Tpyowt UCIT PAH, mom 32, evin. 3, 2020 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020

DOI: 10.15514/ISPRAS-2020-32(3)-7

An Approach to the Translation of Software-Defined
Network Switch Flow Table into Network
Processing Unit Assembly Language

A.A. Markoborodov, ORCID: 0000-0003-4525-6133 <amark@Ivk.cs.msu.su>
Yu.A. Skobtsova, ORCID: 0000-0001-8351-3191 <xenerizes@Ivk.cs.msu.su>
D.Yu. Volkanov, ORCID: 0000-0001-9940-5822 <volkanov@asvk.cs.msu.su>
Mockosckuii 2ocyoapcmeennuiil ynugepcumem umenu M.B. Jlomonocoesa,
119991, Poccus, Mocksa, Jlenunckue copul, 0. 1

Abstract. This paper considers the OpenFlow 1.3 switch based on a programmable network processing unit
(NPU). OpenFlow switch performs flow entry lookup in a flow table by the values of packet header fields to
determine actions to apply to incoming packet (classification). In the considered NPU assembly language,
lookup operation may be implemented on the basis of search trees. But these trees cannot be directly used for
OpenFlow classification because of compared operands width limitation. In this paper, we propose flow table
representation designed for easy translation into NPU search trees. Another goal was to create a compact
program that fits in NPU memory. Another NPU limitation requires program updating after each flow table
modification. Consequently, the switch must maintain the current flow table state to provide a fast NPU
program update. We developed algorithms for incremental update of flow table representation (flow addition
and removal). To evaluate the proposed flow table translation approach, a set of flow tables was translated into
NPU assembly language using a simple algorithm (based on related work) and an improved algorithm (our
proposal). Evaluation was performed on the NPU simulation model and showed that our approach effectively
reduces program size.

Keywords: OpenFlow; network processing unit; flow table; software-defined network

For citation: Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of
Software-Defined Network Switch Flow Table into Network Processing Unit Assembly Language. Trudy ISP
RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90. DOI: 10.15514/ISPRAS-2020-32(3)-7

Moaxopa K TpaHCAAUUKM TabNULbLI NOTOKOB KOMMyTaTopa NporpaMMHoO-
KOHUrypupyemoii ceTu B Ai3bik accembnepa ceTeBoro npoweccopa

A.A. Mapxobopooos, ORCID: 0000-0003-4525-6133 <amark@Ivk.cs.msu.su>
10.4. Crobyosa, ORCID: 0000-0001-8351-3191 <xenerizes@Ivk.cs.msu.su>
JLIO. Boakanos, ORCID: 0000-0001-9940-5822 <volkanov@asvk.cs.msu.su>
Mocxkosckutl eocyoapcmeennulil yHugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mockea, Jlenunckue 2opbl, 0. 1

Abstract. B cratbe paccMaTpuUBaeTCS KOMMYTAaTOp, (YHKIMOHUPYIOIMH IOJA YIPaBICHHEM IIPOTOKOIA
OpenFlow 1.3. KommyTaTop paboraer Ha 6a3e IpOrpaMMHpPYEMOIrO CETEBOrO IIPOLECCOPHOrO yCTpoiicTBa
(CITY). dns knaccuuKaumy NPUXOAAIIMX MAKETOB KOMMYTATODP BBINOJHSACT IOMCK 3amucd (NpaBuia) B
Ta0NULE MOTOKOB 10 3HAYEHUSAM IIOJeH 3arojioBKa Ul ONpEAENeHus NEHCTBUH, KOTOpbIE HEOOXOAMMO
BBIIIOJHUTD HAJl HOMYYCHHBIM ITaKeTOM. [IoMCK B IporpaMme Ha sI3bIKe acceMOlepa paccMaTpHBaeMOIO
CIIY moxeT OBITH pealn30BaH B BHAE HaOOpa AepeBbeB Ioucka. IIpu 3ToM cymiecTByeT OorpaHHYCHHE Ha
MIUPHHY CPaBHHBAEMBIX 3HAYEHHH, YTO HE MO3BOJAET HANPAMYIO HCIOIB30BATh JEPEBbs IOUCKA JUIS

79

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software-Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

kinaccupukayuy 1o Tabiuie IMOTOKOB. B craree mpeiaraercs NpelcTaBiIeHHE TaOIUIbl I[TOTOKOB,
pa3paboTaHHOE ISl TPAHCISIUK TaOJIUIIBI TIOTOKOB B IPOrpamMMy Ha si3bike accembuiepa CITY, peanusyronryto
MOUCK 110 Habopy npaBuiI Tadnuubl. Eiie 01HOM LEbIo SBISUIOCH CO3/IaHHe KOMIIAKTHOM MPOrpaMMBl, KOTOPast
Moxer ObiTh 3arpyxkeHa B mnamste CITY. Apxutekrypa paccmarpuBaemoro CIIY Ttakxke oOnamaer
0COOCHHOCTBIO, 3aKIIYAIOLICHCS B HEOOXOAUMOCTH OOHOBJICHUSI MPOTPAMMBI II0CIIE KaXJOr0 H3MCHEHHUS
TabnuIbl MOTOKOB. [ToaTOMY 1eNecooOpa3Ho MOAIEPKUBATH TEKYyIlee PeCTaBIeHUE TaOIUIbI TOTOKOB IS
ObicTporo oOHoBieHHss mnporpammbl CIIY. B cratbe mnpeacTaBieHbl auropuThl A HWHKPEMEHTHOTO
OOHOBJICHUSI Pa3pa0OTAHHOIO IPEJCTABICHHUS TaOJIHULBI IOTOKOB (J00ABIICHHS W yJAJICHHS MPaBUIIA).
Paspaboranublii 10aX0J OBUI HCCIIEOBAaH Ha SKCIEPHUMEHTAIBHBIX HA0Opax MpaBwWi, KOTOpPbIE OBUIH
TPaHCIMPOBAaHBl B IporpaMmbl Ha s3bike accem6biaepa CIIY ¢ HCIoOnb30BaHMEM IIPSIMOro Crocoba,
OCHOBaHHOTO Ha CYIIECTBYIOIIMX MOJAXOAaX, M pa3pabOTaHHOIO aaropuT™Ma. OKCIEPUMEHTAIBHOES
uccie0BaHue MpoBoaAwIochk Ha ocHoBe Mozaenu CITY u mokasano, 4rto pa3paboTaHHBIA MOJXOJ] CIIOCOOEH
3¢ (eKTUBHO yMEHBIIATh pa3Mep MPOrPaMMBI.

KiroueBbie cioBa: OpenFlow; cereBoe mpoueccopHOE yCTPOMCTBO; TaOJMLa MOTOKOB;, IMPOrPAMMHO-
KOH(UTypHpyeMbIe CETH

Jnst nuTupoBanus: Mapko6opozios A.A., Ckodrosa 10.A., Bonkanos JI.}O. IToxxo/ K TpaHCISIUU TaOIHIBI
MOTOKOB KOMMYTATOpa MPOrPaMMHO-KOH(QUIYPHPYEMOW CETH B S3BIK accembiepa CETeBOro MpoLeccopa.
Tpyast UCIT PAH, tom 32, b 3, 2020 r., ctp. 79-90 (Ha anrnmiickom s3bike). DOI: 10.15514/ISPRAS—
2020-32(3)-7

1. Introduction

Software-Defined Networks (SDN) have been actively developed recently. In SDN network devices,
or switches, implement data forwarding plane, when device and data flow management (control
plane) is performed by special software — SDN controller, running on a separate server [1]. For
interaction between the data plane and the control plane, a special control protocol is used. The
OpenFlow [2] protocol is one of the most widespread SDN control protocols.

Packet processing in the OpenFlow switch is performed using special processing rules (called flow
entries in the OpenFlow protocol) organized in flow tables. SDN controller updates these flow
entries by sending OpenFlow messages. To classify incoming packets, OpenFlow switch looks up
for the flow entry in the flow table that matches values of corresponding packet header fields.

One of the directions of the SDN technology development are high-performance switches based on
programmable network processor units (NPU) [3], which are widely used. NPU is a System-on-a-
Chip with architecture specialized for network traffic processing. NPU performs packet header
parsing, classification of incoming packets, modification of the packet header and traffic
management functions [4]. Programmable NPUs allow us to change packet processing algorithms
and distinguishable packet header fields, which is highly valuable in SDN deployments with
emerging standards like data centers or 5G [5].

NPU is a specialized device that executes packet processing program loaded into its memory and
usually does not make changes to its program itself. The central processing unit (CPU) of the switch
implements the interface with the SDN control plane. OpenFlow software in the operating system
environment of the CPU provides a connection with the controller and makes changes to the NPU
program. Program update requires a special system to translate OpenFlow abstractions into the
assembly language of the NPU. This research is devoted to the development of such a system,
specifically, its part responsible for packet classification according to the flow table.

The paper has the following structure. Section 2 describes the main architectural features of the NPU
and its assembly language. Section 3 contains the problem statement of this research. In Section 4,
we perform an analysis of related work applied to flow table representation in considered NPU.
Section 5 presents developed data structure and algorithms for translating it into the assembly
language and also the data structure updating algorithms. Section 6 is devoted to the evaluation of
the developed flow table translation approach.

80

Mapko6oposioB A.A., Ckobuosa 10.A., Bonkanos JI.1O. TTogxos k TpaHCISIMK Tab/IHMIIBI TIOTOKOB KOMMYTAaTOpa MPOrPaMMHO-
KOH(UIypHpPYEMOii CeTH B A3bIK accembepa ceTeBoro mpoueccopa. 7pyost UCIT PAH, Tom 32, Beim. 3, 2020 1., cp. 79-90

2. NPU architecture

Our research considers a switch with the NPU based on specialized computing cores. This NPU
contains a set of parallel packet processing pipelines consisting of the uniform stages that execute
binary code loaded into them.

The computing core of the NPU pipeline stage contains a single general-purpose register and a
memory area to store the currently processed packet header and associated metadata (such as ingress
port identifier). The register is used as an operand register and a result register. NPU does not contain
a separated memory area to store program data. Program data is recorded directly to the binary code
of the stage processor instructions. Thus, any change of the data, such as flow removal in OpenFlow,
requires a new program to be loaded.

The assembly language of the NPU contains conditional jump instructions that compare the value
in the register with the value from the instruction operand. Length of the value should be 64 bits or
less. Conditional jump can be made only to the label located in the program below. Therefore, for
example, it is impossible to implement loops or return to previously defined packet modifying
action.

The program in the assembly language of the NPU can be represented as a finite set of linear
instruction blocks connected by jump instructions. The program contains the following main types
of linear instruction blocks.

e Load value. The sequence of instructions of this block loads a value from the packet header
memory area or associated metadata memory into the register.

e Change register. The sequence of instructions of this block performs arithmetical or logical
operations to change the current value of the register.

e Search tree. In the simplest case (exact match search tree) this block contains a set of jump
instructions. The search key is an integer value, which length is 64 bits or less. It can also be the
longest-prefix match search tree, which additionally requires prefix length for the searchkey.

e Apply actions. The sequence of instructions of this block performs modifying actions on the
packet header memory or associated metadata memory, such as changing header field values,
pushing tags.

A directed graph of the program can be created from the instruction blocks of the program. In this

graph vertices are created for each instruction block. An arc leads from one vertex to another, if the

block corresponding to the first vertex has jump instruction to label located in instruction block
corresponding to the second vertex. The program graph has no cycles and contains only one vertex
without incoming arcs.

Load field value

Fig. 1. Example NPU program graph

81

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software-Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

Fig. 1 shows the graph for a simple NPU program which performs classification by the value of one
header field and applies one of the three packet modifying actions. The program has one instruction
block for loading the value of this field and one block containing the search tree. In the program
graph three arcs lead from the vertex of search tree block to three vertices of action blocks to apply.

3. Problem statement

Consider a switch that operates under the OpenFlow 1.3 protocol, based on the NPU described in
Section 2. Let R be flow table with flow entries containing only match fields with exact values. The
set of flow table match fields is denoted by /= {m; m»; ... ; m:}. Flow entry may specify exact value
only for a subset of / allowing any value in other match fields. Let the symbol «*» denote any value
of the match field. To avoid search ambiguity, each flow entry is marked with priority p.

Our goal is to create a program in the assembly language that is compliant with the graph described
in Section II and performs received packet classification by the given flow table R. The program
must perform the search for matching flow entry in the flow table that has the highest priority and
matches packet header fields.

Additionally, we have to load a new program into the NPU each time flow table contents are
changed. Considering the usual frequency of flow table updates, it is advisable to maintain an
incrementally updated intermediate representation of the flow table for quick translation after the
update.

Thus, the problem is to develop a data structure for translating given flow table R into the program
in the assembly language of the considered NPU, which implements a search on this set of flow
entries and supports the addition and removal of flow entries.

4. Related work

This section provides a brief review of other researches devoted to data structures developed for
classification by the flow table or similar multi-field tables.

The papers [6], [7] investigate an approach based on the decomposition of the classification by many
fields into several classifications by one field. This approach uses a separate data structure for each
match field, such as search trees or hash tables. The search result for one data structure is the Bloom
filter [8] or label identifier. To get the classification result for all fields, it is necessary to intersect
pairs of separate classification results. As a result, an identifier of the required flow entry is
calculated.

This approach has significant limitations in implementation for the considered NPU, including the
impossibility of hash function implementation required for Bloom filters and the necessity to store
intermediate labels when classification results are intersected.

The papers [9], [10], [11], [12] suggest an approach that uses decision trees. Each vertex of such a
tree is associated with a predicate. During the search, the predicate determines the next descendant
vertex to continue the search. During passing from vertex to its descendant, the initial set of flow
entries decreases and, as a result, turns into a smaller set of flow entries, among which the desired
flow entry is determined by simple enumeration.

This approach also has limitations for implementing in the considered NPU. In the search process,
it is required to load the header field values more than once, that can lead to unreasonable expenses
for the packet processing time and multiple duplication of instruction blocks for loading the field
value.

All considered approaches to the representation of flow tables have limitations and disadvantages
for their implementation in the assembly language of considered NPU. Data structures based on
decision trees are more suitable for our research problem. However, the disadvantages of such data
structures should be eliminated, or the program just will not fit into NPU memory. 3

82

Mapko6oposioB A.A., Ckobuosa 10.A., Bonkanos JI.1O. TTogxos k TpaHCISIMK Tab/IHMIIBI TIOTOKOB KOMMYTAaTOpa MPOrPaMMHO-
KOH(UIypHpPYEMOii CeTH B A3bIK accembepa ceTeBoro mpoueccopa. 7pyost UCIT PAH, Tom 32, Beim. 3, 2020 1., cp. 79-90

5. Proposed approach

In this section, we describe the developed data structure for representing the flow table and the
developed algorithms for flow addition and removal from the data structure and for translating the
data structure into a program in the assembly language of the NPU.

5.1 Data Structure

To represent a flow table with the set of flow entries R, we use a tree with marked vertices and arcs.

The following values are associated with each tree vertex, except for leaf vertices.

e Match field from the set of considered fields [= {m.; m.; ... ; m.}: the tree root corresponds
to the field m,, the descendants of the root correspond to the field m., etc.

e Subset of the flow set R. The tree root corresponds to the whole set R.

Table 1. Example flow table

Flow | Priority | Field1 | Field 2
F 2 0 0
F 2 0 1
s 2 1 0
Fy 1 1 *

Each tree leaf is associated with a flow entry subset of R sorted in descending priority order. The
tree has a depth of £, and all the tree leaves are vertices of the depth 4. Table 1 presents an example
flow table with two match fields, consisting of four flow entries Fi, F», F3, Fa. In Fig. 2, the data
structure constructed for example flow table that is shown in Table 1.

Field 1
{F1. F2, F3, F4}

)0 4

Field 2 Field 2
{F1, F2} {F3, F4}

| {FI}L” {F2} | |[{FsFa)]|A{F4} |

Fig. 2. Data structure constructed from flow entries given in Table 1

Consider the tree vertex v, which corresponds to the field m and a flow subset S c R. Then:

e if M is a set of all possible values of the field m in the flow entries from the set S, including the
special value *, for each value f'e€ M the vertex v has a descendant which arc is marked f;

e If'the vertex u is a descendant of the vertex v with arc marked f, the flow subset of the vertex u
contains only those flow entries from S, which value for the field m is for *.

The developed data structure differs from approaches shown in related work by a fixed order of

viewing fields. Vertices having the same depth refer to the same match field. This allows us to load

the value of each match field only once in the search process. This order also allowed us to develop

an algorithm for translating the data structure into the assembly language of the NPU, which receives

the program without duplicating the instruction blocks for loading field value.

5.2 Flow Addition

Flow addition to the data structure is performed by traversing the tree vertices, starting from the
root. When traversing a vertex, a new flow entry is added to its flow subset. Then, traversing

83

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software-Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

continues in vertex along the arc, which is marked with the value of the field specified in the added

flow entry. If such an arc is in absent, a new vertex descendant is added.

When traversing a vertex, two special cases require additional actions.

1) The value of the field corresponding to the vertex specified in the added flow entry is *. In this
case, in addition to the descendant along the arc marked *, it is necessary to traverse all other
descendants of this vertex.

2) The value of the field corresponding to the vertex in the added flow entry is f# * and this vertex
has a descendant along the arc marked *. Then, in case of adding a new descendant, it is
necessary firstly to copy the subtree corresponding to the arc marked * to the subtree along the
arc marked £, and then continue the traversal.

5.3 Flow Removal

Flow removal from the data structure is also performed by traversing the tree vertices, starting from

the root. When traversing a vertex, the removed flow entry is deleted from the vertex flow subset,

and traversing continues in vertex along the arc, which is marked with the value of the field specified
in the removed flow entry.

When traversing a vertex, two special cases require additional actions.

1) The value of the field corresponding to the vertex specified in the removed flow entry is *. In
this case, in addition to the descendant along the arc marked *, it is necessary to traverse all the
other descendants of this vertex.

2) The value of the field corresponding to the vertex in the removed flow entry is f# *, and this
vertex has a descendant along the arc marked *. For this case, after traversing the subtree along
the arc marked f; it is necessary to compare the subtree along the arc marked f and the subtree
along the arc marked *. In case of equality, the subtree along the arc f'is removed, because it is
redundant.

5.4 Translation into NPU Assembly Language

Proposed data structure can be directly translated into a program in the assembly language of the
NPU. The program graph will have a structure similar to a tree, but for each vertex of the tree, except
for the leaves, the program graph will contain sequentially connected vertices corresponding to the
instruction block of loading the field value, which corresponds to the vertex, and the instruction
block of a search tree, for the values that mark the outgoing arcs from the vertex. The tree leaf will
correspond to the instruction blocks of actions of the flow entry that has the highest priority in leaf
flow set.

<...> // Load Field 1

tree in "tree_ 1"

j End
Ll: // Load Field 2

tree in "tree 2"

j End
L2: <...> // Load Field 2

tree in "tree 3"

j F4

Fl: <...> // Actions F1
j End

F2: <...> // Actions F2
j End

F3: <...> // Actions F3
j End

F4: <...> // Actions F4
j End

84

Mapko6oposioB A.A., Ckobuosa 10.A., Bonkanos JI.1O. TTogxos k TpaHCISIMK Tab/IHMIIBI TIOTOKOB KOMMYTAaTOpa MPOrPaMMHO-
KOH(UIypHpPYEMOii CeTH B A3bIK accembepa ceTeBoro mpoueccopa. 7pyost UCIT PAH, Tom 32, Beim. 3, 2020 1., cp. 79-90

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software-Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

End:

Listing 1. Program obtained by direct translation method

Listing 1 and Fig. 3 show the program and the program graph translated by the direct method from
flow table representation presented in Fig. 2.

Load Field 1

Search tree 1

Load Field 2

[Search tree 2| Search tree 3}

:Actions:: E’Actionsi E’Actionsi gActionsi
: Fp (i Pp I F3 1! Fg |

Load Field 2

Fig. 3. Program graph obtained by direct translation method

However, with the direct method of translation, the resulting program contains a lot of search trees
for similar key sets and duplicating instruction blocks for loading the field value (see duplicating
field loading block in Fig. 3). To eliminate this drawback, a method for translating the data structure
with encoding arcs was developed (method with encoding).

When translating by the method with encoding, tree levels are introduced. Tree level corresponds to
the table match field and includes vertices of the same depth. The arcs outgoing from the tree levels
vertices are numbered, that is, the code is assigned to each arc. Numbering for each level is
independent. Then, for each tree level, a level list, consisting of all pairs (code of the incoming arc,
marker of the outgoing arc) is formed. For the root vertex, zero is used instead of the incoming arc
code. Fig. 4 shows arc encodings, tree levels, and level lists for our example data structure.

{ Field 1

¢ | List
{F1, F2, F3, F4}]

Level 1 (0‘ 0)
110.1)

value: 0, code: 1| value: 1, code: 2

1| List
Level 2 ' (.[‘ 0)
e [(1)
(2,0
(2,%)

| || 2 | [FsrFa|| Fab |

Fig. 4. Flow table representation marked up with tree levels encoded arcs and level lists

Instruction blocks of the search tree and loading field corresponding to the level are created for each
list of pairs. Jumps in the block of the search tree are performed in a special block for loading the
code of the outgoing arc, to which the pair corresponds. Then jump is performed to loading the value
of the next field. In Fig. 5, the resulting program graph, obtained by the method with encoding from
marked flow table representation in Fig. 4, is shown. In Listing 2, the corresponding program in the
assembly language is presented.

85

Thus, the resulting program contains one loading instruction block for each match field and a fixed
number of search trees, one search tree per match field.

Load Field 1

| Search tree 1

Load code 1 iLoadcode 2

Load Field 2
next to code

|. Search tree 2 |
i Actions ! | Actions ! | Actions : | Actions !
PR iR it R fi R

Fig. 5. Program graph obtained by translation method with encoding

Listing 2. Program obtained by translation method with encoding
<...> // Load Field 1
tree lpm "tree 1"

j End
Ll: loadi 1
j L3
L2: 1loadi 2
j L3

L3: rol FIELD 2 WIDTH
<...> // Load Field 2
tree lpm "tree 2"

j End

Fl: <...> // Actions F1
j End

F2: <...> // Actions F2
j End

F3: <...> // Actions F3
j End

F4: <...> // Actions F4
j End

End:

6. Evaluation

For the developed data structure, we evaluated translation method with encoding in comparison to
the direct translation method inspired by approaches from related work.

For the evaluation, we used a simulation model of the NPU pipeline. The simulation model receives
a program in the assembly language, translated by one of the methods in our case, and a set of input
packets to be processed. As an output the model produces a set of outgoing packets along with
statistics, including the amount of memory occupied by the program binary code and the average
number of ticks spent on processing the input packets. Before processing the packets, the simulation
model translates the program in assembly language into binary code, where each instruction has 16
bytes length.

86

Mapko6oposioB A.A., Ckobuosa 10.A., Bonkanos JI.1O. TTogxos k TpaHCISIMK Tab/IHMIIBI TIOTOKOB KOMMYTAaTOpa MPOrPaMMHO-
KOH(UIypHpPYEMOii CeTH B A3bIK accembepa ceTeBoro mpoueccopa. 7pyost UCIT PAH, Tom 32, Beim. 3, 2020 1., cp. 79-90

We generated a set of OpenFlow tables with match fields of the data link (L2) and network layer
(L3) header fields with different numbers of flow entries. For each table, the evaluated data structure
was built and translated into NPU assembly language. For each flow table, one input packet per flow
entry was generated.

80000 4

—— Direct method
70000 Method with encoding

60000 4
50000
40000 -

30000 4

Number of instructions

20000

10000 A

600 800 1000 1200 1400
Number of flows

Fig. 6. Average number of instructions for different flow table sizes
The dependency between the number of table flow entries and the average number of instructions is
presented in Fig. 6. The measurements show that the program translated by the direct method takes
from 1.2 to 1.5 times more memory than the program translated by the method with encoding.

s, %
&

a5

80 —ii

i1

,—""'—ﬂd—_h

70

65

—— Direct method
Methad with encoding

60

Propartion of search trees among all instruction:

600 800 1000 1200 1400
Number of flows

Fig. 7. Proportion of the search trees instructions for different flow table sizes
Fig. 7 shows the proportion of the search trees instructions in the program depending on the number
of table flow entries. The proposed method with encoding uses memory much more effectively than
the direct method, removing from 15 to 30% duplicating code from the program.

47.5 4 S
45.0 4
42.5 4
40.0

—— Direct method
3751 - Method with encoding

35.0 7

3254

30.0 4 /

600 800 1000 1200 1400
Number of flows

Fig. 8. Average number of ticks per packet for different flow table sizes

Average number of ticks per packet

87

Markoborodov A.A., Skobtsova Yu.A., Volkanov D.Yu. An Approach to the Translation of Software-Defined Network Switch Flow Table
into Network Processing Unit Assembly Language. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 3, 2020, pp. 79-90

However, the fee for reducing the size of the program is an increase in the number of ticks per
packet, which is about 10%. In Fig. 8, the dependency between the number of flow entries in the
table, and the average number of ticks per packet is rendered. The increase in packet processing
time, though, is still within acceptable limits for our NPU and does not lead to unexpected delays or
packet drops.

In future research, we are going to determine the dependencies of the evaluated characteristics by
the number of match fields in the flow entries. All of the proposed algorithms, including flow
addition and removal, will be evaluated in terms of data structure update time.

7. Conclusion

In our research, we considered the switch based on programmable NPU, which has architectural
limitations in memory organization. To use this NPU in the SDN switch operating under the
OpenFlow 1.3 protocol, the system for translating flow table into NPU program was developed. The
system allows us to get a program for the NPU with acceptable packet processing time, which takes
up to 30% less memory comparing to the programs based on data structures in the considered related
work. These results are achieved by reducing the duplication of instruction blocks that load the value
of the same fields, reducing the program size (in some cases by 1.5 times). In the future, we will
consider maskable match fields of the flow entries and examine the effect of the fields parsing order
on the resulting program characteristics.

References / Cnucok nutepartypsbl

[1]. Open Networking Foundation. Software-defined networking: the new norm for networks. ONF white
paper, 2012. Available at: https:/www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf.

[2]. Open Networking Foundation. OpenFlow switch specification version 1.3.0. 2012. Available at:
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

[3]. Giladi R. Network processors: architecture, programming, and implementation. Morgan Kaufmann, 2008,
736 p.

[4]. Orphanoudakis T., Perissakis S. Embedded multi-core processing for networking. In Embedded Multi-
Core Systems, CRC Press, 2010, pp. 399-463.

[5]. Bifulco R., Rtvri G. A survey on the programmable data plane: abstractions, architectures, and open
problems. In Proc. of the IEEE 19th International Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1-7.

[6]. Taylor D., Turner J. Scalable packet classification using distributed crossproducting of field labels. In
Proc. of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies,
2005, pp. 269-280.

[7]. Kekely M., Korenek J. Packet classification with limited memory resources. In Proc. of the Euromicro
Conference on Digital System Design (DSD), 2017, pp. 179-183.

[8]. Bloom B. H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
vol. 13, no. 7, 1970, pp. 422-426.

[9]. Gupta P., McKeown N. Classifying packets with hierarchical intelligent cuttings. IEEE Micro, 2000, vol.
20, no. 1, pp. 34-41.

[10]. Singh S., Baboescu F., Varghese G., Wang J. Packet classification using multidimensional cutting. In Proc.
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2003, pp. 213-224.

[11]. Qi X., Xu L., Yang B. Packet classification algorithms: from theory to practice. In Proc. of the IEEE
International Conference on Computer Communications (IEEE INFOCOM), 2009, pp. 648—656.

[12]. Li W., Li X,, Li H., Xie G. CutSplit: a decision-tree combining cutting and splitting for scalable packet
classification. In Proc. of the IEEE International Conference on Computer Communications (IEEE
INFOCOM), 2018, pp. 2645-2653.

88

Mapko6oposioB A.A., Ckobuosa 10.A., Bonkanos JI.1O. TTogxos k TpaHCISIMK Tab/ MBI TIOTOKOB KOMMYTAaTOpa MPOrpPaMMHO-
KOH(UIypHpPYEMOii CeTH B A3bIK accembnepa ceTeBoro mpoueccopa. 7pyost UCIT PAH, Tom 32, Beim. 3, 2020 1., cp. 79-90

Information about authors / UHcpopmauumsa 06 aBTopax

Andrei Aleksandrovich MARKOBORODOV - student of the faculty of the CMC. Research
interests: software-configured networks, network processor units.

Amnnpeit Anexcanaposud MAPKOBOPO/JIOB — cryznent ¢axynstera BMK. Hayunble nHTEpecChL:
HPOrpaMMHO-KOH(GHIypPUPYEMBIE CETH, CETEBbIE IPOLIECCOPHBIE YCTPOICTBA.

Julia Alexandrovna SKOBTSOVA — specialist, faculty of the CMS, department of automation of
computer systems, laboratory of computer systems. Research interests: software-configurable
networks, network processor units, hardware description languages.

IOnus AnexcangpoBaa CKOBLIOBA — cnenmanuct, gakynster BMK, kadenpa aBromaruzanuu
CHCTEM BBIUHCIHMTENBHBIX KOMIUIEKCOB, JTaOOPATOPHs BBIYMCIUTENBHBIX KOMIUIEKCOB. HaydmHble
MHTEPECH: MPOTrPaMMHO-KOH(QUTYPHpYEMbIe CETH, CETeBBIE IPOLECCOPHBIE YCTPOWCTBA, S3BIKH
OITHCAHMS aMMapaTyphl.

Dmitry Yuryevitch VOLKANOV - candidate of physical and mathematical sciences, associate
professor. Areas of research: analysis and design of network processing unit architecture.
Jmutpuit FOpseBuu BOJIKAHOB — xanauzar (Qu3HKO-MaTeMaTHUeCKUX HAyK, [JOIEHT.
HanpaBneHus ucciie0BaHHi: aHaIM3 U pa3pabOTKa apXUTEKTYpPhl CETEBOr0 MPOLeccopa.

89

