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Abstract. This paper considers the OpenFlow 1.3 switch based on a programmable network processing unit 
(NPU). OpenFlow switch performs flow entry lookup in a flow table by the values of packet header fields to 
determine actions to apply to incoming packet (classification). In the considered NPU assembly language, 
lookup operation may be implemented on the basis of search trees. But these trees cannot be directly used for 
OpenFlow classification because of compared operands width limitation. In this paper, we propose flow table 
representation designed for easy translation into NPU search trees. Another goal was to create a compact 
program that fits in NPU memory. Another NPU limitation requires program updating after each flow table 
modification. Consequently, the switch must maintain the current flow table state to provide a fast NPU 
program update. We developed algorithms for incremental update of flow table representation (flow addition 
and removal). To evaluate the proposed flow table translation approach, a set of flow tables was translated into 
NPU assembly language using a simple algorithm (based on related work) and an improved algorithm (our 
proposal). Evaluation was performed on the NPU simulation model and showed that our approach effectively 
reduces program size.   
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Abstract. В статье рассматривается коммутатор, функционирующий под управлением протокола 
OpenFlow 1.3. Коммутатор работает на базе программируемого сетевого процессорного устройства 
(СПУ). Для классификации приходящих пакетов коммутатор выполняет поиск записи (правила) в 
таблице потоков по значениям полей заголовка для определения действий, которые необходимо 
выполнить над полученным пакетом.  Поиск в программе на языке ассемблера рассматриваемого 
СПУ может быть реализован в виде набора деревьев поиска. При этом существует ограничение на 
ширину сравниваемых значений, что не позволяет напрямую использовать деревья поиска для 
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классификации по таблице потоков. В статье предлагается представление таблицы потоков, 
разработанное для трансляции таблицы потоков в программу на языке ассемблера СПУ, реализующую 
поиск по набору правил таблицы. Еще одной целью являлось создание компактной программы, которая 
может быть загружена в память СПУ. Архитектура рассматриваемого СПУ также обладает 
особенностью, заключающейся в необходимости обновления программы после каждого изменения 
таблицы потоков. Поэтому целесообразно поддерживать текущее представление таблицы потоков для 
быстрого обновления программы СПУ. В статье представлены алгориты для инкрементного 
обновления разработанного представления таблицы потоков (добавления и удаления правила). 
Разработанный подход был исследован на экспериментальных наборах правил, которые были 
транслированы в программы на языке ассемблера СПУ с использованием прямого способа, 
основанного на существующих подходах, и разработанного алгоритма. Экспериментальное 
исследование проводилось на основе модели СПУ и показало, что разработанный подход способен 
эффективно уменьшать размер программы. 

Ключевые слова: OpenFlow; сетевое процессорное устройство; таблица потоков; программно-
конфигурируемые сети 
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1. Introduction 
Software-Defined Networks (SDN) have been actively developed recently. In SDN network devices, 
or switches, implement data forwarding plane, when device and data flow management (control 
plane) is performed by special software – SDN controller, running on a separate server [1]. For 
interaction between the data plane and the control plane, a special control protocol is used. The 
OpenFlow [2] protocol is one of the most widespread SDN control protocols. 
Packet processing in the OpenFlow switch is performed using special processing rules (called flow 
entries in the OpenFlow protocol) organized in flow tables. SDN controller updates these flow 
entries by sending OpenFlow messages. To classify incoming packets, OpenFlow switch looks up 
for the flow entry in the flow table that matches values of corresponding packet header fields. 
One of the directions of the SDN technology development are high-performance switches based on 
programmable network processor units (NPU) [3], which are widely used. NPU is a System-on-a-
Chip with architecture specialized for network traffic processing. NPU performs packet header 
parsing, classification of incoming packets, modification of the packet header and traffic 
management functions [4]. Programmable NPUs allow us to change packet processing algorithms 
and distinguishable packet header fields, which is highly valuable in SDN deployments with 
emerging standards like data centers or 5G [5]. 
NPU is a specialized device that executes packet processing program loaded into its memory and 
usually does not make changes to its program itself. The central processing unit (CPU) of the switch 
implements the interface with the SDN control plane. OpenFlow software in the operating system 
environment of the CPU provides a connection with the controller and makes changes to the NPU 
program. Program update requires a special system to translate OpenFlow abstractions into the 
assembly language of the NPU. This research is devoted to the development of such a system, 
specifically, its part responsible for packet classification according to the flow table. 
The paper has the following structure. Section 2 describes the main architectural features of the NPU 
and its assembly language. Section 3 contains the problem statement of this research. In Section 4, 
we perform an analysis of related work applied to flow table representation in considered NPU. 
Section 5 presents developed data structure and algorithms for translating it into the assembly 
language and also the data structure updating algorithms. Section 6 is devoted to the evaluation of 
the developed flow table translation approach. 
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2. NPU architecture 
Our research considers a switch with the NPU based on specialized computing cores. This NPU 
contains a set of parallel packet processing pipelines consisting of the uniform stages that execute 
binary code loaded into them. 
The computing core of the NPU pipeline stage contains a single general-purpose register and a 
memory area to store the currently processed packet header and associated metadata (such as ingress 
port identifier). The register is used as an operand register and a result register. NPU does not contain 
a separated memory area to store program data. Program data is recorded directly to the binary code 
of the stage processor instructions. Thus, any change of the data, such as flow removal in OpenFlow, 
requires a new program to be loaded.  
The assembly language of the NPU contains conditional jump instructions that compare the value 
in the register with the value from the instruction operand. Length of the value should be 64 bits or 
less. Conditional jump can be made only to the label located in the program below. Therefore, for 
example, it is impossible to implement loops or return to previously defined packet modifying 
action.  
The program in the assembly language of the NPU can be represented as a finite set of linear 
instruction blocks connected by jump instructions. The program contains the following main types 
of linear instruction blocks. 
• Load value. The sequence of instructions of this block loads a value from the packet header 

memory area or associated metadata memory into the register. 
• Change register. The sequence of instructions of this block performs arithmetical or logical 

operations to change the current value of the register. 
• Search tree. In the simplest case (exact match search tree) this block contains a set of jump 

instructions. The search key is an integer value, which length is 64 bits or less. It can also be the 
longest-prefix match search tree, which additionally requires prefix length for the searchkey. 

• Apply actions. The sequence of instructions of this block performs modifying actions on the 
packet header memory or associated metadata memory, such as changing header field values, 
pushing tags. 

A directed graph of the program can be created from the instruction blocks of the program. In this 
graph vertices are created for each instruction block. An arc leads from one vertex to another, if the 
block corresponding to the first vertex has jump instruction to label located in instruction block 
corresponding to the second vertex. The program graph has no cycles and contains only one vertex 
without incoming arcs.  

 

Fig. 1. Example NPU program graph 
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Fig. 1 shows the graph for a simple NPU program which performs classification by the value of one 
header field and applies one of the three packet modifying actions. The program has one instruction 
block for loading the value of this field and one block containing the search tree. In the program 
graph three arcs lead from the vertex of search tree block to three vertices of action blocks to apply. 

3. Problem statement 
Consider a switch that operates under the OpenFlow 1.3 protocol, based on the NPU described in 
Section 2. Let R be flow table with flow entries containing only match fields with exact values. The 
set of flow table match fields is denoted by I = {m1; m2; … ; mk}. Flow entry may specify exact value 
only for a subset of I allowing any value in other match fields. Let the symbol «*» denote any value 
of the match field. To avoid search ambiguity, each flow entry is marked with priority p. 
Our goal is to create a program in the assembly language that is compliant with the graph described 
in Section II and performs received packet classification by the given flow table R. The program 
must perform the search for matching flow entry in the flow table that has the highest priority and 
matches packet header fields.  
Additionally, we have to load a new program into the NPU each time flow table contents are 
changed. Considering the usual frequency of flow table updates, it is advisable to maintain an 
incrementally updated intermediate representation of the flow table for quick translation after the 
update.  
Thus, the problem is to develop a data structure for translating given flow table R into the program 
in the assembly language of the considered NPU, which implements a search on this set of flow 
entries and supports the addition and removal of flow entries. 

4. Related work 
This section provides a brief review of other researches devoted to data structures developed for 
classification by the flow table or similar multi-field tables. 
The papers [6], [7] investigate an approach based on the decomposition of the classification by many 
fields into several classifications by one field. This approach uses a separate data structure for each 
match field, such as search trees or hash tables. The search result for one data structure is the Bloom 
filter [8] or label identifier. To get the classification result for all fields, it is necessary to intersect 
pairs of separate classification results. As a result, an identifier of the required flow entry is 
calculated. 
This approach has significant limitations in implementation for the considered NPU, including the 
impossibility of hash function implementation required for Bloom filters and the necessity to store 
intermediate labels when classification results are intersected. 
The papers [9], [10], [11], [12] suggest an approach that uses decision trees. Each vertex of such a 
tree is associated with a predicate. During the search, the predicate determines the next descendant 
vertex to continue the search. During passing from vertex to its descendant, the initial set of flow 
entries decreases and, as a result, turns into a smaller set of flow entries, among which the desired 
flow entry is determined by simple enumeration. 
This approach also has limitations for implementing in the considered NPU. In the search process, 
it is required to load the header field values more than once, that can lead to unreasonable expenses 
for the packet processing time and multiple duplication of instruction blocks for loading the field 
value. 
All considered approaches to the representation of flow tables have limitations and disadvantages 
for their implementation in the assembly language of considered NPU. Data structures based on 
decision trees are more suitable for our research problem. However, the disadvantages of such data 
structures should be eliminated, or the program just will not fit into NPU memory. 3 
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5. Proposed approach 
In this section, we describe the developed data structure for representing the flow table and the 
developed algorithms for flow addition and removal from the data structure and for translating the 
data structure into a program in the assembly language of the NPU. 

5.1 Data Structure 
To represent a flow table with the set of flow entries R, we use a tree with marked vertices and arcs. 
The following values are associated with each tree vertex, except for leaf vertices. 
• Match field from the set of considered fields I = {m1; m2; … ; mk}: the tree root corresponds 

to the field m1, the descendants of the root correspond to the field m2, etc. 
• Subset of the flow set R. The tree root corresponds to the whole set R. 
Table 1. Example flow table 

Flow Priority Field 1 Field 2 
F1 2 0 0 
F2 2 0 1 
F3 2 1 0 
F4 1 1 * 

Each tree leaf is associated with a flow entry subset of R sorted in descending priority order. The 
tree has a depth of k, and all the tree leaves are vertices of the depth k. Table 1 presents an example 
flow table with two match fields, consisting of four flow entries F1, F2, F3, F4. In Fig. 2, the data 
structure constructed for example flow table that is shown in Table 1. 

 
Fig. 2. Data structure constructed from flow entries given in Table 1 

Consider the tree vertex v, which corresponds to the field m and a flow subset S ⊂ R. Then: 
• if M is a set of all possible values of the field m in the flow entries from the set S, including the 

special value *, for each value f ∈ M the vertex v has a descendant which arc is marked f; 
• If the vertex u is a descendant of the vertex v with arc marked f, the flow subset of the vertex u 

contains only those flow entries from S, which value for the field m is f or *. 
The developed data structure differs from approaches shown in related work by a fixed order of 
viewing fields. Vertices having the same depth refer to the same match field. This allows us to load 
the value of each match field only once in the search process. This order also allowed us to develop 
an algorithm for translating the data structure into the assembly language of the NPU, which receives 
the program without duplicating the instruction blocks for loading field value. 

5.2 Flow Addition 
Flow addition to the data structure is performed by traversing the tree vertices, starting from the 
root. When traversing a vertex, a new flow entry is added to its flow subset. Then, traversing 
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continues in vertex along the arc, which is marked with the value of the field specified in the added 
flow entry. If such an arc is in absent, a new vertex descendant is added. 
When traversing a vertex, two special cases require additional actions. 
1) The value of the field corresponding to the vertex specified in the added flow entry is *. In this 

case, in addition to the descendant along the arc marked *, it is necessary to traverse all other 
descendants of this vertex. 

2) The value of the field corresponding to the vertex in the added flow entry is f ≠ * and this vertex 
has a descendant along the arc marked *. Then, in case of adding a new descendant, it is 
necessary firstly to copy the subtree corresponding to the arc marked * to the subtree along the 
arc marked f, and then continue the traversal. 

5.3 Flow Removal 
Flow removal from the data structure is also performed by traversing the tree vertices, starting from 
the root. When traversing a vertex, the removed flow entry is deleted from the vertex flow subset, 
and traversing continues in vertex along the arc, which is marked with the value of the field specified 
in the removed flow entry. 
When traversing a vertex, two special cases require additional actions. 
1) The value of the field corresponding to the vertex specified in the removed flow entry is *. In 

this case, in addition to the descendant along the arc marked *, it is necessary to traverse all the 
other descendants of this vertex. 

2) The value of the field corresponding to the vertex in the removed flow entry is f ≠ *, and this 
vertex has a descendant along the arc marked *. For this case, after traversing the subtree along 
the arc marked f, it is necessary to compare the subtree along the arc marked f and the subtree 
along the arc marked *. In case of equality, the subtree along the arc f is removed, because it is 
redundant. 

5.4 Translation into NPU Assembly Language 
Proposed data structure can be directly translated into a program in the assembly language of the 
NPU. The program graph will have a structure similar to a tree, but for each vertex of the tree, except 
for the leaves, the program graph will contain sequentially connected vertices corresponding to the 
instruction block of loading the field value, which corresponds to the vertex, and the instruction 
block of a search tree, for the values that mark the outgoing arcs from the vertex. The tree leaf will 
correspond to the instruction blocks of actions of the flow entry that has the highest priority in leaf 
flow set.  

<...> // Load Field 1 
tree in "tree_1" 
j End 

L1: // Load Field 2 
tree in "tree_2" 
j End 

L2: <...> // Load Field 2 
tree in "tree_3" 
j F4 

F1: <...> // Actions F1 
j End 

F2: <...> // Actions F2 
j End 

F3: <...> // Actions F3 
j End 

F4: <...> // Actions F4 
j End 
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End: 

Listing 1. Program obtained by direct translation method 
Listing 1 and Fig. 3 show the program and the program graph translated by the direct method from 
flow table representation presented in Fig. 2. 

 
Fig. 3. Program graph obtained by direct translation method 

However, with the direct method of translation, the resulting program contains a lot of search trees 
for similar key sets and duplicating instruction blocks for loading the field value (see duplicating 
field loading block in Fig. 3). To eliminate this drawback, a method for translating the data structure 
with encoding arcs was developed (method with encoding). 
When translating by the method with encoding, tree levels are introduced. Tree level corresponds to 
the table match field and includes vertices of the same depth. The arcs outgoing from the tree levels 
vertices are numbered, that is, the code is assigned to each arc. Numbering for each level is 
independent. Then, for each tree level, a level list, consisting of all pairs (code of the incoming arc, 
marker of the outgoing arc) is formed. For the root vertex, zero is used instead of the incoming arc 
code. Fig. 4 shows arc encodings, tree levels, and level lists for our example data structure. 

 
Fig. 4. Flow table representation marked up with tree levels encoded arcs and level lists 

Instruction blocks of the search tree and loading field corresponding to the level are created for each 
list of pairs. Jumps in the block of the search tree are performed in a special block for loading the 
code of the outgoing arc, to which the pair corresponds. Then jump is performed to loading the value 
of the next field. In Fig. 5, the resulting program graph, obtained by the method with encoding from 
marked flow table representation in Fig. 4, is shown. In Listing 2, the corresponding program in the 
assembly language is presented.  
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Thus, the resulting program contains one loading instruction block for each match field and a fixed 
number of search trees, one search tree per match field. 

 
Fig. 5. Program graph obtained by translation method with encoding 

Listing 2. Program obtained by translation method with encoding 
<...> // Load Field 1 
tree lpm "tree_1" 
j End 

L1: loadi 1 
j L3 

L2:  loadi 2 
j L3 

L3: rol FIELD_2_WIDTH 
<...> // Load Field 2 
tree lpm "tree_2" 
j End 

F1: <...> // Actions F1 
j End 

F2: <...> // Actions F2 
j End 

F3: <...> // Actions F3 
j End 

F4: <...> // Actions F4 
j End 

End: 

6. Evaluation 
For the developed data structure, we evaluated translation method with encoding in comparison to 
the direct translation method inspired by approaches from related work. 
For the evaluation, we used a simulation model of the NPU pipeline. The simulation model receives 
a program in the assembly language, translated by one of the methods in our case, and a set of input 
packets to be processed. As an output the model produces a set of outgoing packets along with 
statistics, including the amount of memory occupied by the program binary code and the average 
number of ticks spent on processing the input packets. Before processing the packets, the simulation 
model translates the program in assembly language into binary code, where each instruction has 16 
bytes length. 



Маркобородов А.А., Скобцова Ю.А., Волканов Д.Ю. Подход к трансляции таблицы потоков коммутатора программно-
конфигурируемой сети в язык ассемблера сетевого процессора. Труды ИСП РАН, том 32, вып. 3, 2020 г., стр. 79-90 

87 

We generated a set of OpenFlow tables with match fields of the data link (L2) and network layer 
(L3) header fields with different numbers of flow entries. For each table, the evaluated data structure 
was built and translated into NPU assembly language. For each flow table, one input packet per flow 
entry was generated. 

 
Fig. 6. Average number of instructions for different flow table sizes 

The dependency between the number of table flow entries and the average number of instructions is 
presented in Fig. 6. The measurements show that the program translated by the direct method takes 
from 1.2 to 1.5 times more memory than the program translated by the method with encoding. 

 
Fig. 7. Proportion of the search trees instructions for different flow table sizes 

Fig. 7 shows the proportion of the search trees instructions in the program depending on the number 
of table flow entries. The proposed method with encoding uses memory much more effectively than 
the direct method, removing from 15 to 30% duplicating code from the program. 

 
Fig. 8. Average number of ticks per packet for different flow table sizes 
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However, the fee for reducing the size of the program is an increase in the number of ticks per 
packet, which is about 10%. In Fig. 8, the dependency between the number of flow entries in the 
table, and the average number of ticks per packet is rendered. The increase in packet processing 
time, though, is still within acceptable limits for our NPU and does not lead to unexpected delays or 
packet drops. 
In future research, we are going to determine the dependencies of the evaluated characteristics by 
the number of match fields in the flow entries. All of the proposed algorithms, including flow 
addition and removal, will be evaluated in terms of data structure update time. 

7. Conclusion 
In our research, we considered the switch based on programmable NPU, which has architectural 
limitations in memory organization. To use this NPU in the SDN switch operating under the 
OpenFlow 1.3 protocol, the system for translating flow table into NPU program was developed. The 
system allows us to get a program for the NPU with acceptable packet processing time, which takes 
up to 30% less memory comparing to the programs based on data structures in the considered related 
work. These results are achieved by reducing the duplication of instruction blocks that load the value 
of the same fields, reducing the program size (in some cases by 1.5 times). In the future, we will 
consider maskable match fields of the flow entries and examine the effect of the fields parsing order 
on the resulting program characteristics. 
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