
Труды ИСП РАН, том 32, вып. 3, 2020 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

49

DOI: 10.15514/ISPRAS-2020-32(3)-4

Code generation for floating-point arithmetic in
architecture MIPS

I.S. Arkhipov, ORCID: 0000-0002-8566-1654 <arkhipov.iv99@mail.ru>
St Petersburg State University,

7–9, Universitetskaya nab., St. Petersburg, 199034, Russia

Abstract. This article is related to code generation for floating-point arithmetics in the MIPS architecture. This
work is a part of the «RuC» project. It is specialized only in code generation for operations with floatting-point
numbers. This paper does not consider lexical, syntactic, and species-specific analyses.

Keywords: code generation; translator; floating-point arithmetic; MIPS

For citation: Arkhipov I.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 49-56. DOI: 10.15514/ISPRAS–2020–32(3)–4

Генерация кодов для вещественной арифметики в архитектуре MIPS

И.С. Архипов, ORCID: 0000-0002-8566-1654 <arkhipov.iv99@mail.ru>
Санкт-Петербургский государственный университет,

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7–9

Abstract. Эта статья посвящена генерации кода для вещественной арифметики в архитектуре MIPS. Эта
работа является частью проекта «RuC». В ней рассматривается только генерация кодов для операций с
числами с плавающей запятой. В статье не рассматриваются лексический, синтаксический и
видозависимый анализы.

Ключевые слова: кодогенерация; транслятор; арифметика чисел с плавающей запятой; MIPS

Для цитирования: Архипов И.С. Генерация кодов для вещественной арифметики в архитектуре MIPS.
Труды ИСП РАН, том 32, вып. 3, 2020 г., стр. 49-56 (на английском языке). DOI: 10.15514/ISPRAS–
2020–32(3)–4

1. Introduction
RISC and CISC architectures, unlike stack architectures and virtual machines systems, have
different ways to express high-level language features. There are many registers for working with
data, which creates a large variability in optimal code generation. Therefore, code generation in
these architectures is quite a difficult task.
For work with such architectures, a technique of request and response [1] have been developed at
the mathematics and mechanics faculty of the Leningrad State University: from the top of the
constructed parse tree the requests for values are received, and from below the answers – form
submission parse (register, memory, constant). In addition, there are certain relationship agreements.
For example, in the MIPS32 architecture, function parameter values must be in some specific
registers, and function values must be in other specific registers. There are stored registers that must
be preserved when calling functions, and there are non-stored (unsafe) registers. For example, the
left operand of a binary formula must be represented in a stored register if the right operand has calls
or slicing that apply the same rules as functions, otherwise the left operand can also be represented

Arkhipov I.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

50

in an unsaved register. Determining the complexity of the right operand is the task of optimizing
parse.
This work has practical application: the MIPS32 architecture is the basic architecture of one of the
Russian computers Baikal-T1 [2].
The goal of this work is to generate codes for floating-point arithmetic in MIPS32 codes using the
request and response technique.

2. Motivation
The development of a domestic translator is an actual task, since many industries require domestic
software to avoid «back doors» in foreign software. Writing your own translator is a difficult task.
This work is part of the «RuC» project [3] and is specialized only in code generation of operations
with floating-point numbers. At the moment, this project has a customer, which is an additional
evidence of the relevance of this work.

3. Problem statement
To achieve the goal of this work, the following tasks were set:
• to implement code generation for operations with floating-point numbers in RuC using the query

and response technique;
• to implement printing floating-point numbers to the console;
• to prepare tests and test the implemented code generation.
The results can be considered successful if the assembler code received during code generation is
executed on the Baikal-T1 machine and displays the correct result in the console.

4. Overview
Since this work is part of the RuC project, the same ideas as in the RuC are used to achieve the set
goals. The code generator will view the parsing tree of the program and generate code based on the
lexemes located in it.
It is necessary to describe the principles of RuC in general. The RuC translator has a traditional two-
view structure. On the first view a scanner (lexical analyzer), a view-independent analyzer (parser)
and a view-dependent analyzer work. The result of the first view is a parsing tree. This tree is input
to the second code generation view, which outputs the result in MIPS32 architecture codes. This
work is a part of second code generation view module, that implements operations with floatting-
point numbers. More information about RuC may be found in section wiki of 'RuC' project github
[9] and in the following article [10].
It is also worth mentioning a few general decisions made during the work.
• It was decided to generate commands for working with single-precision floatting-point numbers.

This is due to two reasons. Firstly, at the moment there is no need for double-precision
calculations on the Baikal-T1 computer. Secondly, the computer Baikal-T1 (another name BE-
T1000) has 2 32-bit p5600 processor cores of the MIPS32 r5 architecture, which makes it
unsuitable for double-precision computing. For example, because of the 32-bit version, you will
need two commands to load a double-precision number from memory, not one.

• Implementation of using registers manually without using LLVM [8], firstly, to support RuC,
and secondly, to guarantee the absence of malicious code, since due to the huge amount of code
in LLVM, it is difficult to check, for example, the absence of ``back doors''.

• Processing requests of the register-to-register type only (more on this later), since there are no
commands with a direct operand for floating-point values, and working with memory is
represented by only two commands: load and store.

Архипов И.С. Генерация кодов для вещественной арифметики в архитектуре MIPS. Труды ИСП РАН, том 32, вып. 3, 2020 г., стр.
49-56

51

RuC has its own virtual machine, so assembly code could be generated like this: first code in virtual
machine codes is generated, and then each virtual machine instruction is translated to MIPS32
assembly code. It was decided to abandon this approach because it generated large code that is
difficult to optimize in the future.

5. Related Work
In the process, we also looked at the code generated by the gcc compiler [7] and compared it with
our own code. Of course, the gcc compiler has already implemented many optimizations, which
makes the code generated by it better. At the moment, RuC does not have any optimizations related
to arithmetic operations. Optimization is the next stage of RuC development and a topic for future
work.
If you compare the code generated by RuC with the non-optimized code generated by gcc, you can
see that RuC uses more temporary registers than gcc for intermediate calculations. This approach is
closer to a relationship agreement in mips architecture.
RuC has its own virtual machine, so it was possible to generate assembly code like this: firstly
generate code in virtual machine codes, and then translate each virtual machine instruction into mips
assembly code. We abandoned this approach because it generated a large code that is difficult to
optimize in the future.
As an alternative approach to code generation, generation to LLVM [8] codes can be also offered.
But, as it was written above, you can not guarantee that there are no «back doors» in LLVM.
As for the application, after further improvements, RuC can be used in areas where a security
guarantee is required, which is why it is not possible to use foreign software products. This is the
novelty of RuC – it is the first Russian translator that modifies the C language.

6. Implementation

6.1 Parse tree lexemes
As described above, the code generator views lexemes from the parse tree. We are only interested
in lexemes that describe operations with floating-point numbers, namely the following:
• TConstf – floatting-point constant;
• TIdenttovalf – take the value of an identificator;
• «Unary» arithmetic operation lexemes:

o ASSR – =;
o PLUSASSR – +=;
o MINUSASSR – -=;
o MULTASSR – *=;
o DIVASSR – /=;
o INCR – increment;
o POSTINCR – postincrement;
o DECR – decrement;
o POSTDECR – postdecrement;

• «Binary» arithmetic operation lexemes:
o LPLUSR – +;
o LMINUSR – -;
o LMULTR – *;
o LDIVR – /;

Arkhipov I.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

52

• Logic operation lexemes:
o EQEQR – ==;
o NOTEQR – !=;
o LLTR – <=;
o LGTR – >=;
o LLER – <;
o LGER – >.

The processing of each type of lexemes will be shown below.

6.2 A technique of request and response
Before describing the processing of lexemes, it is necessary to describe the technique of requests
and responses. There are several types of requests, we are interested in the following:
• BREG – load the result in a register «breg». «breg» is a global variable in the translator, that

contains the register's number;
• BREGF – request on the left operand, you can get an answer. Answers will be shown below;
• BF – free request on the right operand.
Type of request is contained in global variable «mbox».
The types of responses are:
• AREG – the result in a register «areg». «areg» is a global variable in the translator, that contains

the register's number;
• AMEM – the result in memory. Global variable «adispl» contains displacement and global

variable «areg» contains register»
• CONST – result is a constant.
Type of request is contained in global variable «manst».

6.3 TConstf
This lexeme means that a constant request was received. After this lexeme in the tree there is a
constant value. Depending on the request type, we can get a register to put the constant value in
«breg». If we don't get a register, the constant value is put in a temporary register $f4 with the
pseudo instruction li.s. It is described about floating point registers in [4]. The type of the response
is AREG.

4.4 TIdenttovalf
This lexeme means that the value of variable must be put in register by identificator. If this is register
variable, it is necessary to move it to the register «breg» when request BREG or BREGF is received.
Otherwise we must put the value of this variable from memory in register «breg» or $f4 with the
instruction lwc1 [5].

6.5 «Unary» arithmetic operation lexemes
These operations are called «unary» operations because when processing them, it is necessary to
request the right operand, and the left operand is already known. The left operand may be already in
register if it is register variable or in memory. If it is in memory it is necessary to put it in register.
Only a register request must be issued for the right operand since there are not operations addition,
subtraction, multiplication and division for floating point numbers with register and number
operands. So, left and right operands must be in registers.

Архипов И.С. Генерация кодов для вещественной арифметики в архитектуре MIPS. Труды ИСП РАН, том 32, вып. 3, 2020 г., стр.
49-56

53

After this it is necessary to execute the instruction (addition, subtraction, multiplication or division).
Then if variable is in memory new value of variable is saved in memory. In «areg» register of left
operand is put. The type of the response is AREG.
It is worth noting that the division operation is performed like the rest with a single command, in
contrast to the similar operation with integers.

6.5 «Binary» arithmetic operation lexemes
«Binary» operations differ from «unary» operations in that both the left and right operands must be
requested before operation is executed. In contrast to the similar operation with integers for
executing operations with floating point numbers left and right operands must be in registers. That's
why only a register request must be issued for the left and right operands.
After getting values of left and rights operands in registers the instruction may be executed. This
stage is performed as for unary operations. The type of the response is AREG.

6.6 Logic operation lexemes
Just like in «unary» and «binary» operations, both operands must be in registers. That's why only a
register request must be issued for the left and right operands.
Unlike in similar operations with integers floating point operations change flag FP. Based on the
logic operation, conditional transition commands are generated. If the conditional expression is
complex (contains operations «and» or «or»), it is divided into simple logical expressions, the result
of which is stored in the global variable in translator. When processing subsequent conditional
expressions, the value of this global variable is also taken into account.

6.7 Printf
To see the results of code generation, printf function must be implemented. Firstly, string in data
segment is generated. String is given in parse tree after TString lexeme. Then text segment begins
again. Address of string is put in register $a0. After this a register request for the second operand
is created. If this operand is integer or char value of this operand is put in register $a1 and printf
is executed. If this operand is float pointing due to mips agreements we must convert the single
precision floating point number to a double precision number. After these operations printf is
executed.
If printf has more than one arguments string is divided into several parts and for each part printf
is executed.

7. Evaluation
After implementing code generation for operations with floating-point numbers and printing
floating-point numbers tests were prepared. Tests have been prepared that demonstrate the code
generation for each operation separately and for complex expressions with floating-point operations.
For example, RuC translates a program in Application 1 to the assembly code in Application 2.
It is important to note that the goal is considered achieved only when the generated code is assembled
successfully and is executed on the Baikal-T1. This is significant since we can think that code
generation is correct but in fact it does not work. Also in such way successfulness of this work can
be demonstrated.
For this purpose:
• emulator qemu [6] was installed;
• Baikal-T1 was bought;

Arkhipov I.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

54

• Baikal-T1 was connected to a laptop.
After this the prepared tests for arithmetic operations were first tested on the emulator, and then on
the Baikal-T1. The tests were successful, so we can assume that the goal was achieve. You can find
tests in [3] in branch mips.

8. Conclusion
This work solves the problem of code generation in MIPS32 codes of arithmetic operations with
floating point numbers. Various approaches to code generation have been considered and one of
them has been implemented – direct code generation.
The novelty of this work is that this work is part of the RuC project, the first Russian translator to
modify the C language in favor of programming security.
In the course of the work, important results were obtained showing the applicability of the results of
this work in practice. Direct code generation was implemented MIPS32 codes for floating point
arithmetic operations. The generated code was successfully run on Baikal-T1.
This work has many opportunities for further research. The RuC project is not yet complete, and
some C language structures are not yet implemented. Optimization of generated code is also a big
area of research. Also it is necessary to implement a linker. As you can see, there are still many
sources for research.

References / Список литературы
[1]. ALGOL 68. Methods of implementing. G.S. Zeitin, ed. Publishing House of Leningrad State University,

1976, 224 p. (in Russian). / Алгол 68. Методы реализации. Под редакцией Г.С. Цейтина. Изд. ЛГУ,
1976 г., 224 стр.

[2]. Baikal-T1 specifications. URL: http://www.baikalelectronics.ru/products/35/ (in Russian), accessed:
15.05.2020.

[3]. RuC project, github. URL: https://github.com/andrey-terekhov/RuC, accessed: 15.05.2020.
[4]. System V Application Binary Interface MIPS RISC Processor Supplement, 3rd Edition. Santa Cruz

Operation, 1996.
[5]. MIPS Architecture for Programmers Volume II-A: The MIPS32 Instruction Set Manual. Document

Number: MD00086, Revision 5.04. MIPS Tech, December 11, 2013.
[6]. QEMU official site. URL: https://www.qemu.org/, accessed:15.05.2020.
[7]. GCC official site. URL: https://gcc.gnu.org/, accessed: 15.05.2020.
[8]. LLVM official site. URL: https://llvm.org/, accessed: 15.05.2020.
[9]. RuC project github, section wiki. URL: https://github.com/andrey-terekhov/RuC/wiki (in Russian),

accessed: 15.05.2020.
[10]. A.N. Terekhov, M.A. Terekhov. RuC project for education and reliable software systems development.

University News, North-Caucasian region, Technical Science, issue 3, 2017, pp. 70-75 (In Russian) / А.Н.
Терехов, М.А. Терехов. Проект РуСи для обучения и создания высоконадежных программных
систем. Известия высших учебных заведений. Северо-Кавказский регион. Технические науки, вып.
3, 2017 г., стр. 70-75.

Application 1
void main()
{

float a = 5.1, b = 6.3, c = 2.3;
if (c > a && b < 5.3 || 5.2 >= a)

c += (a + b) * 3.2 - 6.7 / c;
printf("%f\n", c);

}

Архипов И.С. Генерация кодов для вещественной арифметики в архитектуре MIPS. Труды ИСП РАН, том 32, вып. 3, 2020 г., стр.
49-56

55

Application 2
.file 1 "tests/mips/float.c"

 .section .mdebug.abi32
 .previous
 .nan legacy
 .module fp=xx
 .module nooddspreg
 .abicalls
 .option pic0
 .text
 .align 2
 .globl main
 .ent main
 .type main, @function
main:
 move $fp, $sp
 addi $fp, $fp, -4
 sw $ra, 0($fp)
 li $t0, 268500992
 sw $t0, -8060($gp)
 j NEXT2
 nop
FUNC2:
 addi $fp, $fp, -96
 sw $sp, 20($fp)
 move $sp, $fp
 sw $ra, 16($sp)
 li.s $f4, 5.100000
 swc1 $f4, 80($sp)
 li.s $f4, 6.300000
 swc1 $f4, 84($sp)
 li.s $f4, 2.300000
 swc1 $f4, 88($sp)
 lwc1 $f20, 88($sp)
 lwc1 $f4, 80($sp)
 c.le.s $f20, $f4
 bc1t ELSE4
 lwc1 $f20, 84($sp)
 li.s $f4, 5.300000
 c.lt.s $f20, $f4
 bc1t ELSE3
ELSE4:
 li.s $f20, 5.200000
 lwc1 $f4, 80($sp)
 c.lt.s $f20, $f4
 bc1t ELSE1
ELSE3:
 lwc1 $f20, 80($sp)
 lwc1 $f4, 84($sp)
 add.s $f20, $f20, $f4
 li.s $f4, 3.200000
 mul.s $f20, $f20, $f4
 li.s $f22, 6.700000
 lwc1 $f4, 88($sp)
 div.s $f22, $f22, $f4
 sub.s $f20, $f20, $f22
 lwc1 $f6, 88($sp)

Arkhipov I.S. Code generation for floating-point arithmetic in architecture MIPS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp.
49-56

56

 add.s $f4, $f6, $f20
 swc1 $f4, 88($sp)
ELSE1:
 .rdata
 .align 2
STRING1:
 .ascii "%f\n\0"
 .text
 .align 2
 lwc1 $f4, 88($sp)
 cvt.d.s $f4,$f4
 mfc1 $5,$f4
 mfhc1 $6,$f4
 lui $t1, %hi(STRING1)
 addiu $a0, $t1, %lo(STRING1)
 jal printf
 nop
 j FUNCEND2
 nop
FUNCEND2:
 lw $ra, 16($sp)
 addi $fp, $sp, 96
 lw $sp, 20($sp)
 jr $ra
 nop
NEXT2:
 jal FUNC2
 nop
 lw $ra, -4($sp)
 jr $ra
 nop
 .end main
 .size main, .-main

Information about authors / Информация об авторах
Ivan Sergeevich ARKHIPOV – undergraduate student in the Department of System Programming.
Research interests: MIPS architecture, compilers, code generation.
Иван Сергеевич АРХИПОВ – студент бакалавриата кафедры системного программирования.
Научные интересы: архитектура MIPS, компиляторы, генерация кода.

