ 00, i t,(t) = oo,
Lit(®) = {Lft1 (t)-c,  otherwise,
= Dy(t) = (Efta(0), Lft,(2)).
So, TNV; and TXV; are time equivalent.

[
Take an arbitrary oy = ty ..ty € FS(TN,), with (MO,IO) 5 (Ml,ll) (My_q,Ie—1) 5 (M, I,).
Construct g, =ty .. tk suchthat t{, ET =t/ = t,andt,E R,y =t/ = t,-c,forall 1 <i < k.

t] t;
We shall prove that o, € FS(TN;), with (M(’),I('))—1>(M{,I{) (M,’(_l,l,’c_l)—ki(M,’(,I,’(), by
inductionon1 < i < k.

i = 0. Then, My = M,, due to TN; and TN, having the same underlying Petri net; and I(t) = 0,
for all t € En(My), due to Definition 2.

i > 0. By the induction hypothesis, we have that (Mg, 10) (Ml 1 Ii_1). Thanks to the
construction of g,, we obtain that MJ M;, and, hence, En(M]) = En(M]) s for al0<j<i—1,
due to Definition 2. Then, it holds that T enabled(t,M;_,,t]) =1 enabled(t, M;_y,t)), forall t €
En(Mj_,) = En(M;_,) and for all 1 < j <, i.e. the prefixes of o; and o, have the same clock
resets for enabled transitions. This implies that I/ (t) = I;(t) - ¢, forallt € En(M;)and 0 < j < i —
7
1, due to Definition 2 and the construction of g,. Show that (M;_,I;_) 3 (M}, I}). Two cases are
admissible.

1. t] € Ry,. Then, t] = t, - c, by the construction of g,. As o, € FS(TN;), we have that M; =
M;_; and Vt € En(M;_,) : ;(t) = ;- 1(t)+t_l, due to Definition 2. Then, it holds that
L) c=1_4(t) c+ t,rc=I_;(t) +t] =I(t), for all t € En(M;_, = M}), Therefore,

M{_, 1;_1) ki (M}, I), according to Definition 2.
2. t! € T.Then,t] = t, by the construction of ,. As 6; € FS(TN;), we have thatf, € En(M;_;)
and Eft,(t,) <I;_1(t) < Lft,(t,), because ¢, can fire from (M;_,, I;_,). Hence, we obtain that
t/ € En(M;_y) and  Efty(6)) =Efty(€) ¢ <L (t)-c= L[4(&) =1Lq(E) c<
o, ifLft,(F) = oo
{Lf t, (&) ¢ otherwise.
a proportionality constant c. So, t/ can fire from (M;_,,I;_,). Since o; € FS(TN;), we have
that M; = (M;_;\*t) VU t,»and Vt € En(M;) : I;(t) = {Ii—loit)r o enzflif\/(v?slgl_l’tl)’
by Definition 2. Then, it holds that (M;_;\e t/) U t/s = M{ = M; and Vt € En(M}) : L;(t)-
c= { 0, it enabled(t_, Mt _ I (t). Therefore,
I;_ 1(t) c= I, (D), otherwise

} = Lft,(t]), due to TV, and TIV; being time equivalent with

s

M;_, I;_ 1) 3 (M I}), thanks to Definition 2.

Thus, (Mg, 1) 3 My, I), i.e. g, € FS(TNy).

Reasoning analogously, we can show that for each o, € FS(TN;), there exists 0; € FS(TMN;)
such that o; and g, have the same untimed part. O
Example 2. Consider the PN N whose structure is shown in Fig. 1. Define the TPN TN, = (W, D,),
with Dy(t;) = [0,5], Di(t2) = [£,2], Di(ts) = [0,5]. Construct a TPN TN, = (I, Dy), with
Dy:T = N x (NU {oo}) such that TV; and TN, are time equivalent. Define the set D as follow:
D= {n | Efti(t)==, t € Tmne N>0} U {n | Lft()="2,t € T,mne N>0} = {2,4).
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Let c¢= LCM(D) = LCM(2,4) = 4, Dy(t;) = [Eftl(tl) we=0x4Lft(t) xc=7% 4] =

[0,1],D(t2) = [Efta(t) xc =1+ 4, Lftl(tz) se=2x4]|=11,3], andDy(ts) = [Efty(ts) *
c=0%4, Lftl(t3)*0——*4]
boundaries. Moreover, TN; and T ]\fz are time equivalent, because the static functions in the TPNs
are proportional to the non-zero constant 4. As a consequence, for example, for the run o, =
t1t3(0.25)t,(0.125)¢t; of TNV, there exists the runo, = t;t3(1)t,(0.5)t; of TN,, with time
elapsings that are four longer times. Conversely, for the run o, of TN, there is the run g; of TNV
with time elapsings that are four times shorter. O

. Then, the time intervals of TV, have natural-valued

So, if two time Petri nets are time equivalent, then each run of the one TPN can be obtained from
some run of the other TPN with the same untimed part and with time elapsings multiplied by the
proportionality constant. In other words, time in the one TPN goes slower (or faster) than in the
other TPN. With that, it is worth stressing that the TPNs have the same behavioral properties (e.g.,
safeness, liveness, marking reachability, etc.).

In the sequel, we will consider only TPNs with time intervals having natural-valued boundaries.

3. State Space Discretization for TN

In this section, we demonstrate that in the TPN for any run there exists a run with the same untimed
part and with natural-value time (and even unit time) elapsings.

For the TPN TN, let FS(TN) be the set of all runs from FS(TN) of the form: § =
Toty Ty ... Tg—1 tg Ty, 1.€. time elapsings and transition firings alternate in the runs. So, in TV for
the run & € FS(TN), we have the following changes in states:
(Mo, 10) ™ (Mo, 15) = (M, 1) 5 (M, 1) - (M, T 1) ™= My, Pier) =5 (M 1) ™ (M ).
As we will see later (in the proof of Corollary 2), any run from FS (TN can be represented in the
above form. Define the set UFS (TN) = {Untimed(6)|6 € FS(TN)}.

Next, for an untimed sequence from UFS (TNV), we construct the parametric run (which is, in fact,
a modification of a run, with variables instead of the time elapsing values) and a set of conditions
on the values of these variables, by induction of the number of the variables. At each induction step,
we define a prefix of the parametric run and the conditions for the values of its variables, increasing
the run’s length by one variable.

Definition 4. Let TNV = ((P,T,F,M,,L),D) be a time Petri net, t; ...t; € UFS(TN) and
X = {xy, ..., X} be a set of variables. We construct a finite sequence of the tuples of the form
(@i, Byy My, I, ), by inductionon 0 < i < k.

= 0. Then,

- Wo = Xo;

By, = 9;
Ma)o = My;

'y, (£) = xo, for all t € En(M,,,).

i > 0. Assume that (w;_1, B,_,, Mq,,_,,I'y,_, ) is already constructed. Then,
- W = WG

= By, = By, VIEft(t) < 'y, (t) < Lft(t));

- Ma)i = (Ma)i_l\.ti) U ti.;
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X, if T enabled(t, My, ti)

"forallt € En(M,).
U () +x;, otherwise, Mo,)

- I'y®) = {
Then, w = wy = xot1%Xq ... teXy is a parametric run of TNV, and B, = B, U {0 < x; < 0}
is the set of conditions on the values of the variables from X.
We use B, ={I'y, (EIEFE(t) < 'y () < LFEE)) € Byl < i < K}U{x) to
denote the set of the variable parts of the inequalities from B,,.

Example 3. Contemplate the TPN TN = ((P, T,F,My, L), D), shown in Fig. 1. For the transition

sequence Untimed(8) = t, t; t,, obtained from the run & = (0.5)t,(0.5)t5(2.3)t,(1.7) of TN,
we construct the sequence of the following tuples (w;, By, My, I’wi ), with 0 <i < 3.

— i = 0. Set wy =xXp; By, =0 My, =M, ={p1,p,}; En(M,,) = {ts,t3}; and I',, (t;) =
Ila)o(t3) = Xo-

— i = 1. Set wy = wot1x1 = Xot1Xq;
By, = By, U{Eft(t;) =0 <1, (t;) S Lft(t;) =1} = B, , U{0 <x, < 1};
M, = (Ma)a\'tl) Utye = {ps,p.} and En(Mwl) = {t;};
'y, (t3) =14, (t3) + X1 = xo + x4, as T enabled(t3, M,,,, t,) is false.

2.Set wy; = wit3xy = Xt Xqtz3Xy;

v, = B, U{Eft(ts) =0 <1, (t3) < Lft(ts) =2} = B, U{0 <xo+x, <2}
My, = (M, \*t3) U tzs = {p3,ps} and En(M,,,) = {t,};
I'y,(t2) = x,, as T enabled(ty, M,,, t3) is true.

— 1 = 3.5et w3 = wytyx; = Xpt X t3XytyXs;
By, = By, U{Eft(t;) =1<1I',,(t;) < Lft(t,) =3} =B,, U{l <x, <3}
M, = (M,,\*t;) U ty» = {py,p,} and En(ng) = {t1, t3};
I'y,(t)) = I'y,(t3) = X3, as T enabled(ty, M,,,, t,) and T enabled(t3, M,,,, t,) are true.

|
-
I

=

Then, the parametric run has the form w = w3 = xyt;x1t3X,t,x3, where X = {x,, ..., x; } is the
set of the real variables. Moreover, it holds that

0< x,=1,
_ _ )0 x+x <2
Bo=Buw; =9y 1<x,<3 (™

0<x3<

Bo =1{x0, %9 + x4, %5, x3}.

O

A function B: X = {xo, ..., X} — Ry is called assignment of . We write [w]g ([I',,_, (t)]g) for
a parametric run w (for the value of a linear function [ 'mi_ , (&) € B,) under the assignment §.The
mapping f is a solution of B,, iff Eft(t;) < [I'y,_, (t)]g < Lft(ty), forall 'y, (t;) € B,,.

Example 4. Consider the parametric run w = Xxt;x;t3X,t,X3, the set B, = {xq, Xo + X1, X2, X3},
from Example 3, and an assignment B:{x,,..,x3} = Ry, such that B(xy) = 0.7,8(x;) =
0.3,8(x2) = 1.4, B(x3) = 2.Then, we obtain that [w]z = (0.7)t;(0.3)t5(1.4)¢t,(2). Moreover,
we get: Eft(t)) =0 < [xo]lp = 0.7 < Lft(t;) =1, Eft(t3s) =0 =< [xo + x1]p = 1 < Lft(t5) =
2,Eft(t;) =1 =< [x;]p = 1.4 < Lft(t;) = 3. Therefore, f is a solution of B,,.

O
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We next establish that any solution of B,, maps a parametric run w of the TPN to its run.
Lemmal. Let TN bea TPN, w = xyt;X;...t,x; be a parametric run of TV, and B, be the set of
conditions on the values of the variables xo,xy,...,x,. If B is a solution of B, then [w]p €
FS(TN). Moreover, for any 'y, (t) € By, [I'w,_, ()] is the value of I';_; (t;) in the run [w]g,
when TV functions along the run.

Proof. See Appendix. O

Next, for an arbitrary run & from FS(TN') with real-value time elapsings, we construct a natural-
value assignment S, to the variables in the corresponding parametric run w of TV, by induction on
the number of the variables in @ (i.e. the number of time elapsings in the run &). Starting from the
end of the run &, at each induction step, we round, the value of the corresponding time elapsing of
&, down or up to a natural number nearest to the value and agreed with the values of the other time
elapsings in .

Definition 5. Let TV be a TPN, Tot1T; ...t Ty € FS(TN), w = Xot1X;...t;X; be the parametric
run of TV, B, be the set of conditions on the values of the variables from X = {x,,..., x;}, and
B,, be the set of the variable parts of the inequalities from B,,. We construct a sequence of
functions f;: X = R, by inductionon 0 < i <k.

i = 0. Then, forall0 < j <k,
N _ (191 ifj =k,
Bo(x) = { 7;  otherwise’
i > 0. In the construction of f;, we use auxiliary functions defined forall0 < j <k as
follows:

) = [BeosC)] i1 = k=,

Bi—1(x;)  otherwise.

Bi_1(x; ifj =k—1i, —
l 1( ])J . and ﬁ]_(x]) -
Bi-1(x;)  otherwise;
Ifar,,  (t)€B, (1< 1<k)suchthat| [I’wz-l(tl)]ﬁ] < | o, (€)1l
then f; = B;, else f; = Bi-
Define a natural-value assignment §,,: X = N as follows: 5, = Sx.

Example 5. Consider the TPN 7" from Example 1, the run & = (0.5)t, (0.5)t5(2.3)t,(1.7) €
FS(TNV'), the parametric run w = Xot;X;t3X,t,%3 and the set B, = {xq, Xo + X1, Xz, X3} from
Example 3. Using Definition 5, construct the sequence of the assignments f; by induction on 0 <
i < 3.

- i =0. We set ﬁo(xj), forall 0 < j <k = 3, as follows: Sy(xp) = 79 = 0.5, fo(x1) = 7, =
0.5, Bo(x3) = 1, = 2.3, and Sy(x3) = |r3 = 1.7] = 1, because j = k = 3.

— i =1. Construct auxiliary functions &(x}-) and E(x,-), for all 0 < j <k =3, as follows:
[ﬁ(xo) = B1(x0) = Bo(xo) = 0.5, ﬁ(’ﬁ) = Bi(x1) = Bo(x1) = 0.5, &(7@) =Bi(x3) =
Bo(x3) =1, and ﬁ(xz) = |Bo(x2)] = 2, B1(xz) = [Bo(xz)] = 3, because j = k — i = 2.
Moreover, we get: [[xo]ﬁ] =12 |[xolg,] = 0, [[xo + xl]&] =12 |[xo+x1g,] = 1,
[[xz]ﬁ] =22 [[x2]g,] = 2. Then, B, = B;.

— i = 2. Construct 8;(x;) and f,(x;), with 0 < j < 3, as follows: B2 (x0) = Bo(x0) = Pi(xo) =
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0.5, &(xz) = E(xz) =pi(x2) =2, &(%) = [)Tz(x3) = pfi(x3)=1 and &(xl) =
[B1(x1)] =0, E(xﬂ = [B1(x;)] = 1, because j =k —i =1.
Moreover, we get: [[xo]&] =12 l[xO]BoJ =0, [[x,+ xl]&] =12= |[xo +x1]BOJ =1,
[Le2l,] = 2 2 [[X2]g,] = 2. Then, f; = fz.

- i=3. Construct&(xj) andﬁ_3(x]-),with0 < j < 3,asfollows: &(xl) = ﬁ_3(x1) = By(x;) =
0, [ﬁ(xz) = Bs(62) = Ba(x2) = 2, &(’%) = Bs(x3) = o) =1 and&(xo) = B (x0)] =
0, B3(x0) = [ P2(x9)] = 1, because j = k —i = 0.
Moreover, we have [[xo]&] =02 |[x0lg,] = 0, [[xo + xl]&] =0 <|[xo + x4, = 1,
[[x2lg,] = 2 = [[x2]g,] = 2. Then, there exists Iy, (t3) € B, suchthat| [I'wl(t3)]ﬁ3] <
[[I’wl(t3)]BOJ. Therefore, B = Bs.

Then, B, = B3, and we obtain the sequence [w]g, = (1)t;(0)t3(2)t,(1). m|

Next, we show that the assignment £3,, is a solution of w, i.e. 8, satisfies the inequalities from B,,.
Proposition 1. 3, is a solution of B,,,.

Proof. See Appendix. |
Thanks to Lemma 1 and Proposition 1, the theorem below follows immediately.

Theorem 2. Let TV be a time Petri net and w = xgt;X;...t;X; be a parametric run of TN Then,
there exists a mapping B, : X = {xo,..., %} —N such that [w] € FS@TN).

Proof. Consider the mapping 8, : X = {x,,...,x;} —N from Definition 5. By Proposition 1, 3,
is a solution of B, and, moreover, [w]g € FS(TN), dueto Lemma 1. a

We are now ready to show that in the TPN for any run, there exists a run with the same untimed part
and with unit time elapsings.

Corollary 2. Let TV be a time Petri net and ¢ € FS(TN'). Then, there is ' € FS(TN) with
unit-value time elapsings such that Untimed (o) = Untimed(a").

Proof. Due to Definition 2, we obtain the following properties for time elapsings:
0
a) S-S,
: T ! ! T, s : ! T+T’ rr
b) ifS - S'and S’ - S, with 7, 7' € R,(, then § — S";
T T’ T”
c) ifS — §', then for every 7/,7"" € Ryy such thatt = 7' + 7', S - §"" > §' for some S”.

By items a) and b), there exists § € FS(TN) such that Untimed (o) = Untimed(§), thanks to
o being a finite sequence. Due to Theorem 2, there is a run o € FS (TNV) with natural-value time
elapsings such that Untimed(6) = Untimed( E’). Thanks to ¢), we can construct ¢’ € FS(TN)
with unit time elapsings such that Untimed( c?’) = Untimed(c"). Therefore, we obtain that
Untimed (o) = Untimed(d").

O

Thanks to Corollary 2, in the sequel, we will consider time Petri nets with unit time elapsings
(denoted by V).
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4, Time Processes of TV

In this section, the concept of causality-based net process is presented and studied in the context of
TPNs with weak semantics. We start with definitions related to casual nets that contain events and
conditions connected by causal dependence and concurrency (absence of causality).

Definition 6. A (labeled over Act U {tick}) casual net is a finite, acyclicnet TN = (B,E,G,1)
with a set B of conditions; a set E of events; a flow relation G S (B X E) U (E X B) such that
|be] < 1A |eb| < 1,forallb € B;alabeling functionl: E — Act U {tick}.

Informally speaking, the «tick» label means a clock ticking.

Casual nets TN = (B,E,G,l) and TN' = (B',E',G',l") are called isomorphic (denoted TN =
TN') iff there exists a bijective mapping y : B U E - B’ U E'such that:

- y(B) =B'andy(E) = E';
- xGyeyx)G'y()forallx,y € BUE;
- l(e)=1U(y(e)) foralle € E.

Introduce auxiliary notions and notations for the casual net TN = (B,E,G,1).

The set b (be) is associated with a single event, forany b € B.Let «TN ={b € B|+b = (@}.
Define <= G*,<= G* (causality). A subset E' C E is a downward closed set of events iff e € E’
implies ' € E', for all e’ < e. In this case, Cut(E') = (¢TN U E's¢)\ oE'.

A subset B’ C B is a co-set (a subset of concurrent conditions) iff =(b < b") and =(b’ < b), for all
b,b" € B'. A cutis a maximal (w.r.t. set inclusion) co-set.

A sequence p = e; ...e, (n = 0) of events is a linearization of TN [5] if each event of TN appears
in the sequence exactly once, and the following holds: e; < e¢; = i < j,forall1 <i,j < n.For
a linearization p = e; ...e,, (n = 0) of TN, define the following:

—  pois the empty sequence and p;, = e; ... e, (1 < k < n);

— Ey= Q@and E; = Uici<ke; (1 < k <n).

By the construction of the linearization, E), is a downward closed set of events, for all 0 < k < n.
As we will see later (in Lemma 2), Cut(Ey) isacut, foralll < k <n.

Informally speaking, a linearization is an interleaving representation of a “computation” of TN and
the value of the function Cut of any prefix of the linearization is a “marking” of TN, reachable after
occurring the events from the prefix.

Example 6. Fig. 2 shows a causal net TN = (B,E,G,l), with B ={b;, ..,bo}; E=
{elr T 65}; G = {(bllel)' (61, b3)r (b3, 62)' (bZreZ)r e (eSrb‘))' (eS'bIO)}; l(el) = 1(63) zjr
l(e;) = l(ey) = tick, l(es) = a. We see that |[¢b| <1 A |be| <1, for all b € B, and TN =
{by,b,}. Clearly, e; < e, < e; < e, < es. Moreover, {b;, b,}, {b,, b3}, ..., {bo, b1} are cuts in TN.
It is easy to check that § = ey, e,, e, ey, €5 is a linearization of TN, because each event of TN
appears in the sequence exactly once, and if ¢; < e, theni < j, forall 1 <i,j < 5. Define the
downward closed sets E; = Ui<j<x € and the sets Cut(E;) = (¢TN U E;*) \ «E; = ({by, b} U
E;¢) \ ¢E;, forall 0 < i < 5, as follows:

— Ey= 0, Cut(Eo) = ({by, b2} U @)\ D = {by,bo};

- By ={e;}, Cut(Er) = ({by, b2} U {bs) \ {b1} = {bs, b3};

- E; ={ey, e}, Cut(Ey) = ({by, b2} U {bs, by, bs}) \ {b1, bz, b3} = {by, bs};

- Es = {e1, €363}, Cut(E3) = ({by, b2} U {b3, by, bs, be}) \ {1, by, b3, bs} = {by, be};

- E, = {enexe364},  Cut(Ey) = ({by, ba} U {b3, by, bs, bs, by, bg}) \ {b1, b2, b3, by, bs, be} =
272
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{b7,bg};
— Es = {ey,e3€3,€4,€5}, Cut(Es) = B\ {by, by, b3, by, bs, b, by, bg} = {bo, byg}. O

i b by by

Fig. 2. 4 casual net TN

Proposition 2. Any casual net TN has a linearization p = e; ... e,.

Proof. Take the maximal (w.r.t. set inclusion) set min(E) € E such that if e € min(E), then
—(e' <e), for all e’ € E. After removing an event e, from E, we get that min(E') =
min(E) \ emin or min(E") = (min(E) \ epin) U (€min®)*, where E' = E \ e,,;,. Construct a
sequence p = e, ... e, of events, by selecting a minimal event and removing it from E, at each step.
By the construction, any event of TN appears in the sequence exactly once and e; < ¢; = [ < J,

foralll < i,j < n, dueto TN being a causal net. |
The results of the below lemma will be useful to establish the relationships between “markings”
(values of the function Cut) of a causal net TN and markings of a time Petri net 7V, and between
linearizations of TN and runs of V', when we construct partial order semantic for time Petri nets.
Lemma 2. Let TN be a casual net and p = e, ... e, its linearization. Then, it holds:

a) Cut(Ey) = (Cut(Ex_1)\ *e) U epe, foralll < k <mn;

b) ee, © Cut(Ep_q),foralll < k <n;

c) if Cut(E,) # @, then Cut(Ey) isacutof TN,forall0 < k <n.

Proof. See Appendix. |

Next, we introduce a notion of a homomorphism from a causal net to a time Petri net, in order to
define the concept of time processes of the time Petri net.

Definition 7. Let TNV = ((P,T,F,M,,L),D) be a TPN and TN = (B, E,G,1) be a casual net. A
homomorphism' from TN to TV is a mapping@ : (B U E) = (P U T U {V}) such that it
holds the following:

- @(B)< Pandp(E) € (TU{V});
— foralle € E such that ¢(e) €T,
o the restriction of ¢ to ee is a bijection between #e and @ (e),
o the restriction of ¢ to e« is a bijection between ee and @ (e)s;
— foralle € E such that g(e) =,

!'In fact, ¢ is a homomorphism from TN to TN’ = ((P,T,F',My, L"), D), where ' € (P xT U {v}) U
(TU{} x P) such that F' = FuU{(p,V),(V,p) |p €P}, and L' : TU{V} - Act U {tick}, such that
L'(x) = {L(x),ifx ET
tick, otherwise’
following the traditions of terms and definitions in the literature on TPNs, we omit this construction of TN,
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In this case, we can see that ¢ is a structure-preserving mapping. However,

o the restriction of ¢ to e and the restriction of ¢ to ee are injections,
o eeand e are cuts of TN and @ (ee) = @(ee);
— the restriction of ¢ to *T'N is a bijection between TN and M,,

— l(e) = {L((p(e)) itp(e) € T , foralle € E.
tick otherwise

Then, the pair T = (TN, @) is called a time process of TN .

Time processes m = (TN,¢) = ((B,E,G,1),¢)and n' = (TN',¢") = ((B",E',G",1'),¢") of
TN are isomorphic (denoted T =~ 7’) if there is an isomorphism y : TN =~ TN’ such that ¢(x) =
¢'(y(x)), forallx e BUE.

Example 7. Consider the TPN TV depicted in Fig. 1, the casual net TN shown in Fig. 2, and a
mapping ¢ defined as follows: @(b1) = @(by) = p1, @(b2) = @(bs) = @(b1o) = pz, P(b3) =
@(by) = @(b7) = p3,¢(be) = @(bg) = s, p(e1) = t1, (es) = ty,0(e3) = t3, @(ez) =

@(ey) = V; Then, we have that (B) S P, ¢(E) S (T U {V}), and the restriction of ¢ t0 «TN =
{by,b,} is a bijection between {b;,b,} and M, = {p,,p,}. Moreover, it holds the following:
forall e € E such that ¢(e) € T, the restriction of ¢ to e (e*) is a bijection between se (es) and
«@(e) (¢(e)+); and for all e € E such that @(e) = v, the restriction of ¢ to se (ee) is an injection,
ee and ee are cuts of TN and @ (ee) = ¢(e+). For example, consider the events e, and e,. We know
that (e;) = t; and @(e,) = V. The restriction of ¢ to ee; = {b;} (e;* = {b3}) is a bijection
between {b;} ({b3}) and @ (b,) = {p,} (¢(b3) = {p3}). Furthermore, the restriction of ¢ to ee, =
{b,, b3} (eys = {by, bs}) is an injection, {b,, b3} and {b,, bs} are cuts of TN and @({b,,b3}) =
0({bs, ba}) = {pyps} . We see that [(e) = {L("’(e)) ifo() €T toralle € E. Therefore, @

tick, otherwise
is the homomorphism from TN to 7V, and, hence, m = (TN, @) is a time process of THV". O

For a time process m = (TN, ¢) of TNV, we introduce the function Age that defines “age” of each
condition b of TN. More specifically, if b € ¢ TN is an input condition in TN, i.e. the place ¢ (b)
contains a token at the initial marking of 7V, then the “age” of b is equal to 0. Also, if b is an output
condition of an event e that corresponds to the firing of the transition ¢(e) of TV, i.e. the place
@(b) of TV got a token immediately after the firing of ¢(e), then the “age” of b is equal to 0.
Otherwise, i.e. if b is an output condition of an event e that corresponds to time elapsing, then the
“age” of b is the increased by 1 “age” of the input condition b’ of e, such that ¢(b) = @ (b"), i.e. b
and b’ match in the same place of TNV,

Age(b) = 0, ifbesTNv (beesp(e)e T),
ge(b) = {Age(b’) +1, ifb€esp(e) =V,b € e, o) = o(b).

Notice that if b € es and @(e) = V, then there exists the only one condition b’ € se such that
@(b") = @(b), due to Definition 7. In this case, the definition of the function Age is correct.
Informally speaking, the function Age matches each condition b of TN to the amount of time that
has elapsed since the corresponding place ¢ (b) of TV got a token, when TV progresses.

For a co-set B’ of conditions of TN and a transition t of TV such that t is enabled at the marking
¢ (B"), determine the function Clock whose value is equal to the minimum “age” of the conditions
from B’, that correspond the input places of t.

1, if et =0,

Clock(B',t) = {min{Ag(:‘(b) | @(b) € ot,b € B'}, otherwise.
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Informally speaking, the function Clock matches B’ and t to the amount of time that has elapsed
since a token from the marking ¢ (B") appeared in the last input place of the transition ¢, i.e. since
the transition ¢ became enabled at ¢(B"). Later, we will establish a correspondence between the
function Clock and the dynamic timing function /, when the TPN progresses.

We are now ready to introduce the concept of an admissible (correct) time process of TN .

Definition 8. Let TV be a time Petri net. A time process m = (TN, @) of TN is admissible iff for
alle € E it holds:

p(e) € T = Eft(p(e)) < Clock(ve,p(e)) < Lft(p(e))-

Example 8. Verify that the time process 7 from Example 7 of 7N shown in Fig. 1 is admissible.
By definitions, we have:

— Clock(eeq,¢(e1)) = Age(by) = 0

— Clock(ses, ¢(e3)) = Age(bs) = Age(b,) =0 + 1 = 1;

— Clock(ees, p(es)) = min{Age(b;),Age(bg)} = min{Age(b,) +1,Age(bs) =0+ 1} =
min{(Age(b;) =0 + 1)+1, 1} = 1.

Then, we obtain:

- Eft(t;) = 0 < Clock(eey, p(e;) = t1) <1 = Lft(p(er)),

— Eft(t;) = 0 < Clock(ees, @(e3) = t3) <2 = Lft(ts),

- Eft(t;) = 1 < Clock(ees, p(es) = t,) <3 = Lft(ty).

So,  is an admissible time process of TN, O

5. Relating Runs and Time Processes of TN

In this section, relationships between runs and linearizations (computations) of admissible time
processes are investigated, in the context of time Petri nets. For this purpose, we define a mapping
FS from a linearization p = e, ... e, of atime process T = (TN, ¢) of the TPN TV to the sequence
of the form: FS(p) = ¢(ey) ... ¢(e,). Here, TN is a causal net and ¢ is a homomorphism from TN
toTINV.

First, we prove that if FS maps a prefix p; (0 < i < n) of the linearization p to the run of TN and
(M, I;) is the state reachable by the run, then ¢ maps the value of the function Cut of this prefix to
the marking M;. Moreover, for any transition t enabled at M;, the value of the dynamic timing
function I;(t) is equal to Clock(Cut(E;), t), where E; is the set of events from p;.

Lemma 3. Let m = (TN, ¢) be a time process of the TPN TV and p = e, ...e, be a linearization
of TN. If FS(p;) = ¢(ey)...p(e;) is the run of TN from (M, Iy) to (M;, I;) for some 0 <i <
n, then it holds:

a) the restriction of ¢ to Cut(E;) is a bijection between Cut(E;) and M;;

b) Clock(Cut(E;),t) = [;(t),forallt € En(M;);

¢) ifi < nandg(e;+q) € En(M;),then Clock(ee;yq, p(ei41) = Li(@(€141))

Proof. See Appendix. |

We are now ready to establish an important property of the FS mapping — any linearization of a time
process of the TPN is mapped to its runs.

Theorem 3. Given an admissible time process m = (TN, ¢) of TNV and a linearization p = e; ...e,
of TN, FS(p) isarunof TINV.
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Proof. We shall prove by induction on 0 < i < n that FS(p;) is arun of TV

i = 0. Then, FS(py) is the empty run.

i > 0. By the induction hypothesis, FS(p;_4) is a run of TN If @(e;) = V, then FS(p;) is a run of
TN, due to Definition 2. Assume @(e;) € T. By Lemma 2(b), we have ¢(ee;) S @(Cut(E;_4)).
As the restriction of ¢ to ee is a bijection between ¢e and @ (e), we obtain s (e;) S @(Cut(E;_,)).
Thus, we get @(e;) € En(M;_;), due to Lemma 3(a). Thanks to Lemma 3(c), we have that

li1(¢(e;)) = Clock(ee;, ¢(e;)). Then, it holds that Eft(p(e;)) < I;-1(¢(e)) < Lft(p(ey), by
Definition 8. Therefore, ¢(e;) can fire from (M;_4,1;_41), i.e. FS(p;) is arun of TNV |

Next, we show that the mapping FS is a surjection, i.e. for an arbitrary run o of TV, there is exists
an admissible time process t* = (TN*, ¢*) of TV and a linearization p* of TN* such that FS(p*) =
o. The following definition provides constructions of ©* and p*.

Definition 9. Let TN = ((P,T,F, M,,L), D) be a time Petrinetand 0 = ¢, ... t, € (T U{¥V}H"
be arun of TV,
We construct a finite sequence of tuples (E;, B;, G;, C;) by inductionon 0 < i < n.

i = 0. Then, set:

- Ey=0;
— By ={bopl v € Mp};
- Gy= 0;
— Co = By;

i > 0. Assume that (E;_;, B;_1, G;_1, C;_1) is already constructed. Then, set:
- Ei=E_,V{e} _
B =B, {{bi,p |bjp € Cice},  if t; = \/,
e {bip|p€Tie},  otherwise’
{(bjp-e)|bjp € Cia} if & =V,
{(bjp.€)|bjp € Cic1, D € oT;}, otherwise

Gy =Gy U{(ewbip )| bip € Bi} U{
= G = (Ca\ee)) Vg
Definen* = (TN*,¢*) = ((B,E,G,l"),¢") as follows:
e B=B,E=E,G = Gy
e ¢*(e;) =t,foralle; € E,and ¢*(b;,,) = p,forall b;, € B;
tick, ifp*(e) =V,
o r@=1 & SO =N, e ek,
L(¢*(e)), otherwise
Determine p* = e, ...e,.
Example 9. Consider the time Petri net 7V depicted in Fig. 1 and its run o = t,Vt;Vt,. We
construct the sequence of the following tuples (E;, B;, G;, C;), with 0 < i < 5.
— i=0.SetEy = @;Co =By = {bO,plp € My = {p1, P23} = {bop,» bop,}; Go = O.

- i=1 Set E; =EU{e;}; By =BV {bl,p | pEtie ={ps}} ={bip,}i G =GV
{(e1, b1y )| b1p € B} U {(bjp,e1) | bjp € Co, p € oty = (P13} = Go U
{(e1, by p,), (bop, 1)} €= (Co\ver) Ueys ={bgyp, by}

- i=2 Set E,=E U{e;}; B, =BiU{by,|bj, €Ci}={byp, b2p.}; G,= G U
{(eZ'bZ,p D] bZ,p € B} U {(bj,p' ez) | bj,p EC}=G U
{(ez bz,pg)' (ez, bZ,pz)' (bl,p3r ), (bo,pz: e))}; G =(Ci\ee))Ueye = {bZ,p3' bZ,pz}‘

— i=3. Set E;=E,U{es}; B3=B,U {b3,p | pEtze ={ps}} =1{bsp,}; Gs= G U
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{(e3rb3,p) | b3, € B3} U {(bj,pl 93) | bjp € Cy, p E ot ={p,}} =G5 U

{(es, b3,p4)' (bz,pZ' e3)}; C3 = (C;\ ve3) Ueze = {bz,p3r b3,p4}'
- i=4 Set E,=E;U{e}; By=B3U{byy |bjp€Cs}={bsp,bsp}; Gy= G3U

{(es b4,p D] b4,p € B,} U {(bj,p: 94) | bj,p E(3}=GsU

{(es b4,p3)' (e b4,p4)' (bZ,py ey), (b3,p4' e))}; Co=(C3\vey) Ueye = {b4,p3' b4,p4}'
— i=5. Set Es =E,U{es}; Bs =B, U {bS,p | p € tye = {p1,2}} = {bsp,, bsp,}; Gs = G, U

{(35' bS,p) | bs, € Bs} U {(bj,pJ es) | bjp, € Cy, D € oty ={p3,04}} = G4 U

{(es, bsp,)s (€5, b5 p,) (Bapys €5), (Bap,,€5)} ;5 Cs = (€4 \ e€s5) U ese = {bsy,, b, }
Determine the following: @*(e;) = t;, foralle; € Es, (p*(bj_p) =p, forallb;, € Bs, I"(¢e;) =
{”Ck‘ if 97e) = \/ Jforalle; € Es. Identify n* = (TN* = (Es, Bs, Gs, Cs, 1), @) and p* =

L(¢*(e;)), otherwise

e;...e,. Notice that TN* and TN from Example 6 are equal up to renaming their conditions.
O

The following lemmas demonstrate important properties of the constructions from Definition 9.
Lemma 4.

a) TN™ is a casual net;

b) p* = e;...e, isalinearization of TN™;

c) C; = Cut(E;), forall0 <i<n.

Proof. See Appendix. |
Lemma 5. The mapping ¢* is a homomorphism from TN* to TN

Proof. See Appendix. m|
We are now ready to establish that FS is a surjective mapping.

Theorem 4. Given a run o of a time Petri net T)V, there exists an admissible time process 7* =
(TN, ") of TN and a linearization p* = ey...e, of TN* such that o = FS(p*) =
@"(e1) . 9" (en)-

Proof. Consider the construction of ©* from Definition 9. According to Lemma 4(a) and Lemma 5,
m* is a time process of TN. Take an arbitrary 1 <i<n such that ¢*(e;) €T. Then,
Clock(ee;, 9™ (e;)) = I;_1(¢"(e;)), by Lemma 3(c). Due to ¢ being a run of TV, we obtain that
Eft(¢p*(e;)) < Clock(ee;, *(e;)) < Lft(¢*(e;)). Hence, m* is an admissible time process of

TN. Thanks to Lemma 4(b), p* = e;...e, is a linearization of TN *. By the construction of ¢*, we
get that FS(p*) = 0.
O

The following theorem shows that F'S is an injection, i.e. the constructed in Definition 9 time process
n* = (TN*, ¢*) is unique up to isomorphism.

Theorem 5. Let o be a run of TV The time process m = (TN, @) of TN with linearization p =
e;...e, of TN, such that 0 = FS(p) = ¢(e,) ... ¢(ey) is unique up to isomorphism.

Proof. Take arbitrary time process 7' = (TN' = (B',E',G',1"),¢") of TV and linearization p’ =
e’y ...’y (n=0)of TN' such that FS(p") = 0. Then, E’' = {e',,..., €', }, by the definition of the
linearization.

Moreover, B’ = «TN' @ e'1+ @D ... e',e, due to TN’ being an acyclic net. Set By = «TN' and
B; = B{_; Ueg;'s,for 1 < i < n. By Definition 7, the restriction of ¢’ to «TN' is a bijection between
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*TN'and M,. Then, w.lo.g. assume B’y = {b'y,|p € M,}, with ¢'(b’y,,) = p. Take an arbitrary
1 < i < n.Suppose ¢'(e’;) € T. Then, due to the restriction of ¢’ to e';» being a bijection between
e';sand @'(e';)s, w.lo.g assume e’;e = {b';, |p € @'(e’;)*}. If p'(e)) = V, then ;¢ isacut, ie.
e';e # @, thanks to Definition 7. In addition, we have that e’;s S Cut(E';), by Lemma 2(a), and
Cut(E';) is cut, by Lemma 2(c), i.e. e;'s = Cut(E';). Thanks to Definition 2, it holds that M; =
M;_,. Hence, the restriction of ¢’ to e;"« is a bijection between e+ and ¢'(Cut(E';_,)), according
to Lemma 3(a). W.Lo.g. suppose ejs = {b';,, | p € ¢'(Cut(E';_1))}. Thus, for all 1 <i <n, we
obtain the following:

Cp—m b {e{- = by | € ' CutE )} if e =,

‘ -t eje ={b'i, D EP ()} otherwise
- ¢'(b'ip) = p, forallb’;, € B;.
Compare the time process 7' of TN and the time process * = ((B,E,G,1*),p*) of TN of TN*
(from Definition 9). Clearly, E’ and E have the same cardinality. Due to FS(p") = FS(p*), we
obtain that ¢'(ej) = ¢*(¢;),forall1 < i <n. According Lemma 3(a) and Lemma 4(c), it holds
that ¢'(Cut(E;_1)) = M;_, = ¢*(Cut(E;_,) = C;_,),forall1 < i <n. Hence, B; and B; have
the same cardinality, forall 0 < i < n.
Thanks to the definitions of E’ (E*) and B’ (B*), we can construct a bijective mapping y :
(E'U B') > (EU B),withy(e{) = e, foralle; € E',andy(b’;,, ) = bj, forall b';,, € B such
that y(B') = B and y(E") = E. Clearly, ¢'(x) = ga*(y(x)), for all x € B"UE’, and hence,
I'(e)) = I"(v(e))),foralle; € E'. It remains to show that G’ is isomorphic to G. Take an arbitrary
1 < i < n. Due to the definitions of B; and B'; , we have that (ei’, b’j‘p) EG' b, EB; o
b;, €B; & (ey,b;p) € G.Check that (b'j,,e/) € G' & (bjp.€) € G.

Claim. b;,, € Cut(E;_;) © b’j, € Cut(E';_1).

Proof. We prove the case with b;,, € Cut(E;_,) (the case with b';,, € Cut(E’;_;) is symmetric).
Then, there exists b';,, € Cut(E';_;), according to Lemma 3(a). Suppose a contrary, i.e. j' # j.
W.lo.g. assume j <j' < i. As y: B’ - Bis bijection, there exists b;,,, =y(b’j,,). Due to
Definition 9, we have that b;, € «TN,if j = 0,0r b;,, € ¢j* S Eje, if j >0, and b;,, € ¢j,° ,
because j' > j. Then, bj,, € Cut(Ej;), by Lemma 2(a). However, b;,, & Cut(Ej,), thanks to
Lemma 3(a). Since Ej» S Ej,« , we get that b;,, € «TN U Ej,+. Hence, b;,, € *Ej,, due to the
definition of Cut(Ej,). This implies that b;,, € «E;_,, contradicting b;,, € Cut(E;_,).

[m]

According to Lemma 2(b), we have ee] € Cut(E;_,). Assume that ¢'(e}) = V. Then, «e] is a cut,
i.e se; # @, due to Definition 7. Moreover, we have that Cut(E’;_,) is cut, by Lemma 2(c), i.e. s¢; =
Cut(E';_). Therefore, (b'jp.e)) EG ©b';, € Cut(E';_y) © b, € Cut(Ei_y) ©
(bjp, €;) € G, thanks to Claim. Assume ¢’(e;) € T. Then, itholds that ee; = {b’;, | p € *¢@'(e/) A
b';, € Cut(E';_1)}, due to the restriction of ¢’ to se; being a bijection between se; and *¢'(e;).
By virtue of Claim, we get that (b'j,,e/) €G' & p € «p'(e/)A b'j, € Cut(E';_;) © p€
p*(e;) A bjy € Cut(Ei—) < (bjp €) EG.

Therefore, we obtain that y: " =~ 7*.

O

Thus, we have demonstrated that F'S is a bijective mapping between linearizations of time processes
and runs from the initial state, in the context of the TPN TNV
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6. Conclusion

In this paper, we have introduced and studied partial order semantics for TPNs with weak time
elapsing and intermediate memory policies. First, we have developed a state space discretization
technique for the TPN, i.e. we have shown that any of its run with real-value time elapsings can be
represented as that with the same untimed part and with only unit time elapsings. This allows us to
transform time elapsings into the structure of a causal net with tick-events. Second, partial order
semantics of the TPN has been proposed in the terms of time causal processes which consist of
causal nets and their homomorphism into the TPN. Partial order semantics is useful for taking into
account the processes' timing behavior in addition to their degrees of relative concurrency. Also, in
the context of the TPN, a bijective mapping has been proved to exist between interleaving runs and
computations (linearizations) of time causal processes, demonstrating that the partial order
semantics is correct w.r.t. the interleaving that.

As for future work, we plan to extend the results obtained to atomic memory and back in time
policies. As well, we believe that partial order semantics developed here allows us to elaborate and
investigate behavioral equivalences of TPNs with weak semantics, in interleaving — partial order
dichotomy.
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Appendix

Proof of Lemma 1. Let 8 is a solution of B,,. We shall prove, that (MO,IO) (Ma, [1,,;18), for
all 0 < i < k, by induction on i.
i=0. Due to Definition 4, we get: wy = xo; M, = Mo; Vt € En(Mwo) 2 1oy, () = xo. Hence,

(M,, IO) (Ma,o, [15,,15), thanks to Definition 2.

[wi-1]p
i > 0. By the induction hypothesis, we have that (Mo, ly) — (M, ,,[l,, ,]1g). Due to
Definition 4, it holds:
- W = Wi biXg;

= My;:= My, \et)Utie (e t; € En(M,,_,));
- Eft(t) < Iy, (&) < Lft(t,) in By

0, if Tenabled(t,M,, ,,t;)

- Vt€En(M,), I, ) —x; = { 0! otherwise
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Then, Eft(t;) < [I,,_,(©)]p < Lft(t;), because f is a solution of B,,. Therefore, ¢; can fire from
the state My, _,» e, ] 5) By Deﬁnition 2, we have that

Wi 1

(Mo, Io) - (My,_,, e, 1]3) - (Mwl Ui lp — B(x) —’ (Mwl [1s;1p)- Hence, it is true that
(M,, IO) —> (M, [I;,]5). Moreover, forall 1 < i < k, we have [I',,,_, (t)]g = I'i-1(t). O

Proof of Proposition 1.
Letw = xotyxy... tyXy; f; be the functions from Definition 5, with0 < i < k; 8, = fi; and B,,
be the set of the variable parts of the inequalities from B,,. In order to show that the assignment 3,
is a solution of w, we consider an important property of the mappings f5;, forall0 < i < k.
Claim. Forallg € B, and0 < i <k, itholds that[ [g]z ] = [[glg,] and |[gls] < [[glg,]-
Proof. We shall prove by induction on i.

= 0. Obvious.
i > 0. Take an arbitrary g € B,,. By the induction hypothesis, we have that [ [glg,_. 1= [[g]g,]
and [[glp,_,] < [[glg,]- Let B be the function from Definition 5.

Assume that does not exist h € B, s.t.[ [h ]Bl] < |[hlg,)- Then, [glg, = [glp, and [glg, <

[9]p;_,» dueto Definition 5. Then [ [g]g,] = [ [glg,] = [9]g,) and |[glg,] < [[9)pi_,] < [19]p,]-
Assume that there is exists h € B,, s.t. [[h]lgl] [[R]g,]- Then, [glg, = [g]g,_,> by Definition 5.

Therefore, [[glg,] = [[glp,_,1 = L[g]p,]- Suppose a contrary, i.e. [[g]lglj > [[g]g, 1 Then, [g]g,
[[91g,) = [[g]p,] + 1. According to Definition 5, x,_; appears in g and h and, moreover, [h]g,
[Rlg,_, — Bica (=) + BiCxk—y) = [Rlp,_, — Bica (=) + [Bica (xe=)] =< [hlp,_, —
Bie1(e—i) + 1 BicaCa-dl + 1 = [h]p + L. As[h]p +1 < [[h]ﬁ] +1 < |[h]g,], we have
[hlp, < |[R]g,]- Let S+ NX N — Ry be such that S(a,b) = Z?=axj,ifa < b, and S(a,b) =
0, otherwise. Due to Definition 4, it holds that h = S(m,n) and g = S(m',n"), where 0 <
m,m’' < k— i <n,n' < k. By the construction of S, we have that [S(a,b)]s, = [S(a, b)lg,
if0 <b < k— c <k;and [S(a,b)]lg, = [S(ab)lg,,if0 < k— ¢ < a < k. Therefore, we
obtain the following:
M [Sk—i,n)]p < [[S(k —i,m)]g,],dueto [S(m,k —i— D], = [S(mk —i—

Dlg, and [hlg, < [[lg] < L[Alg,:

@) [SCk — i,n)]g, = [[SCk — i,n)]g,] + 1, due to [S(m’, k — i — 1)]g, = [S(m',k — i —
Dlg, and [glp, = [[g]p,] + L

B3) [SM' . D)]g,_,_, = [S(M', 1)]g,;

@ [Sm,n)g, .,y = [S(m,n)]g,;

[ = [S(n+1, n')]ﬁ. =[S(n+1,n")]g,;
[

I\

=
=

B) [S(n+1,n")]

Br-n-1

6) [S(n' +1,n)] =[S + Ln)]g =[S+ 1,n)]g,.

Bk-nr-1 —

Three cases are admissible:
— n = n'. Then, (1) contradicts (2).

— n < n'. Then, it holds that [gls,_. , =[S, M)]g_, , +[S+1,n)] =@
[S(m',k —i—D]g, Sk —i,m)]g, + [S(a+ 1L,n)]g,_,., =D [S(m' k—i-
Dlg, +[SCk —i,n)]g, + [S(n + 1,n")]p, =@ [[glg,] + 1. This contradicts the induction
hypothesis, because k — n < i.
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- n>n. Then, it holds that [h]ﬁk- v = [S(m, n’)]l;k_ v T [S(n" +
1,n)] =@ [S(m,k —i— D], + [SCk —i,n")]p, + [S(n' + Lmlg, . <@.(®)

B—n'-1 1
[S(m, k —i— D], + [SCk —i,n)]p, — 1+ [SM' + L,n)]p, <O |[h]g,] —1. We get a
contradiction the induction hypothesis, because k — n' < i. O

By Definition 4, x;, does not appear in B,,. Then, £, is a solution of B,,, according to Definition 5.
Take an arbitrary g from B,,. Then, it holds that (a < g < b) € B,, where a,b € Z. By Claim,
we have |[glg,] < [glp, =< [[glp,]- Due to B, being a solution, we obtain a < [g]g, < b and,
moreover a < |[glg,],[[glg,] < b, because a,b € NUco. Thus, it holds that a < |[g]g,] <

(915, = [l9]p,] < b. Therefore, B, is a solution of B,,. m|

Proof of Lemma 2.

a) Take an arbitrary 1 < k < n. By definitions, we have that Cut(Ey) = (¢TN U Eje*)\ *E; =
(TN U Ey_1*Uer*)\(*Ex_1 U ee,). As TN is an acyclic net, we obtain that e, N ey = @
and *Ej,_; N ege = @. Then, it holds that Cut(Ey) = (((*TN U Ej_1¢)\*Ex_1)\*ex) U eg* =
(Cut(Ex-1)\*ex) U ege.

b) Take arbitrary 1 < k < n. The case with se, = @ is trivial. Suppose b € ee;.. By definition, we
have that Cut(E;_;) = (¢TN U Ej_;*)\*Ej_;. Due to TN being a causal net, b & ee;, for all
1< i<k Hence, b € ¢E;,_,. If b € TN, then b € Cut(E}_,). Consider the case when b &
*TN. Then, there is e; such that b € e;e. Clearly, e; < ej. This implies that i < k, in the
linearization p. Hence, b € E;,_;* and b € Cut(Ey_;).

c) As Cut(E;) = TN ={b € B|+b = 0}, we have Cut(E,) is a co-set. Suppose a contrary,
i.e. there are b, b' € Cut(Ey), forsome1 < k < n,suchthatbh < b'. As p is a linearization, we
have bGe; ... e; Gb', with i < j. Dueto Cut(Ey) = (TN U Ey*)\ *Ej, we getb,b’ & <E and
b' € Eye. Since b’ = ¢;, it holds that j <k, i.e. i < k. This means that b € ee; C *Ej,
contradicting b ¢ «Ej. Thus, =(b < b").

We shall show that Cut(E}) is a cut, for all 0 < k < n. Suppose a contrary, i.e. there exists b &
Cut(Ey), for some 0 < k <n, such that =(b < b’)and —(b' < b), for all b’ € Cut(Ey).
W.lo.g. assume b € Cut(E;), for some 0 <i # k <n. Thanks to item a), Cut(E;) =
(Cut(Ej_l)\ -ej) Uep, forall 1< j < n Ifi < k, then we get that bGe, ... e,,Gb’, for
some b’ € Cut(Ex) andi < Il <m < k,ie b < b, because TN is a causal net. If i > k,
then we have that b'Ge, ... e,,Gb, for some b’ € Cut(Ey) and k < | <m< i,ie. b'< b,
again because TN is a causal net. Thus, Cut(Ey) isacut, forall 0 < k < n.

O

Proof of Lemma 3.
a), b) We shall verify the items by inductionon 0 < i < n.

i = 0. By definitions, it holds that Cut(E,) = TN.

a) The restriction of ¢ to Cut(E,) is a bijection between Cut(E,) and M, due to
Definition 7.

b) As Age(b) = 0, forall b € TN, Clock(Cut(Ey),t) = 0= I(t), forall t € En(M,),
thanks to TV being T-restricted.
i > 0. By the induction hypothesis, the items hold for i — 1. We now check them for i.
Two cases are admissible.
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Case 1: @(e;) = V. Then, it holds that M;_, = M;, by Definition 2. According to
Definition 7, we have that ¢(e;*) = @(*€;) and ee;, e;* are cuts, i.c. ee; # @,e;* = 0. In
addition, we have that se; C Cut(E;_;), e;» S Cut(E;), and Cut(E;_,), Cut(E;) are
cuts, due to Lemma 2. Hence, we get that se; = Cut(E;_;) and Cut(E;) = e;e, and,
moreover, @ (Cut(E;)) = ¢(Cut(E;_1)) = M;_; = M;.

a) As the restriction of ¢ to e;e is an injection, by Definition 7, the restriction of ¢ to
Cut(E;) is a bijection between Cut(E;) and M;.

b) Take an arbitrary t € En(M;). According to Definition 2, we have that t € En(M;_,)
and I;_1(t) + @(e;) = I;(t). By definition, Age(b) = Age(b’) + ¢(e;), with
b" € Cut(E;_,) and p(b) = @(b"), forall b € e;» € Cut(E;). Then, due to TN
being T-restricted, we obtain that Clock(Cut(E;),t) = min({Age(b)|p(b) € ot,
b € Cut(E)}) = min({Age(b) + ¢(e)|p(b) € *t,b € Cut(E;_1)}) =
Clock(Cut(E;—1),t) + @(e) = L1(t) + @(e) = Li(1).

Case 2: ¢(e;) € T. Then, M; = (M;_; \ *¢(e;)) U ¢(e;)e, according to Definition 2.

Due to Definition 7, the restrictions of ¢ to se; (e;*) are bijections between ee; (e;*)

and *@(e;) (p(e)e).

a) By the inductive hypothesis, the restriction of ¢ to Cut(E;_,) is a bijection between
Cut(E;_,) and M;_,. Then, due to Definition 2, we get that M; = (@ (Cut(E;_1)) \
cp(e)) Uole)e = o((Cut(E;—1) \*e;) Ues) = @(Cut(Ey)), using
Lemma 2(a). Since TV is contact-free, we obtain that ¢ (Cut(E;_;)\*€;) N
¢@(e;*) = @. Therefore, the restriction of ¢ to Cut(E;) is a bijection between
Cut(EL) and Mi'

b) Take an arbitrary t € En(M;). Assume that T enabled(t, M;_;, ¢(e;)) is true. Then,
we have that t € En(M;_;\*@(e;)) or t = @(e;), by Definition 2. Ift = ¢(e;),
then t € En(M;_,) and t € En(M;_,\*t) = En(M;_,\*@(e;)). So, t & En(M;_,\
*@(e;)). Due to Definition 2, it is true that En(M;) = En((M;_, \ *@(e;)) U @(e;*)).
Thanks to TV is T-restricted, we get ot # @ and @ (e;*) # @. Since t € En(M;) and
t & En(M;_{\*@(e;)), we have that «t N @(e;*) # @. According to Lemma 2(a), it
holds that e;e € Cut(E;). Hence, there is b € Cut(E;) such that @(b) € ¢t and
Age(b) = 0. Therefore, due to TN being T-restricted, it is true that
Clock(Cut(E;),t) = (min {Age(b)|@(b) € ot, b € Cut(E;)}) = 0.

Thus, Clock(Cut(E;),t) = I;(t), due to Definition 2.

Suppose that T enabled(t, M;_1, p(e;)) is false. Then, we get that t € En(M;_;\
*p(e))) andt # ¢(e;), by Definition 2. Hence, sp(e;) N ot = @, i.e. p(*e;) N ot =
@. As TV is contact-free, it holds that (M;_1\*¢@(e;)) N @(e;)* = @. This means
that, (e;)e Net =@, ie. p(e;*) N ot = @,. Therefore, if @(b) € ot, then b & ;¢
and b & ee;. By the induction hypothesis, we have that [;_;(t) =
Clock(Cut(E;_1),t) = min({Age(b)|p(b) € ot,b € Cut(E;_,)}) =
min({Age(b)| ¢(b) € ot,b € (Cut(E;_1)\*€;) U e;*}). Thanks to Lemma 2(a), we
obtain that [;_,(t) = Clock(Cut(E;),t). Thus, it holds that [;(t) = [;_,(t) =
Clock(Cut(E;), t), due to Definition 2.

c) Assume that i < nand @(e;4,) € En(M;). Then, ¢(e;1) € En(e@(Cut(E;))), due to item
a). By definition, due to TV being T-restricted, we have that Clock(Cut(E;), ¢(e;11)) =
min({Age(b)|p(b) € s@(ej11),b € Cut(E;)}). Take an arbitrary b € Cut(E;) such that
@(b) € *@(e;+1). Thanks to the definition of a homomorphism, it holds that ¢(b) €
@(*e;41). Hence, b € ee;,, due to item a). By virtue of Lemma 2(b), e¢;,; € Cut(E;). This
implies that Clock(Cut(E;), p(e;y1)) = Clock(ee; 1, @(€i41))- Therefore,
Clock(*e;y1, 9(€i41)) = Li(@(€141)), due to item (b).

O
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Proof of Lemma 4.

a) By the construction of TN*, we have the following. First, B and E are finite sets. Second, G S
(B X E) U (E X B) is a flow relation such that e;G;b;,,G;e;, i.e. j < i. Hence, TN is acyclic.
Third, I": E — Act U {tick} is a labeling function. By the construction of G, we obtain that
*byp, = @ and *b;,, = {e;}, forall 1 < i < n. Therefore, [*b;,| < 1, forall 0 < i < n. Suppose
a contrary, i.e. |b;,*| > 1, for some b, € B. Then, there exists i # i’ such that {b;,} €
ee; and {b;,,} € +e;s . Hence, by the construction of G, we get that j < i, b;,, € C;_; and j < i,
bj, € Cyr_y . W.lo.g assumei <i'.AsC, = (Ci_;\*e;) Uee, foralll < I < n, there exists i <
k <i" — 1 such that b;,, € e, *. According to the construction of Gy, j = k, contradicting j <
k.

b) Due to Definition 9, every event of TN™ appears in the sequence p* = e;... e, exactly once. By
the construction of G, it holds that e; < e; implies i < j.

c) As Cy = TN”, we get Cy, = Cut(E,). Thanks to items a), b) and Lemma 2(a), we obtain C; =
Cut(E;),for0 <i<n.

O
Proof of Lemma 5.

Claim. The restriction of ¢* to C; is a bijection between C; and M;, forall 0 < i < n.

Proof We prove by inductionon 0 < i < n.

i = 0.Then, C, = By = {by,| 0 € My}, i.e. the restriction of ¢ to C, is a bijection between C and
M,.

i > 0. By the induction hypothesis, the restriction of ¢ * to C;_; is a bijection between C;_; and M;_;.
Two cases are admissible.

Let p*(e) = t; = V. By Definition 2, we have M; = M;_;. Thanks to the construction of G; and
C;, it holds that C; = (C;_1\*€;) U e;* = e;* = C;_;. Then, the restriction of ¢* to C; is a bijection
between C; and M;.

Let ¢*(e;) = t; € T. By Definition 2, we have that M; = (M;_;\*@*(e;)) U ¢*(e;)e. Take an
arbitrary p € «@*(e;) (it exists because TN is T-restricted). Then, p € M;_; and, moreover, there
exists bj,, € C;_q, due to the induction hypothesis. Thanks to the construction of G;, we get that
se; ={bj,|p €E*@*(e;) A bj, €Ci_1}ande;e = {b;,| p € ¢*(e;)*}. Hence, the restriction of
@ to ee;(e;*) is a bijection between ee;(e;) and e@p*(e;) (¢*(e;)*). Then, ¢*(C;) =
@ ((Cima\ve) Uee) = (97 (Cim)\@"(ee)) U @7 (e;0) = (Mi_1\*@"(e;)) U ¢”(e;)* = M;. Due
to TV being contact-free, we obtain (Mi_l\«p*(ei)) Ug*(e)e =0.

Therefore, the restriction of ¢* to C; is a bijection between C; and M;. O
tick,ifp*(e) =V,
By definition, we have that ¢*(B) € P,"(E) € (T'U {v/}),and I'(e) = | L.k i/#7(€) ‘/ ,
L(¢*(e)), otherwise

foralle € E.
Take an arbitrary 1 < i < n.
Assume @*(e;) € T. Due to Claim, the restriction of ¢*to se; (e;*) is a bijection between ee; (e;¢)
and +"(e1) (9" (1)*).
Assume @*(e;) = . Thanks to the construction of G; and C;, we have that C;_; = ee; = ¢;¢ = C;.
By Claim, the restriction of ¢ to ee; and the restriction of ¢ to e; are injections. As TN is T-
restricted, we obtain ee; # @ and e;* # @. According to Lemma 4(c), we have that ee; = Cut(E;_;)
and e;» = Cut(E;). Due to Lemma 2(c), *¢; and e;e are cuts.
As oTN™ = (C,, by construction, the restriction of ¢* to *TN™ is a bijection between TN* and M,
due to Claim.
Thus, ¢* is a homomorphism from TN* to TV, by virtue of Lemma 4(a).
O

283

Information about authors / UHcpbopmaumsa o6 aBTopax

Alexey Yurievich ZUBAREV, PhD student. Research interests: parallel computing, Petri nets.
Anekceit FOpbeBuu 3YBAPEB, acniupant. Hayunsle nHTepechl: napajulenbHble BHIUUCICHUS, CETH
[etpu.

Irina Bonaventurovna VIRBITSKAITE — Doctor of Physical and Mathematical Sciences, Professor,
Head of the Laboratory of the Theory of Parallel Processes at IIS SB RAS, Professor at NSU.
Research interests: theory of parallel processes; specification and verification of parallel real-time
systems.

Upuna Bonarentyposaa BUPBULIKAWTE — noxTop (H3MK0-MaTeMAaTHUECKHX HAYK, mpodeccop,
3aBenyrolas jabopaTopueil Teopun napamienabHsix npoueccos B UICH CO PAH, npodeccop HI'Y.
Hayunble wWHTepechbl: TeopHsi MHapaJUIeIbHBIX IIPOLECCOB; CHENU(UKAIMI W BepHUKAIHs
MapauIeNbHBIX CHCTEM PEaIbHOTO BPEMEHH.

284



