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Abstract. Writing static analyzers is hard due to many equivalent transformations between program source, 
intermediate representation and large formulas in Satisfiability Modulo Theories (SMT) format. Traditional 
methods such as debugger usage, instrumentation, and logging make developers concentrate on specific minor 
issues. At the same time, each analyzer architecture imposes a unique view on how to represent the intermediate 
results required for debugging. Thus, error debugging remains a concern for each static analysis researcher. In 
this paper, our experience debugging a work-in-progress industrial static analyzer is presented. Several most 
effective techniques of constructive (code generation), testing (random test case generation) and logging (log 
fusion and visual representation) groups are presented. Code generation helps avoid issues with the copied 
code, we enhance it with the verification of the code usage. Goal-driven random test case generation reduces 
the risks of developing a tool highly biased towards specific syntax construction use cases by producing 
verifiable test programs with assertions. A log fusion merges module logs and sets up cross-references between 
them. The visual representation module shows a combined log, presents major data structures and provides 
health and performance reports in the form of log fingerprints. These methods are implemented on a basis of 
Equid, the static analysis framework for industrial applications, and are used internally for development 
purposes. They are presented in the paper, studied and evaluated. The main contributions include a study of 
failure reasons in the author's project, a set of methods, their implementations, testing results and two case 
studies demonstrating the usefulness of the methods. 
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Abstract. Написание статических анализаторов затруднено из-за наличия множества эквивалентных 
преобразований между исходным кодом программы, промежуточным представлением и большими 
формулами в формате Satisfiability Modulo Theories (SMT). Традиционные методы, такие как 
использование отладчика, инструментарий и ведение журналов, заставляют разработчиков 
сосредотачиваться на определенных мелких проблемах. В то же время каждая архитектура анализатора 
навязывает уникальное представление о том, как следует представлять промежуточные результаты, 
необходимые для отладки. Таким образом, отладка остается проблемой для каждого исследователя 
статического анализа. В этой статье представлен наш опыт отладки незавершенного промышленного 
статического анализатора. Представлено несколько наиболее эффективных методов конструктивной 
(генерация кода), тестовой (генерация случайных тестовых случаев) групп, а также группы 
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журнализации (объединение и визуальное представление журналов). Генерация кода помогает 
избежать проблем с копируемым кодом, мы улучшаем его с помощью проверки использования кода. 
Генерация случайных тестовых наборов на основе целей снижает риски разработки инструмента, 
сильно смещенного в сторону конкретных вариантов использования конструкции синтаксиса, путем 
создания проверяемых тестовых программ с утверждениями. Слияние журналов объединяет журналы 
модулей и устанавливает перекрестные ссылки между ними. Модуль визуального представления 
показывает объединенный журнал, представляет основные структуры данных и предоставляет отчеты 
о работоспособности и производительности в форме отпечатков журнала. Эти методы реализованы на 
основе Equid, платформы статического анализа для промышленных приложений, и используются для 
внутренних целей. Они представлены в статье, изучены и оценены. Основные вклады включают 
изучение причин сбоев в авторском проекте, набор методов, их реализации, результаты тестирования и 
два тематических исследования, демонстрирующие полезность методов. 

Ключевые слова: статический анализ; отладка; целенаправленная генерация случайных тестовых 
примеров; генерация кода; анализ журнальных файлов; визуальное представление 

Для цитирования: Меньшиков М.А. Подходы к отладке и обеспечению качества статического 
анализатора. Труды ИСП РАН, том 32, вып. 3, 2020 г., стр. 33-48 (на английском языке). DOI: 
10.15514/ISPRAS–2020–32(3)–3 

1. Introduction 
Software engineering is ailing from quality assurance issues. Many approaches are aiming at 
achieving runtime error absence (reviewed in Section 2), but logical correctness is not trivially 
reachable even if it is guaranteed statically. This is often the case because the correctness is not 
automatically derived from internal consistency. 
The static analysis is aimed at verification of the real-world problems written in the form of 
programs. Analyzers follow the generic debugging and quality assurance trends, however, there is 
specificity which should be taken into account [1]. The input program undergoes several 
transformations, and each of them has a significant impact on the validity of the final result. 
Moreover, several transformations, when combined, may have cumulative effects. The issues during 
transformations are usually not runtime errors, which are easy to narrow down using traditional 
methods, but rather logical defects. Since transformations are unique products of each static 
analyzer, quality assurance is the sole responsibility of the analyzer's author. 
In the Equid project [2], the author had several observations. First, feature testing looked biased 
towards the developer's interpretation: there is a tendency to test constructions in a way they are 
used by the person. Second, thorough bugs may be hidden behind multiple abstractions and appear 
unexpectedly as analyzer grows. Third, a significant amount of errors could have been found if there 
was a simple measure indicating that action was required. Inserting heuristics for every aspect of a 
large software project log is barely achievable (consider limited system resources when making such 
advanced logging), so log analysis is the foremost goal for analysis debugging. Fourth, contracts 
and formal requirements undeniably contribute to the quality of the product, however, they cover 
integrity and consistency rather than the absence of logical issues. In that sense, static analyzers have 
no specificity. And the last, static analyzers have a rare environment with little to no requirements 
for issue reproduction. For example, reproducing the issue in network router software may require 
days and months just to repeat the pattern. That makes it possible to increase logging verbosity until 
the issue is detected, so the developer may put efforts into making logs as informative as possible. 
With that in mind, the paper suggests an approach for increasing the visibility of issues and/or 
reducing the likeliness of bugs, based on code generation, log file improvements, goal-driven 
random test case generation, and visual representation. These four methods make up the author's 
static analysis debugging and quality assurance approach. The study starts with the description of 
third-party approaches (Section 2), continues with the key issue sources identified by the author 
(Section 3), the method is presented in Section 4 and evaluated in Section 5. 
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Motivation. The debugging field concentrates on runtime issues and doesn't answer the question 
how to debug deep logical issues in the static analyzer. Thus, solving this problem and employing 
the right methods brings many practical benefits, such as improvements in stability, reduced risk of 
problems after implementing new features, a faster development pace. 
Novelty. The suggested approach covers a significant amount of issues found in the real-world 
analyzer's development. The code generation stage is enhanced with the post-processing phase in 
which the internal use cases are loosely verified, making integration of new objects faster. The log 
fusion adopts hypertext-like approach, making the output more linked and indexable, allowing for 
better search and filtering. To the knowledge of the author, the logging had never been integrated 
with the hypertext. Random test case generation usually covers trivial input data or just compilable 
programs, but in this study, it produces programs with specified verification goals, which is an 
improvement over completely random programs. The visual representation is usually aimed at the 
visualization of control flow graphs, but in this paper, it is intended for data structures and internal 
health/performance reports. 
Main contributions. Main contributions comprise the study of the issues in the Equid project, four 
debugging and quality assurance techniques, implementations for 3 of the mentioned platform-
independent methods, the testing results, and two case studies presenting the usefulness of the 
method. 

2. Related work 
Most works are about analyzing complex systems with static analyzers rather debugging analyzers, 
however, there is a study of defects in static analyzers [1], which gives useful insight to the opinions 
of other researchers. According to the paper, visualization and handling of intermediate results is 
still not satisfactory for the most developers, as well as handling of data structures. While the author 
hadn't synchronized with this research when the development of the analyzer started, a significant 
match with the practical experience had been determined. 
There are well-known complex tools for debugging of complex systems, e.g. GDB [3], supporting 
all major Central Processing Unit architectures. The LLDB [4] is an LLVM-based GDB analogue, 
which aims to provide reusable infrastructure. Of course, there is a number of language-specific 
tools, but GDB and LLDB are among the most universal ones (e.g. UndoDB [5], which is based 
upon GDB, can be used to debug Java and Go applications). Such debuggers provide a way to debug 
tools in the direction from the beginning to the end and support analyzing core files. 
The reverse direction debugging (or «omniscient debugging») is covered by GDB itself; the 
Mozilla's RR [6], the record and replay framework; the Undo Debugger [5], which is claimed to be 
one of the first commercial reverse-debuggers [7]. The reverse-debugging tools are useful for 
runtime errors, but the majority of the defects, at least in our project, don't fall into this category, so 
the usefulness is limited. 
Random program generation has been first shown in [8], this method then evolved into CSmith [9] 
framework, which had extremely successful applications to industrial compilers. An interesting 
result was achieved in the paper [10], in which the author tries to avoid generating dead code by 
using all the temporary computations for the final result. Intel has also prepared its random program 
generator [11] capable of triggering compiler optimization bugs, with over 140 defects found in 
LLVM and GCC. The research [12] covers Orange4 random program generator with an idea of 
equivalent transformations – which is, by the framework, similar to goal-based generation from our 
study, however, the generated programs are completely random without any goals set. The 
MicroTESK [13] project generates test programs for various microprocessors (ARM, MIPS, RISC-
V and other architectures), however, it is aimed at a lower level than the tool described in our 
research. 
The static analysis visualization is a highly specialized topic, only applicable to concrete tool 
developers. Still, the authors of the paper [14] explored the ways to animate the static dependence 
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analysis, and the result is very different from standard still visualizations. The closest generic 
solutions so far are brought by code visualization tools, e.g. Sourcetrail [15], CVSscan~--- code 
evolution visualizer [16], which are at least capable of visualizing programs. The negative part is 
that local intermediate representations aren't supported in such tools. Graph-based program 
evolution is estimated by GEVOL [17] project, which is important for tracking defects produced by 
specific authors and functions. Software performance evolution had been examined in [18], as a list 
of functions along with performance results. 
The logging is well-investigated in [19], with useful insight about the usage of logging in open-
source projects. The study [20] concentrates on characterizing when do developers log the 
information. Additionally, researchers performed the survey on how to improve the logging. Three 
suggestions are relevant to our study: log filtering, categorization and analysis/visualization. 
The current methods for information retrieval are mostly for natural languages. For unstructured 
data, it implies the usage of n-grams, machine learning and other text search methods [21]. One of 
the examples is DeepLog [22] system, which aims to find anomalies using deep neural network 
model utilizing Long Short-Term Memory (LSTM). Paper [23] reconstructs control flow graph of 
the distributed system to find anomalies. Anomaly detection in computer systems using decision 
trees is performed in [24]. Those are valid methods for unstructured log analysis, however, these 
methods are more suitable for malware action detection on sets of third-party applications, while the 
study concentrates the single application development, where defects are detected by the developer. 
Our log handling approach is closer to classic hypertext [25].  

3. Sources of issues 
Throughout 2019 author had been analyzing defects for the issues in more than 1500 commits in the 
closed static analysis project. Key issue sources had been identified: 
• missing support for the specific syntax/intermediate representation (IR) construction in 

submodules; 
• small differences in implementations for repeating parts (classes)}; 
• transformation and ordering issues. 
The developers fix such issues promptly if they are observed, but they are not trivial to find. The 
author had determined the following three main reasons. 
• Low visuality of the transformation passes and the development process. The developer sees the 

input, the result, but intermediate transformations might be incorrect. That might lead to false 
testing results. 

• Unattainable cross-dependencies between modules. The engineer creates a new feature and 
edits modules to integrate it, yet different parts might be broken. 

• Low quality of tests. This is the main reason why non-trivial issues are often not found. For 
example, if tests verify separate handling of if and switch constructions, there might be 
problems in their combinations if their implementations have interchanged code. 

The following ideas were evaluated to make these issues more visible. 
• Automatic generation of major cross-linked data structures to avoid unattended defects. 
• Making an interface for viewing log that would detect cross-references between pass logs, 

visualize the steps, the internal error rate. That's similar to the approach suggested by the paper 
[1]. 

• Improving test cases: make random tests that would be more representative than those written 
by hand. 

No single solution can be engineered to solve these problems. All typical quality assurance 
techniques were used in the project, which is not extraordinary, considering that the ultimate goal 
for the static analyzer is to promote good software engineering practices. The \textit{recipes} 
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suggested by this paper are extensions of the typical methods, designed specifically for static 
analyzers. In subsection 5.5, we predict the classes of the programs which might also benefit from 
the approach. 
Fig. 1 summarizes the findings, matches the issues with the reasons why they are not found and the 
solutions. 

 
Fig. 1. Sources of the issues, reasons why these issues are not observed and their solutions 

In the next section, the author's solutions to these problems are demonstrated, along with their 
implications.  

4. Methods 
As stated in the introduction, the paper aims to develop methods assisting in debugging of logical 
issues in static analyzers. Unlike other kinds of issues, these issues do not cause runtime failures and 
thus are often unattended. The form of assistance varies for every method. 

4.1 Code generation 
As the code base grows along with the number of syntax constructions, it gets important to ensure 
that repeatable fragments are written strictly and concisely, not breaking the stability of the whole 
program. Code generation reduces the risk of adding logical mistakes by producing modules with 
high integrity and compatibility. This technique itself is not new and can be applied to any software 
project, however, the analysis had shown that verification of the usage is vital as static analyzers 
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introduce transformations between different models. Also, the plurality of the models implies the 
need for the model instantiation for different occasions. This way, the risk of logical issues in this 
domain reduces due to common code generation base. 
Thus, in the case of Equid, there are three major considerations for the code generation. 
• Enumerations. When a new element is added to the enumeration, there is a high chance that 

dependent enumerative functions are invalidated. A mechanism that indicates the expected use 
of enumeration within the source code had been developed. 
For example, if a selected code needs to handle just specific enumeration elements, then, before 
using the enumeration EnumerationName, the developer may indicate the all-variant usage 
of the enumeration: 
core_indicate_use(EnumerationName, CoreEnumUse::AllVariants). 

If the code intentionally uses just selected enumeration values, then the developer indicates it: 
core_indicate_use(EnumerationName, CoreEnumUse::Selected). 

The post-code generation phase verifies whether all or selected elements are used. This is a 
cheap yet effective mechanism to ensure that all enumeration values are processed. Noteworthy 
is that GCC has a switch-checking approach (-Wswitch-enum or -Wswitch), which can be 
used with #pragma GCC diagnostic push for the region selection, however, GCC's 
approach is compiler-dependent. 

• Repetitive classes. A big software project doing many data transformations inevitably gets 
many classes representing nodes participating in different analysis passes. In most cases, nodes 
have a similar structure. The rule of thumb is that classes that can be described declaratively 
should be written this way. For instance, in the project, we cover not only syntax structures but 
also data classes, language semantics. 

• Multi-model data. Input data sets may be cross-linked and can be used for different purposes. 
There should be a way to interpret the data differently. 

4.1.1 Practical implementation 
To get code generation, the author had written a standalone C++ tool1. This version is limited 
regarding supported syntactical constructions, only intended for demonstration.}. The input is 
in customized YAML2 format. Several models were employed: enumerations, expressions and 
intermediate representation commands. The tool produces a not strictly formal syntax tree, 
which is transformed into the real code file. 
The Enumeration model has the following format: 
type: <A complete type, can have reference to a different namespace 
clean_type: <A type name without namespace references> 
namespace: <Namespace in which enum is introduced> 
dont_create_enum: [false/true] 
header: 

- <extra header entry> 
- ... 

field: 
- name: <Field name> 
- token: <string representation> 
- ... 

unknown: <Unknown field for default alternative> 
mapping: 
- name: <MappingName> 

 
1 https://github:com/maximmenshikov/eq_codegen. This version is limited regarding supported syntactical 
constructions, only intended for demonstration.  
2 https://yaml:org/ 
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- from: <Source type> 
- to: <Target type> 
- unknown: <default result for unmapped values> 
- map: 

- from: <Source value> 
- to: <Destination value> 

The product is a C++ enum class with the given name, a set of fields, a mapping function 
between enum and std::string, and several custom mappings. 
The Expression model borrows many ideas from enumerations, but it is slightly more oriented 
towards expression model: 
type: <Short expression type> 
value_type: 

- direct: <fixed type> 
- indirect: <expression to borrow type from> 

constructor: 
- name: <Internal constructor name> 
- parameter: 

- <list of parameters, named as members> 
- ... 

- ... 
member: 

- name: <Friendly member name> 
- internal: <Private member name> 
- type: <Member type> 
- default: <Default value> 

header: 
- <extra header entry> 
- ... 

operation: <enumeration-like list of operations> 
function: 

- name: <custom function name> 
- signature: <function's signature> 
- body: <function's body> 

override:  
ToString: <Code that will return entry's string representation> 

This is a short description of expression model, in fact, the model has more parameters for 
handling minor cases, e.g. children handling, whether the entry is LValue, and a more 
sophisticated return type handling. 
The source for the command model (not presented in the paper) is provided at GitHub3.  

4.2 Log fusion 
A typical log is a flat file with thousands of lines. Developers often struggle to find an optimal 
balance between verbosity and conciseness [19], but as mentioned in Section 1, static analyzers 
are in the unique position in which running debugging versions is possible without complete 
reproduction of the environment. In that case, it is possible to make tools as verbose as possible. 
This method does not find logical issues by itself, but, in conjunction with the fact that logs 
present a significant part of intermediate objects being the inputs and the outputs of 
transformations, it assists in making the log analysis quicker. 
An approach based on the following two concepts is suggested. 
1) Module-specific logs. Each module writes to its log, however, the core keeps track of 

unique timestamps for each log entry. Thus, it is possible to view separate logs if required 

 
3 https://github:com/maximmenshikov/eq codegen models 
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or to view combinations of logs. This approach has important implications from a practical 
perspective. First, it decreases the resources required for categorization and search. A single 
log would have to be parsed from the beginning to the end – which would inevitably mean 
a slowdown. Second, the reader gets an opportunity to select points of interest and 
completely avoid unrelated parts. 

2) Internal bookmarks/tags. Each object (in our classification, a resource, a fragment or a 
virtual machine command) has unique ID within the object pool. Objects are referenced by 
a tuple (name:id:type), and each action on the object is bookmarked by a tuple 
(id:type:action). The log viewer allows quick navigation between these objects and by that 
reduces the cognitive load on log reader. This implies that the log is less of \textit{flat} 
structure, but rather a technical document, more oriented towards understanding. 

4.2.1 Implementation 

Separate logging is very implementation-specific and novelty-free. The analyzer simply opens 
a number of streams and provides a debug context object allowing for access to all of these 
streams. 
The bookmark approach requires attention to the implementation of Uniform Resource Name 
(URN) producing methods. URN must be both readable and short, since reading log files in 
plain text is still an option. In the author's implementation, the URN doesn't adhere to RFC 
21414 to save space. The practical URN grammar is presented in the corresponding GitHub 
repository5. 

4.3 Goal-driven random test case (program) generation 
Order of actions and bias towards specific use case for syntax structures is the major source of 
the issues during the development. They are not detectable mainly because preparing a 
reasonable selection of tests proving the issue source is hard. The random test program 
generation is helpful in such cases due to its ability to test software against large volumes of 
varying input data. In result, not only logical issues are detected, but also a number of runtime 
issues, as seen in compilers. 
A random program generator creating a set of tests with the following properties was prepared. 
First, all tests have one goal defined and asserted in main(), this is unlike other random 
program generators, which produce compilable programs without assertions. Second, all of the 
test cases are identical in terms of final results. 
Our algorithm revolves around the idea of a \textit{verification goal}. The straight-forward 
algorithm for main() is as follows. 
1) Create a function main() with empty block. 
2) Insert a randomly named variable. Let it be x. 
3) Assume a random goal as a target value for variable x. Let it be a. 
4) Generate a random block or a random function returning a or modifying the input pointers 

so that x is receiving a. 
5) Insert an assertion x = a. 

A random block or a random function is generated accordingly. The goal is transformed 
into a final statement (e.g. return a or x = a, based on whether the block or a function 
is being generated). 

6) The statement is transformed into a different statement based on the random value (which 
chooses the next operation from the list below): 
a) if the statement isn't a block, it is transformed into a block of statements; 

 
4 https://tools:ietf:org/html/rfc2141  
5 https://github:com/maximmenshikov/eq-urn-grammar 
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b) if the statement is a block, then a new variable is added to a block; 
c) if the statement is a block, then a random (not goal) variable is assigned. 
d) the statement is rolled into the if else if else statement, where the goal is put 

into the first if then statement. For the rest of the branches, the false goal is 
generated and rolled into a random block. 

e) the statement is rolled into the switch / case statement, where the goal is put into 
the first case body. For the rest of the cases, the false goal is generated and rolled into 
a random block. The false cases are randomly ended with break. 

f) the statement is rolled into for or while loop. In the author's implementation, these 
constructions were of minor interest, so they were implemented trivially, similarly to 
Orange4 [12]} same-assignment. 

After executing the first two procedures, the outcome is a valid program which must be well-
parsed (syntactically correct by construction), should be analyzable and, if compiled, must 
satisfy all assertions. To get a set of programs, the shuffling is performed on all constructions 
allowing for it (the showcase is for if and switch). if branches are shuffled if the condition 
expressions are not intersecting (i.e. swapping branches doesn't change the semantics), cases 
are switched based on break existence. All-break switch-case statements can be shuffled 
completely. 
The practical implementation is located in corresponding GitHub repository6. 

4.4 Visual representation 
The visual introspection assists in finding logical issues by using a graphical view. A number 
of issues, especially those involving formulas and type conversions, are not distinguishable in 
textual forms. The following directions were in the focus of the research. First, making passes 
visually observable. Second, provide reasonable health reports for performance figures, error 
occurrence rates. 

 
Fig. 2. The transformation view of IR commands 

 
6 https://github:com/maximmenshikov/eq_fuzzytest 
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As for the first goal, our main intention was to make an internal Virtual Machine intermediate 
representation (IR) viewable. The IR can be represented using a tree view since branches may 
contain child entries. To simplify interface development, a plain tree view from Qt7 framework 
had been used. Clicking on any IR command brings a list of related parts: a simplified SMT 
representation, a simplified abstract interpretation view (Fig. 2). At the moment of writing, the 
IR representing module is not directly linked to the debugger e.g. via GDB/MI interface [26], 
but the project's debugging framework is capable of generating the commands to set the 
breakpoints at the specific execution points (like IR transformation phases) for the RR [6] 
replaying. 
As for the second, the following formulas had been used to prepare a chart. The first formula is 
trivial. Consider ti, a start time of ith verification phase, where i ∈ [1, n], and t' is the final 
execution time. If, for simplicity, t' = tn + 1, then durations are calculated accordingly: 
∆ti = ti+1 - ti, where i ∈ [1, n]. However, this computation gives a very rough 
approximation of internal time spans. 
Module log separation provides two other useful empirical formulas. One formula is based on 
log size. Consider that the logging is more or less uniformly spread around the modules. In that 
case, module log size is a simple profiler for the module execution times, without an actual 
profiler running. 
The other formula requires building a time series. The complete execution time $t'$ is collected, 
and it is divided up to 40 chunks: ∆ti = t' / 40, where i ∈ [1, 40]. The graph with 
timestamp occurrence frequencies for each ∆ti group is built for every module. The result of 
the implementation can be roughly described as a digital fingerprint for the execution (Fig. 3). 
The source code is located at GitHub8. 
Concluding, these three formulas provide insight into performance. They consider (a) total 
phase time, (b) total time spent in the module, (c) time distribution. They are useful if logging 
invocation distribution is uniform. 

 
Fig. 3. The «fingerprint» of the execution 

5. Evaluation 
The implementation of the proposed approaches had been tested in the Equid project. For 
random test case generation, it is common to measure how many errors of which severity had 
been found using the technique, that's what determines the real usefulness of the method. 
For log fusion, the developer's time to find an error was continuously monitored. This way is 
not accurate since the issues might differ at every testing instance. 

 
7 https://github:com/maximmenshikov/eq fuzzytest 
8 https://github:com/maximmenshikov/loghealth 
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For code generation, we investigated the time needed to bring up a new syntax structure. We 
were lucky to have had a syntax processing refactoring right after tool bringup due to new 
language requirements to the static analyzer (which are out of the scope of the paper), that made 
the evaluation easier. 
Visual representation isn't trivially testable. The only evaluation the author could do is the 
subjective contribution to the issue investigation.  

5.1 Random test case generation 
After introducing the random test case generation, the author observed the decrease in a number 
of issues with both existing and newly added syntax constructions. Several defects were found, 
which could be classified as logical, performance, ordering and runtime issues. Logical issues 
comprise of verification-breaking issues, not related to ordering (which is a separate group). 
Performance issues are due to slow handling of syntax constructions. For this group, the time 
required for the execution of generated source had been evaluated and tested for sanity. The 
time twice larger than the empiric average for the syntax construction had been considered an 
error. Ordering issues appear during transformations when specific elements can't be trivially 
reordered in a destination form. When resulting messages differ for reordered sources, the case 
is considered a failure. 

Table 1. Discovered issues & their severity 

Defect type Number of issues Severity Comment 
Performance 3 Medium Slow handling of specific combinations of syntax 

constructions, branches, especially with a high 
number of objects 

Ordering 5 High Ordering of syntax constructs affects the 
processing. This kind of issues appears during the 
transition from AST to IR form due to change in 
linearity 

Runtime 
failure 

1 High Other critical issues with failing statements 

Logical 
issues 

1 Medium* Problems with expression-to-formula mapping.  
* – This issue usually has high severity, but this 
concrete case was not as critical 

The results of testing are provided in Table 1. In total 10 issues had been detected during the 
evaluation, 6 of them had high severity, and 4 of which had medium severity. The author 
considers the method applicable to finding mistakes in static analyzers but needs significant 
improvement to cover all language features. However, it is hard to judge the usefulness for 
compilers because no investigation had been done. 

5.2 Log fusion 
The logging engine can be practically evaluated only by checking the time to resolve a typical 
issue. The evaluation time (1 month) had been divided into two periods, in one period no 
logging features were used during issue-resolving, the other period is characterized by intensive 
usage of log fusion. 
The time to resolve the typical issue reduces twice or thrice (see table 2). The improvement 
rates are 1.92, 5, 3.3, 1, which result in an average of 2.8 among these test groups. These results 
also indicate that the method is feasible for static analyzer development tasks, however, the 
effect is vastly different for different groups (and, supposedly, tests). But, at least, the method 
doesn't make the process slower. 
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Table 2. Time to resolve typical defects 

Defect type Time to resolve 
before (h) 

Time to resolve 
after (h) 

Comment 

Performance 25 13 Performance issues require significant 
refactoring, but it was taking time to properly 
diagnose where does the issue appear 

Ordering 5 1 Bookmarks make ordering issues easier to 
diagnose 

Runtime 
failure 

1 0.3 Runtime failures are easy to work around, but 
harder to fix completely. All information in one 
place makes it quicker 

Logical 
issues 

1 1 No large difference~--- when a logical issue is 
expected, you watch the log with this 
information. Technically, it reduces the need to 
find the mapping, but we haven't found it 
measurable 

5.3 Code generation 
The code generation covers a significant part of the process of adding a new syntax structure. 
For the project, class support had to be implemented again due to customer's requirements 
changed the project's infrastructure. The result is as follows. It was determined that adding class 
support has taken 7 times less time than the same feature several years before this test. 
Moreover, it was noticed that previous attempts had a month-long trail of commits revising the 
architectural modules and minor issues, however, the attempt after introducing code generation 
didn't have so many visible effects. The representability of this empirical test is very low: after 
all, the project has become more mature over years, however, it is hard to perform a more fair 
comparison to see the improvement. 

5.4 Visual representation 
For the visual representation, the low improvement for maintenance development phases was 
observed. The reason is that no developer or tester would ever look at visual reports for everyday 
testing. However, it is profitable for the active development phase. At least 2 performance issues 
were discovered using the performance chart implemented in our log viewing tool. They were 
related to different timings between stages, while the overall result was about the same: this situation 
happened due to substantially simplified processing of structures due to all of them getting the same 
visibility level. The deeply nested test had much longer table lookup time with much shorter 
propagation stage. While the visual representation testing implies little representability, the whole 
method can benefit if the developer is taught to have a critical look on charts. 

5.5 Classes of programs 
During the evaluation, the techniques had been tested not only on the main static analyzer 
project but also on various software packages surrounding it, to a possible extent. Author's 
experience shows that not only static analyzers may benefit from these methods. The class of 
«compatible» software comprises the programs performing a significant number of 
transformations. It includes the compilers, their optimization passes, refactoring, code 
obfuscation tools, archivers, encryption tools. The improvement would be seen in case both the 
input and the output are in the readable representation and if the intermediate representations 
are cross-linked. The approach is not cost-effective if the project is small due to a high level of 
an initial investment. 
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5.6 Case studies 

5.6.1 The case of GNU statement expressions 
In this case study, we would like to stress how the developed software package helps add new 
functionality. The GNU Compiler Collection (GCC) has the support for statement-expressions, 
which represent code blocks with the last statement being the result of the block. The infrastructure 
of the analyzer was highly biased towards blocks and statements, and the statement expression was 
an example of the construction which could be used on the unexpected levels. 
By simply adding a new compound type («BlockWithResult») to the model, the code generator-
related tools had shown the places which had to be touched. These areas included \textit{parsing}, 
expression flattening, expression cloning, type deduction and IR conversion. However, the IR 
conversion stage was not ready for the adoption of the statement expressions, it took around 7 
working days to refactor the algorithm for it. The visualization approach let the author find the issue 
with the incorrect placement of internal statements: e.g. conditions were set on entering wrong 
fragments. The random program generation supported the process by providing a suitable number 
of examples. In total, the addition of statement expressions took approximately 10 working days. 

5.6.2 The case of wrong constructors 

This case is more towards mechanical mistakes when writing the code. The author did a mistake 
making a constructor with std::string parameter and a constructor with bool parameter. 
When passing regular strings, they are internally represented by const char* object, and the 
closest implicit casting for the argument was to bool. This mistake flowed from a Directed Acyclic 
Graph (DAG) level to VM intermediate representation and then materialized in missing predicate 
check during the verification stage. The issue had been noticed after using visual representation: it 
was determined that the object in DAG was missing a minor property only after reading the 
expression dump linked to the VM IR command. The omniscient debugging wasn't of help because 
the time to break the execution was unclear. 

6. Conclusion and future work 
In the paper, the sources of errors in the author's static analyzer project were studied. Defects 
are mostly related to logical issues plaguing from missing syntax/IR support, minor issues in 
repeating parts, transformation defects and ordering problems. To cope with them, four 
sustainable solutions were prepared and shown. They include random test case (program) 
generation, log fusion, code generation and visual representation. These methods allowed 
finding at least 10 defects and decreased the time to resolve defects by 2.8 on average. The 
response differs for different test groups or even tests, from 5x for ordering issues, down to 1x 
(no improvement) for logical issues. Two presented case studies support the thesis of 
applicability of these methods. 
In future, we expect to continue improving the functionality of the logging package and 
increasing the number of cross-links between log parts. Code generation will experience further 
generalization of the models. More metrics will be investigated to make health reports more 
useful. 
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