
Труды ИСП РАН, том 32, вып. 3, 2020 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

33

DOI: 10.15514/ISPRAS-2020-32(3)-3

Static analyzer debugging and quality
assurance approaches

M.A. Menshikov, ORCID: 0000-0002-7169-7402 <info@menshikov.org>
St Petersburg State University,

7–9, Universitetskaya nab., St. Petersburg, 199034, Russia

Abstract. Writing static analyzers is hard due to many equivalent transformations between program source,
intermediate representation and large formulas in Satisfiability Modulo Theories (SMT) format. Traditional
methods such as debugger usage, instrumentation, and logging make developers concentrate on specific minor
issues. At the same time, each analyzer architecture imposes a unique view on how to represent the intermediate
results required for debugging. Thus, error debugging remains a concern for each static analysis researcher. In
this paper, our experience debugging a work-in-progress industrial static analyzer is presented. Several most
effective techniques of constructive (code generation), testing (random test case generation) and logging (log
fusion and visual representation) groups are presented. Code generation helps avoid issues with the copied
code, we enhance it with the verification of the code usage. Goal-driven random test case generation reduces
the risks of developing a tool highly biased towards specific syntax construction use cases by producing
verifiable test programs with assertions. A log fusion merges module logs and sets up cross-references between
them. The visual representation module shows a combined log, presents major data structures and provides
health and performance reports in the form of log fingerprints. These methods are implemented on a basis of
Equid, the static analysis framework for industrial applications, and are used internally for development
purposes. They are presented in the paper, studied and evaluated. The main contributions include a study of
failure reasons in the author's project, a set of methods, their implementations, testing results and two case
studies demonstrating the usefulness of the methods.

Keywords: static analysis; debugging; goal-driven random test case generation; code generation; log file
analysis; visual representation

For citation: Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-48. DOI: 10.15514/ISPRAS–2020–32(3)–3

Подходы к отладке и обеспечению качества статического
анализатора

М.А. Меньшиков, ORCID: 0000-0002-7169-7402 <info@menshikov.org>

Санкт-Петербургский государственный университет,
Россия, 199034, Санкт-Петербург, Университетская наб., д. 7–9

Abstract. Написание статических анализаторов затруднено из-за наличия множества эквивалентных
преобразований между исходным кодом программы, промежуточным представлением и большими
формулами в формате Satisfiability Modulo Theories (SMT). Традиционные методы, такие как
использование отладчика, инструментарий и ведение журналов, заставляют разработчиков
сосредотачиваться на определенных мелких проблемах. В то же время каждая архитектура анализатора
навязывает уникальное представление о том, как следует представлять промежуточные результаты,
необходимые для отладки. Таким образом, отладка остается проблемой для каждого исследователя
статического анализа. В этой статье представлен наш опыт отладки незавершенного промышленного
статического анализатора. Представлено несколько наиболее эффективных методов конструктивной
(генерация кода), тестовой (генерация случайных тестовых случаев) групп, а также группы

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

34

журнализации (объединение и визуальное представление журналов). Генерация кода помогает
избежать проблем с копируемым кодом, мы улучшаем его с помощью проверки использования кода.
Генерация случайных тестовых наборов на основе целей снижает риски разработки инструмента,
сильно смещенного в сторону конкретных вариантов использования конструкции синтаксиса, путем
создания проверяемых тестовых программ с утверждениями. Слияние журналов объединяет журналы
модулей и устанавливает перекрестные ссылки между ними. Модуль визуального представления
показывает объединенный журнал, представляет основные структуры данных и предоставляет отчеты
о работоспособности и производительности в форме отпечатков журнала. Эти методы реализованы на
основе Equid, платформы статического анализа для промышленных приложений, и используются для
внутренних целей. Они представлены в статье, изучены и оценены. Основные вклады включают
изучение причин сбоев в авторском проекте, набор методов, их реализации, результаты тестирования и
два тематических исследования, демонстрирующие полезность методов.

Ключевые слова: статический анализ; отладка; целенаправленная генерация случайных тестовых
примеров; генерация кода; анализ журнальных файлов; визуальное представление

Для цитирования: Меньшиков М.А. Подходы к отладке и обеспечению качества статического
анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г., стр. 33-48 (на английском языке). DOI:
10.15514/ISPRAS–2020–32(3)–3

1. Introduction
Software engineering is ailing from quality assurance issues. Many approaches are aiming at
achieving runtime error absence (reviewed in Section 2), but logical correctness is not trivially
reachable even if it is guaranteed statically. This is often the case because the correctness is not
automatically derived from internal consistency.
The static analysis is aimed at verification of the real-world problems written in the form of
programs. Analyzers follow the generic debugging and quality assurance trends, however, there is
specificity which should be taken into account [1]. The input program undergoes several
transformations, and each of them has a significant impact on the validity of the final result.
Moreover, several transformations, when combined, may have cumulative effects. The issues during
transformations are usually not runtime errors, which are easy to narrow down using traditional
methods, but rather logical defects. Since transformations are unique products of each static
analyzer, quality assurance is the sole responsibility of the analyzer's author.
In the Equid project [2], the author had several observations. First, feature testing looked biased
towards the developer's interpretation: there is a tendency to test constructions in a way they are
used by the person. Second, thorough bugs may be hidden behind multiple abstractions and appear
unexpectedly as analyzer grows. Third, a significant amount of errors could have been found if there
was a simple measure indicating that action was required. Inserting heuristics for every aspect of a
large software project log is barely achievable (consider limited system resources when making such
advanced logging), so log analysis is the foremost goal for analysis debugging. Fourth, contracts
and formal requirements undeniably contribute to the quality of the product, however, they cover
integrity and consistency rather than the absence of logical issues. In that sense, static analyzers have
no specificity. And the last, static analyzers have a rare environment with little to no requirements
for issue reproduction. For example, reproducing the issue in network router software may require
days and months just to repeat the pattern. That makes it possible to increase logging verbosity until
the issue is detected, so the developer may put efforts into making logs as informative as possible.
With that in mind, the paper suggests an approach for increasing the visibility of issues and/or
reducing the likeliness of bugs, based on code generation, log file improvements, goal-driven
random test case generation, and visual representation. These four methods make up the author's
static analysis debugging and quality assurance approach. The study starts with the description of
third-party approaches (Section 2), continues with the key issue sources identified by the author
(Section 3), the method is presented in Section 4 and evaluated in Section 5.

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

35

Motivation. The debugging field concentrates on runtime issues and doesn't answer the question
how to debug deep logical issues in the static analyzer. Thus, solving this problem and employing
the right methods brings many practical benefits, such as improvements in stability, reduced risk of
problems after implementing new features, a faster development pace.
Novelty. The suggested approach covers a significant amount of issues found in the real-world
analyzer's development. The code generation stage is enhanced with the post-processing phase in
which the internal use cases are loosely verified, making integration of new objects faster. The log
fusion adopts hypertext-like approach, making the output more linked and indexable, allowing for
better search and filtering. To the knowledge of the author, the logging had never been integrated
with the hypertext. Random test case generation usually covers trivial input data or just compilable
programs, but in this study, it produces programs with specified verification goals, which is an
improvement over completely random programs. The visual representation is usually aimed at the
visualization of control flow graphs, but in this paper, it is intended for data structures and internal
health/performance reports.
Main contributions. Main contributions comprise the study of the issues in the Equid project, four
debugging and quality assurance techniques, implementations for 3 of the mentioned platform-
independent methods, the testing results, and two case studies presenting the usefulness of the
method.

2. Related work
Most works are about analyzing complex systems with static analyzers rather debugging analyzers,
however, there is a study of defects in static analyzers [1], which gives useful insight to the opinions
of other researchers. According to the paper, visualization and handling of intermediate results is
still not satisfactory for the most developers, as well as handling of data structures. While the author
hadn't synchronized with this research when the development of the analyzer started, a significant
match with the practical experience had been determined.
There are well-known complex tools for debugging of complex systems, e.g. GDB [3], supporting
all major Central Processing Unit architectures. The LLDB [4] is an LLVM-based GDB analogue,
which aims to provide reusable infrastructure. Of course, there is a number of language-specific
tools, but GDB and LLDB are among the most universal ones (e.g. UndoDB [5], which is based
upon GDB, can be used to debug Java and Go applications). Such debuggers provide a way to debug
tools in the direction from the beginning to the end and support analyzing core files.
The reverse direction debugging (or «omniscient debugging») is covered by GDB itself; the
Mozilla's RR [6], the record and replay framework; the Undo Debugger [5], which is claimed to be
one of the first commercial reverse-debuggers [7]. The reverse-debugging tools are useful for
runtime errors, but the majority of the defects, at least in our project, don't fall into this category, so
the usefulness is limited.
Random program generation has been first shown in [8], this method then evolved into CSmith [9]
framework, which had extremely successful applications to industrial compilers. An interesting
result was achieved in the paper [10], in which the author tries to avoid generating dead code by
using all the temporary computations for the final result. Intel has also prepared its random program
generator [11] capable of triggering compiler optimization bugs, with over 140 defects found in
LLVM and GCC. The research [12] covers Orange4 random program generator with an idea of
equivalent transformations – which is, by the framework, similar to goal-based generation from our
study, however, the generated programs are completely random without any goals set. The
MicroTESK [13] project generates test programs for various microprocessors (ARM, MIPS, RISC-
V and other architectures), however, it is aimed at a lower level than the tool described in our
research.
The static analysis visualization is a highly specialized topic, only applicable to concrete tool
developers. Still, the authors of the paper [14] explored the ways to animate the static dependence

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

36

analysis, and the result is very different from standard still visualizations. The closest generic
solutions so far are brought by code visualization tools, e.g. Sourcetrail [15], CVSscan~--- code
evolution visualizer [16], which are at least capable of visualizing programs. The negative part is
that local intermediate representations aren't supported in such tools. Graph-based program
evolution is estimated by GEVOL [17] project, which is important for tracking defects produced by
specific authors and functions. Software performance evolution had been examined in [18], as a list
of functions along with performance results.
The logging is well-investigated in [19], with useful insight about the usage of logging in open-
source projects. The study [20] concentrates on characterizing when do developers log the
information. Additionally, researchers performed the survey on how to improve the logging. Three
suggestions are relevant to our study: log filtering, categorization and analysis/visualization.
The current methods for information retrieval are mostly for natural languages. For unstructured
data, it implies the usage of n-grams, machine learning and other text search methods [21]. One of
the examples is DeepLog [22] system, which aims to find anomalies using deep neural network
model utilizing Long Short-Term Memory (LSTM). Paper [23] reconstructs control flow graph of
the distributed system to find anomalies. Anomaly detection in computer systems using decision
trees is performed in [24]. Those are valid methods for unstructured log analysis, however, these
methods are more suitable for malware action detection on sets of third-party applications, while the
study concentrates the single application development, where defects are detected by the developer.
Our log handling approach is closer to classic hypertext [25].

3. Sources of issues
Throughout 2019 author had been analyzing defects for the issues in more than 1500 commits in the
closed static analysis project. Key issue sources had been identified:
• missing support for the specific syntax/intermediate representation (IR) construction in

submodules;
• small differences in implementations for repeating parts (classes)};
• transformation and ordering issues.
The developers fix such issues promptly if they are observed, but they are not trivial to find. The
author had determined the following three main reasons.
• Low visuality of the transformation passes and the development process. The developer sees the

input, the result, but intermediate transformations might be incorrect. That might lead to false
testing results.

• Unattainable cross-dependencies between modules. The engineer creates a new feature and
edits modules to integrate it, yet different parts might be broken.

• Low quality of tests. This is the main reason why non-trivial issues are often not found. For
example, if tests verify separate handling of if and switch constructions, there might be
problems in their combinations if their implementations have interchanged code.

The following ideas were evaluated to make these issues more visible.
• Automatic generation of major cross-linked data structures to avoid unattended defects.
• Making an interface for viewing log that would detect cross-references between pass logs,

visualize the steps, the internal error rate. That's similar to the approach suggested by the paper
[1].

• Improving test cases: make random tests that would be more representative than those written
by hand.

No single solution can be engineered to solve these problems. All typical quality assurance
techniques were used in the project, which is not extraordinary, considering that the ultimate goal
for the static analyzer is to promote good software engineering practices. The \textit{recipes}

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

37

suggested by this paper are extensions of the typical methods, designed specifically for static
analyzers. In subsection 5.5, we predict the classes of the programs which might also benefit from
the approach.
Fig. 1 summarizes the findings, matches the issues with the reasons why they are not found and the
solutions.

Fig. 1. Sources of the issues, reasons why these issues are not observed and their solutions

In the next section, the author's solutions to these problems are demonstrated, along with their
implications.

4. Methods
As stated in the introduction, the paper aims to develop methods assisting in debugging of logical
issues in static analyzers. Unlike other kinds of issues, these issues do not cause runtime failures and
thus are often unattended. The form of assistance varies for every method.

4.1 Code generation
As the code base grows along with the number of syntax constructions, it gets important to ensure
that repeatable fragments are written strictly and concisely, not breaking the stability of the whole
program. Code generation reduces the risk of adding logical mistakes by producing modules with
high integrity and compatibility. This technique itself is not new and can be applied to any software
project, however, the analysis had shown that verification of the usage is vital as static analyzers

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

38

introduce transformations between different models. Also, the plurality of the models implies the
need for the model instantiation for different occasions. This way, the risk of logical issues in this
domain reduces due to common code generation base.
Thus, in the case of Equid, there are three major considerations for the code generation.
• Enumerations. When a new element is added to the enumeration, there is a high chance that

dependent enumerative functions are invalidated. A mechanism that indicates the expected use
of enumeration within the source code had been developed.
For example, if a selected code needs to handle just specific enumeration elements, then, before
using the enumeration EnumerationName, the developer may indicate the all-variant usage
of the enumeration:
core_indicate_use(EnumerationName, CoreEnumUse::AllVariants).

If the code intentionally uses just selected enumeration values, then the developer indicates it:
core_indicate_use(EnumerationName, CoreEnumUse::Selected).

The post-code generation phase verifies whether all or selected elements are used. This is a
cheap yet effective mechanism to ensure that all enumeration values are processed. Noteworthy
is that GCC has a switch-checking approach (-Wswitch-enum or -Wswitch), which can be
used with #pragma GCC diagnostic push for the region selection, however, GCC's
approach is compiler-dependent.

• Repetitive classes. A big software project doing many data transformations inevitably gets
many classes representing nodes participating in different analysis passes. In most cases, nodes
have a similar structure. The rule of thumb is that classes that can be described declaratively
should be written this way. For instance, in the project, we cover not only syntax structures but
also data classes, language semantics.

• Multi-model data. Input data sets may be cross-linked and can be used for different purposes.
There should be a way to interpret the data differently.

4.1.1 Practical implementation
To get code generation, the author had written a standalone C++ tool1. This version is limited
regarding supported syntactical constructions, only intended for demonstration.}. The input is
in customized YAML2 format. Several models were employed: enumerations, expressions and
intermediate representation commands. The tool produces a not strictly formal syntax tree,
which is transformed into the real code file.
The Enumeration model has the following format:
type: <A complete type, can have reference to a different namespace
clean_type: <A type name without namespace references>
namespace: <Namespace in which enum is introduced>
dont_create_enum: [false/true]
header:

- <extra header entry>
- ...

field:
- name: <Field name>
- token: <string representation>
- ...

unknown: <Unknown field for default alternative>
mapping:
- name: <MappingName>

1 https://github:com/maximmenshikov/eq_codegen. This version is limited regarding supported syntactical
constructions, only intended for demonstration.
2 https://yaml:org/

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

39

- from: <Source type>
- to: <Target type>
- unknown: <default result for unmapped values>
- map:

- from: <Source value>
- to: <Destination value>

The product is a C++ enum class with the given name, a set of fields, a mapping function
between enum and std::string, and several custom mappings.
The Expression model borrows many ideas from enumerations, but it is slightly more oriented
towards expression model:
type: <Short expression type>
value_type:

- direct: <fixed type>
- indirect: <expression to borrow type from>

constructor:
- name: <Internal constructor name>
- parameter:

- <list of parameters, named as members>
- ...

- ...
member:

- name: <Friendly member name>
- internal: <Private member name>
- type: <Member type>
- default: <Default value>

header:
- <extra header entry>
- ...

operation: <enumeration-like list of operations>
function:

- name: <custom function name>
- signature: <function's signature>
- body: <function's body>

override:
ToString: <Code that will return entry's string representation>

This is a short description of expression model, in fact, the model has more parameters for
handling minor cases, e.g. children handling, whether the entry is LValue, and a more
sophisticated return type handling.
The source for the command model (not presented in the paper) is provided at GitHub3.

4.2 Log fusion
A typical log is a flat file with thousands of lines. Developers often struggle to find an optimal
balance between verbosity and conciseness [19], but as mentioned in Section 1, static analyzers
are in the unique position in which running debugging versions is possible without complete
reproduction of the environment. In that case, it is possible to make tools as verbose as possible.
This method does not find logical issues by itself, but, in conjunction with the fact that logs
present a significant part of intermediate objects being the inputs and the outputs of
transformations, it assists in making the log analysis quicker.
An approach based on the following two concepts is suggested.
1) Module-specific logs. Each module writes to its log, however, the core keeps track of

unique timestamps for each log entry. Thus, it is possible to view separate logs if required

3 https://github:com/maximmenshikov/eq codegen models

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

40

or to view combinations of logs. This approach has important implications from a practical
perspective. First, it decreases the resources required for categorization and search. A single
log would have to be parsed from the beginning to the end – which would inevitably mean
a slowdown. Second, the reader gets an opportunity to select points of interest and
completely avoid unrelated parts.

2) Internal bookmarks/tags. Each object (in our classification, a resource, a fragment or a
virtual machine command) has unique ID within the object pool. Objects are referenced by
a tuple (name:id:type), and each action on the object is bookmarked by a tuple
(id:type:action). The log viewer allows quick navigation between these objects and by that
reduces the cognitive load on log reader. This implies that the log is less of \textit{flat}
structure, but rather a technical document, more oriented towards understanding.

4.2.1 Implementation

Separate logging is very implementation-specific and novelty-free. The analyzer simply opens
a number of streams and provides a debug context object allowing for access to all of these
streams.
The bookmark approach requires attention to the implementation of Uniform Resource Name
(URN) producing methods. URN must be both readable and short, since reading log files in
plain text is still an option. In the author's implementation, the URN doesn't adhere to RFC
21414 to save space. The practical URN grammar is presented in the corresponding GitHub
repository5.

4.3 Goal-driven random test case (program) generation
Order of actions and bias towards specific use case for syntax structures is the major source of
the issues during the development. They are not detectable mainly because preparing a
reasonable selection of tests proving the issue source is hard. The random test program
generation is helpful in such cases due to its ability to test software against large volumes of
varying input data. In result, not only logical issues are detected, but also a number of runtime
issues, as seen in compilers.
A random program generator creating a set of tests with the following properties was prepared.
First, all tests have one goal defined and asserted in main(), this is unlike other random
program generators, which produce compilable programs without assertions. Second, all of the
test cases are identical in terms of final results.
Our algorithm revolves around the idea of a \textit{verification goal}. The straight-forward
algorithm for main() is as follows.
1) Create a function main() with empty block.
2) Insert a randomly named variable. Let it be x.
3) Assume a random goal as a target value for variable x. Let it be a.
4) Generate a random block or a random function returning a or modifying the input pointers

so that x is receiving a.
5) Insert an assertion x = a.

A random block or a random function is generated accordingly. The goal is transformed
into a final statement (e.g. return a or x = a, based on whether the block or a function
is being generated).

6) The statement is transformed into a different statement based on the random value (which
chooses the next operation from the list below):
a) if the statement isn't a block, it is transformed into a block of statements;

4 https://tools:ietf:org/html/rfc2141
5 https://github:com/maximmenshikov/eq-urn-grammar

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

41

b) if the statement is a block, then a new variable is added to a block;
c) if the statement is a block, then a random (not goal) variable is assigned.
d) the statement is rolled into the if else if else statement, where the goal is put

into the first if then statement. For the rest of the branches, the false goal is
generated and rolled into a random block.

e) the statement is rolled into the switch / case statement, where the goal is put into
the first case body. For the rest of the cases, the false goal is generated and rolled into
a random block. The false cases are randomly ended with break.

f) the statement is rolled into for or while loop. In the author's implementation, these
constructions were of minor interest, so they were implemented trivially, similarly to
Orange4 [12]} same-assignment.

After executing the first two procedures, the outcome is a valid program which must be well-
parsed (syntactically correct by construction), should be analyzable and, if compiled, must
satisfy all assertions. To get a set of programs, the shuffling is performed on all constructions
allowing for it (the showcase is for if and switch). if branches are shuffled if the condition
expressions are not intersecting (i.e. swapping branches doesn't change the semantics), cases
are switched based on break existence. All-break switch-case statements can be shuffled
completely.
The practical implementation is located in corresponding GitHub repository6.

4.4 Visual representation
The visual introspection assists in finding logical issues by using a graphical view. A number
of issues, especially those involving formulas and type conversions, are not distinguishable in
textual forms. The following directions were in the focus of the research. First, making passes
visually observable. Second, provide reasonable health reports for performance figures, error
occurrence rates.

Fig. 2. The transformation view of IR commands

6 https://github:com/maximmenshikov/eq_fuzzytest

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

42

As for the first goal, our main intention was to make an internal Virtual Machine intermediate
representation (IR) viewable. The IR can be represented using a tree view since branches may
contain child entries. To simplify interface development, a plain tree view from Qt7 framework
had been used. Clicking on any IR command brings a list of related parts: a simplified SMT
representation, a simplified abstract interpretation view (Fig. 2). At the moment of writing, the
IR representing module is not directly linked to the debugger e.g. via GDB/MI interface [26],
but the project's debugging framework is capable of generating the commands to set the
breakpoints at the specific execution points (like IR transformation phases) for the RR [6]
replaying.
As for the second, the following formulas had been used to prepare a chart. The first formula is
trivial. Consider ti, a start time of ith verification phase, where i ∈ [1, n], and t' is the final
execution time. If, for simplicity, t' = tn + 1, then durations are calculated accordingly:
∆ti = ti+1 - ti, where i ∈ [1, n]. However, this computation gives a very rough
approximation of internal time spans.
Module log separation provides two other useful empirical formulas. One formula is based on
log size. Consider that the logging is more or less uniformly spread around the modules. In that
case, module log size is a simple profiler for the module execution times, without an actual
profiler running.
The other formula requires building a time series. The complete execution time t' is collected,
and it is divided up to 40 chunks: ∆ti = t' / 40, where i ∈ [1, 40]. The graph with
timestamp occurrence frequencies for each ∆ti group is built for every module. The result of
the implementation can be roughly described as a digital fingerprint for the execution (Fig. 3).
The source code is located at GitHub8.
Concluding, these three formulas provide insight into performance. They consider (a) total
phase time, (b) total time spent in the module, (c) time distribution. They are useful if logging
invocation distribution is uniform.

Fig. 3. The «fingerprint» of the execution

5. Evaluation
The implementation of the proposed approaches had been tested in the Equid project. For
random test case generation, it is common to measure how many errors of which severity had
been found using the technique, that's what determines the real usefulness of the method.
For log fusion, the developer's time to find an error was continuously monitored. This way is
not accurate since the issues might differ at every testing instance.

7 https://github:com/maximmenshikov/eq fuzzytest
8 https://github:com/maximmenshikov/loghealth

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

43

For code generation, we investigated the time needed to bring up a new syntax structure. We
were lucky to have had a syntax processing refactoring right after tool bringup due to new
language requirements to the static analyzer (which are out of the scope of the paper), that made
the evaluation easier.
Visual representation isn't trivially testable. The only evaluation the author could do is the
subjective contribution to the issue investigation.

5.1 Random test case generation
After introducing the random test case generation, the author observed the decrease in a number
of issues with both existing and newly added syntax constructions. Several defects were found,
which could be classified as logical, performance, ordering and runtime issues. Logical issues
comprise of verification-breaking issues, not related to ordering (which is a separate group).
Performance issues are due to slow handling of syntax constructions. For this group, the time
required for the execution of generated source had been evaluated and tested for sanity. The
time twice larger than the empiric average for the syntax construction had been considered an
error. Ordering issues appear during transformations when specific elements can't be trivially
reordered in a destination form. When resulting messages differ for reordered sources, the case
is considered a failure.

Table 1. Discovered issues & their severity

Defect type Number of issues Severity Comment
Performance 3 Medium Slow handling of specific combinations of syntax

constructions, branches, especially with a high
number of objects

Ordering 5 High Ordering of syntax constructs affects the
processing. This kind of issues appears during the
transition from AST to IR form due to change in
linearity

Runtime
failure

1 High Other critical issues with failing statements

Logical
issues

1 Medium* Problems with expression-to-formula mapping.
* – This issue usually has high severity, but this
concrete case was not as critical

The results of testing are provided in Table 1. In total 10 issues had been detected during the
evaluation, 6 of them had high severity, and 4 of which had medium severity. The author
considers the method applicable to finding mistakes in static analyzers but needs significant
improvement to cover all language features. However, it is hard to judge the usefulness for
compilers because no investigation had been done.

5.2 Log fusion
The logging engine can be practically evaluated only by checking the time to resolve a typical
issue. The evaluation time (1 month) had been divided into two periods, in one period no
logging features were used during issue-resolving, the other period is characterized by intensive
usage of log fusion.
The time to resolve the typical issue reduces twice or thrice (see table 2). The improvement
rates are 1.92, 5, 3.3, 1, which result in an average of 2.8 among these test groups. These results
also indicate that the method is feasible for static analyzer development tasks, however, the
effect is vastly different for different groups (and, supposedly, tests). But, at least, the method
doesn't make the process slower.

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

44

Table 2. Time to resolve typical defects

Defect type Time to resolve
before (h)

Time to resolve
after (h)

Comment

Performance 25 13 Performance issues require significant
refactoring, but it was taking time to properly
diagnose where does the issue appear

Ordering 5 1 Bookmarks make ordering issues easier to
diagnose

Runtime
failure

1 0.3 Runtime failures are easy to work around, but
harder to fix completely. All information in one
place makes it quicker

Logical
issues

1 1 No large difference~--- when a logical issue is
expected, you watch the log with this
information. Technically, it reduces the need to
find the mapping, but we haven't found it
measurable

5.3 Code generation
The code generation covers a significant part of the process of adding a new syntax structure.
For the project, class support had to be implemented again due to customer's requirements
changed the project's infrastructure. The result is as follows. It was determined that adding class
support has taken 7 times less time than the same feature several years before this test.
Moreover, it was noticed that previous attempts had a month-long trail of commits revising the
architectural modules and minor issues, however, the attempt after introducing code generation
didn't have so many visible effects. The representability of this empirical test is very low: after
all, the project has become more mature over years, however, it is hard to perform a more fair
comparison to see the improvement.

5.4 Visual representation
For the visual representation, the low improvement for maintenance development phases was
observed. The reason is that no developer or tester would ever look at visual reports for everyday
testing. However, it is profitable for the active development phase. At least 2 performance issues
were discovered using the performance chart implemented in our log viewing tool. They were
related to different timings between stages, while the overall result was about the same: this situation
happened due to substantially simplified processing of structures due to all of them getting the same
visibility level. The deeply nested test had much longer table lookup time with much shorter
propagation stage. While the visual representation testing implies little representability, the whole
method can benefit if the developer is taught to have a critical look on charts.

5.5 Classes of programs
During the evaluation, the techniques had been tested not only on the main static analyzer
project but also on various software packages surrounding it, to a possible extent. Author's
experience shows that not only static analyzers may benefit from these methods. The class of
«compatible» software comprises the programs performing a significant number of
transformations. It includes the compilers, their optimization passes, refactoring, code
obfuscation tools, archivers, encryption tools. The improvement would be seen in case both the
input and the output are in the readable representation and if the intermediate representations
are cross-linked. The approach is not cost-effective if the project is small due to a high level of
an initial investment.

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

45

5.6 Case studies

5.6.1 The case of GNU statement expressions
In this case study, we would like to stress how the developed software package helps add new
functionality. The GNU Compiler Collection (GCC) has the support for statement-expressions,
which represent code blocks with the last statement being the result of the block. The infrastructure
of the analyzer was highly biased towards blocks and statements, and the statement expression was
an example of the construction which could be used on the unexpected levels.
By simply adding a new compound type («BlockWithResult») to the model, the code generator-
related tools had shown the places which had to be touched. These areas included \textit{parsing},
expression flattening, expression cloning, type deduction and IR conversion. However, the IR
conversion stage was not ready for the adoption of the statement expressions, it took around 7
working days to refactor the algorithm for it. The visualization approach let the author find the issue
with the incorrect placement of internal statements: e.g. conditions were set on entering wrong
fragments. The random program generation supported the process by providing a suitable number
of examples. In total, the addition of statement expressions took approximately 10 working days.

5.6.2 The case of wrong constructors

This case is more towards mechanical mistakes when writing the code. The author did a mistake
making a constructor with std::string parameter and a constructor with bool parameter.
When passing regular strings, they are internally represented by const char* object, and the
closest implicit casting for the argument was to bool. This mistake flowed from a Directed Acyclic
Graph (DAG) level to VM intermediate representation and then materialized in missing predicate
check during the verification stage. The issue had been noticed after using visual representation: it
was determined that the object in DAG was missing a minor property only after reading the
expression dump linked to the VM IR command. The omniscient debugging wasn't of help because
the time to break the execution was unclear.

6. Conclusion and future work
In the paper, the sources of errors in the author's static analyzer project were studied. Defects
are mostly related to logical issues plaguing from missing syntax/IR support, minor issues in
repeating parts, transformation defects and ordering problems. To cope with them, four
sustainable solutions were prepared and shown. They include random test case (program)
generation, log fusion, code generation and visual representation. These methods allowed
finding at least 10 defects and decreased the time to resolve defects by 2.8 on average. The
response differs for different test groups or even tests, from 5x for ordering issues, down to 1x
(no improvement) for logical issues. Two presented case studies support the thesis of
applicability of these methods.
In future, we expect to continue improving the functionality of the logging package and
increasing the number of cross-links between log parts. Code generation will experience further
generalization of the models. More metrics will be investigated to make health reports more
useful.

References / Список литературы
[1]. Lisa Nguyen Quang Do, Stefan Krüger, Patrick Hill, Karim Ali, Eric Bodden. Debugging static analysis.

IEEE Transactions on Software Engineering, 2018.
[2]. M. Menshikov. Equid – a static analysis framework for industrial applications. Lecture Notes in Computer

Science, vol. 11619, 2019, pp. 677–692.
[3]. GDB: The GNU Project Debugger. Available at: https: //www.gnu.org/software/gdb/.

Menshikov M.A. Static analyzer debugging and quality assurance approaches. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 33-
48

46

[4]. The LLDB Debugger. Available at: https://lldb:llvm:org.
[5]. The interactive reverse debugger for Linux-based applications. Available at:

https://undo.io/solutions/products/undodb-reverse-debugger/.
[6]. R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush. Engineering record and replay for

deployability. In Proc. of the 2017 USENIX Annual Technical Conference (USENIX ATC’17), 2017, pp.
377–389

[7]. J. Engblom. A review of reverse debugging. In Proc. of the 2012 System, Software, SoC and Silicon
Debug Conference, 2012, pp. 1–6.

[8]. E. Eide and J. Regehr. Volatiles are miscompiled, and what to do about it. In Proc. of the 8th ACM
International Conference on Embedded Software, 2008, pp. 255–264.

[9]. X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in c compilers. In Proc. of the
32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, 2011, pp.
283–294.

[10]. G. Barany. Liveness-driven random program generation. Lecture Notes in Computer Science, vol. 10855,
2018, pp. 112–127.

[11]. V.Yu. Livinskij, D.Yu. Babokin. Automation of search for optimization errors in C / C ++ language
compilers using the Yet Another Random Program Generator. In Proc. of the 60th All-Russian Scientific
Conference of MIPT. Radio engineering and computer technology, 2017, pp. 40-42 (in Russian) / В.Ю.
Ливинский, Д.Ю. Бабокин. Автоматизация поиска ошибок оптимизации в компиляторах языков
С/С++ с помощью генератора случайных тестов Yet Another Random Program Generator. Труды 60-
й Всероссийской научной конференции МФТИ. Радиотехника и компьютерные технологии, 2017
г., стр. 40-42.

[12]. S. Takakura, M. Iwatsuji, and N. Ishiura. Extending equivalence transformation based program generator
for random testing of c compilers. In Proc. of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, 2018, pp. 9–15.

[13]. M. Chupilko, A. Kamkin, A. Kotsynyak, and A. Tatarnikov. Microtesk: Specification-based tool for
constructing test program generators. Lecture Notes in Computer Science, vol. 10629, 2017, pp. 217–220.

[14]. D. Binkley, M. Harman, and J. Krinke. Characterising, explaining, and exploiting the approximate nature
of static analysis through animation. In Proc. of the 2006 Sixth IEEE International Workshop on Source
Code Analysis and Manipulation, 2006, pp. 43–52.

[15]. Sourcetrail – documentation. Available at: https://www:sourcetrail:com/documentation.
[16]. L. Voinea, A. Telea, and J. J. Van Wijk. Cvsscan: visualization of code evolution. In Proc. of the 2005

ACM symposium on Software visualization, 2005, pp. 47–56.
[17]. C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for graph-based visualization of

the evolution of software. In Proc. of the 2003 ACM Symposium on Software Visualization, 2003, pp.
77–86.

[18]. J.P.S. Alcocer, F. Beck, and A. Bergel. Performance evolution matrix: Visualizing performance variations
along software versions. In Proc. of the 2019 Working Conference on Software Visualization (VISSOFT),
2019, pp. 1–11.

[19]. D. Yuan, S. Park, and Y. Zhou. Characterizing logging practices in open-source software. In Proc. of the
2012 34th International Conference on Software Engineering (ICSE), 2012, pp. 102–112.

[20]. Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie. Where do developers log? an
empirical study on logging practices in industry. In the Companion Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 24–33.

[21]. D. Jurafsky, J. Martin, P. Norvig, and S. Russell. Speech and Language Processing. Pearson Education,
2014, 1032 p.

[22]. M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In Proc. of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1285–1298.

[23]. A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya. Anomaly detection using program
control flow graph mining from execution logs. In Proc. of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 215–224.

[24]. O.I. Sheluhin, V.S. Rjabinin, and M.A. Farmakovskij. Anomaly detection in computer system by
intellectual analysis of system journals. Voprosy kiberbezopasnosti, vol. 26, no. 2, 2018, pp. 33-43 (in
Russian) / Шелухин О.И., Рябинин В.С., Фармаковский М.А. Обнаружение аномальных состояний
компьютерных систем средствами интеллектуального анализа данных системных журналов.
Вопросы кибербезопасности, том 26, no. 2, 2018 г., стр. 33-43.

Меньшиков М.А. Подходы к отладке и обеспечению качества статического анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г.,
стр. 33-48

47

[25]. B. John Smith F. Stephen Weiss. Hypertext. Communications of the ACM, vol. 31, no. 7, 1988, pp. 816–
819.

[26]. R. Stallman, R. Pesch, and S. Shebs. Debugging with GDB: The GNU Source-Level Debugger. 12th Media
Services, 2018, 826 p.

Information about authors / Информация об авторах
Maxim Alexandrovich MENSHIKOV – PhD student of the Department of System Programming.
Research interests: static analysis of programs, debugging tools.
Максим Александрович МЕНЬШИКОВ – аспирант кафедры системного программирования.
Научные интересы: статический анализ программ, средства отладки программ.

