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Abstract. One of the main tasks in the analysis of single cell RNA sequencing (scRNA-seq) data is the
identification of cell types and subtypes, which is usually based on some method of clustering. There is a
number of generally accepted approaches to solving the clustering problem, one of which is implemented in
the Seurat package. In addition, the quality of clustering is influenced by the use of preprocessing algorithms,
such as imputation, dimensionality reduction, feature selection, etc. In the article, the HDBSCAN hierarchical
clustering method is used to cluster scRNA-seq data. For a more complete comparison Experiments and
comparisons were made on two labeled datasets: Zeisel (3005 cells) and Romanov (2881 cells). To compare
the quality of clustering, two external metrics were used: Adjusted Rand index and V-measure. The experiments
demonstrated a higher quality of clustering by the HDBSCAN method on the Zeisel dataset and a poorer quality
on the Romanov dataset.
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Annotanusi. OHOI U3 OCHOBHBIX 3aJiau npu aHanu3e AaHHbIX PHK-cexkBeHMpOBaHUS €JUHUYHBIX KJIETOK
SIBJISICTCS] MICHTU(UKAIUS THUIIOB U HOJATHUIIOB KJIETOK, KOTOpas OOBIYHO OCHOBaHa Ha KaKOM-THOO MeToje
kiacrepuzaiuu. CymecTByeT psifi OOLICHPUHATHIX TOIXO0A0B K PELICHUIO NPOOIEMbI KIACTEPU3ALMH, OUH U3
KOTOPBIX pean30BaH B nmakere Seurat. Ha kauecTBo ki1actepusaliny, HOMUMO IIPOYET0, BIUSAET UCIOJIB30BaHUE
ITOPUTMOB TIPEJBAPUTENLHON 00pabOTKH, TaKMX KaK MMIIyTallUs, YMEHbBIICHHE pPa3MEpPHOCTH, OTOOp
MPU3HAKOB U T. A. B crathe Ui Kilactepusaunu JaHHbIX SCRNA-seq HUCIONb3yeTcs: METo/| HepapXHuuecKoit
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kiactepusanun HDBSCAN. [lns Gosee MONHOrO CpaBHEHHs SKCIEPUMEHTHI M CPABHEHHS TIPOBOJIMIINCH HA
JIByX pa3MedeHHbIX HaOopax nauHbix: Zeisel (3005 xknerok) u Romanov (2881 knerka). Jns cpaBHEHHS
KauecTBa KJIAaCTEPU3AIMH HCIOIb30BATHCE JIBE BHEIIHHE METPUKH: CKOPPEKTUPOBAHHBIN MHACKC Panma n V-
Mepa. DKCIEePUMEHTSHI IIPOAEMOHCTPUPOBAIN Oolee BRICOKOE KauecTBO KiacTepusanuu Merogom HDBSCAN
Ha Habope naHHbIX Zeisel u Goee HU3Koe KauecTBO Ha Habope 1aHHBIX Romanov.

KiaroueBbie ciioBa: hdbscan; Kiracrtepusanus JaHHBIX PHK-CCKBCHHPOB&HI/IH COWMHUYHBIX KIICTOK;
HIyMOHOI[aBJ'ISHOIJ_[I/Iﬁ ABTOKOAUPOBIIUK

Jist uuTupoBanusi: AkumenkoBa M.A., Masuuna A.A., Haymos A.1O., Kapnynesuu E.A. IIpumenenue
merona HDBSCAN s knacrepusanun nanasix PHK-cexkBenupoBanust eamunuHbix kinetok. Tpyast MCIT
PAH, tom 32, BbIL 5, 2020 1., ctp. 111-120 (na anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2020-32(5)-8

1. Introduction

The cell can be considered the fundamental unit in biology. For centuries, biologists have known
that multicellular organisms are characterized by many different types of cells. Cells can be
distinguished by their size and shape with a microscope, and attributes based on their appearance
have traditionally been the main factor in determining cell type. Advances in microfluidics have
made it possible to isolate large numbers of cells, and, along with improvements in methods for
isolating and amplifying RNA, it is now possible to profile the transcript of single cells using next
generation sequencing technologies.

For researchers to make full use of these rich datasets, efficient computational techniques are needed.
Numerous steps are neaded before clustering, such as imputation, feature selection, dimensionality
reduction. Moreover, there are also software packages that implement the entire clustering
workflow, such as Seurat [1]. In this article, we want to compare the use of the popular HDBSCAN
[2] algorithm with the steps leading up to clustering, with a Seurat tool.

2. Methods

Many clustering algorithms can be applied to any type of data that is supplied with a measure of the
distance between data points. Due to a large number of genes analysed in scRNA-seq, namely the
high dimensionality, the distances between data points (i.e., cells) become similar, which is known
as the «curse of dimensionality». Hence, distance differences tend to be small and therefore
unreliable for identifying clustering. Applying feature selection and / or dimensionality reduction
can reduce noise and speed up computations. Feature selection involves identifying the most
informative genes, such as genes with the greatest variance, while decreasing dimensionality
projects data into a lower-dimensional space. Many tools use variations of standard methods such
as PCA [3], uMap [4], DCA [5].

Usually pipelines for scRNA-seq analysis contain tools for imputation, feature selection,
dimensionality reduction, etc. This article compares the 14 pipelines shown in the Table. 1.

Table 1. Pipelines

pipeline imputation | feature dimensionality clustering
selection reduction method

Seurat no yes PCA Louvain

Seurat* ves yes PCA Louvain

3 yes no DCA HDBSCAN

4 yes yes DCA HDBSCAN

5 ves no uMAP HDBSCAN
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6 yes yes uMAP HDBSCAN
7 yes no PCA HDBSCAN
8 yes yes PCA HDBSCAN
9 no no DCA HDBSCAN
10 no yes DCA HDBSCAN
11 no no uMAP HDBSCAN
12 no yes uMAP HDBSCAN
13 no no PCA HDBSCAN
14 no yes PCA HDBSCAN

2.1 Dimensionality reduction methods

ScRNA-seq data are always large, which increases the complexity of the analysis to some extent.

Therefore, to process the initial data we used dimensionality reduction methods.

1) Principal Component Analysis
The most common dimensionality reduction technique is principal component analysis (PCA)
[3], which requires no control and aims to find a lower-dimensional representation of the data.
PCA is a widely used method of uncontrolled dimensionality reduction. PCA assumes the data
is normally distributed, diagonalizes the covariance matrix of the original matrix, and the
resulting covariance matrix is a set of new variables for the diagonal matrix. Orthogonal
transformation is used to transform a set of potential linear correlation variables into linear
explanatory variables, which means that linear dimensionality reduction is realized. One of the
main problems with linear dimensionality reduction algorithms is that, when they concentrate
disparate data points in a lower-dimensional area, the data points are far apart.

2) Deep Count Autoencoder
The deep counting autoencoder network (DCA) [5] denoises scRNA-seq datasets. DCA
accounts for the computed distribution, excess variance, and data sparsity using a negative
binomial noise model with or without zero inflation, while capturing nonlinear gene-gene
relationships.
One of the main advantages of DCA is that the user only needs to specify the noise model. To
provide maximum flexibility, DCA implements a set of scRNA-seq-specific noise models,
including negative binomial distribution with (ZINB) and no zero inflation (NB).
For example, using the ZINB noise model, DCA examines the meaning of gene-specific
parameters, variance, and dropout probability based on gene expression inputs. The derived
average distribution parameter is the denoised reconstruction and DCA output.
In our work, we used a 32-dimensional inner layer.

3) uMAP
Uniform Manifold Approximation and Projection (uMAP) [4] is a graph-based dimension
reduction method similar to t-SNE, introduced by McInnes et al. in 2018. The algorithm builds
a high-dimensional graph representation and then optimizes the low-dimensional graph so that
it looks structurally as similar as possible to the original.
The advantages of the algorithm include computational efficiency (compared to t-SNE),
preservation of the global structure (also compared to t-SNE). In addition, uMAP has no
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restrictions on the size of the embedded layer, which allows the use of the algorithm for
preprocessing to improve the performance of clustering algorithms.

The disadvantages of the uMAP algorithm are lack of interpretability and false detection of
noise, uMAP tends to find a diverse structure in the noise of a dataset. uMAP is more reliable
with larger datasets as the amount of structure evident to noise tends to decrease in larger
datasets.

2.2 Clustering methods

Density-based methods work well even when the data is noisy and the clusters are oddly shaped.
These methods are not generally used for single cell clustering, but they have their advantages.
Both algorithms have the minimum number of samples parameter, which is the neighbor threshold
for a record to become a core point. Both algorithms start by finding the core distance of each point,
which is the distance between that point and its farthest neighbor, defined by the minimum samples
parameter.

DBSCAN [6] is a density-based clustering algorithm — given a set of points in space, the algorithm
groups together points that are closely spaced (points with many close neighbors), with lone points
in low-density areas marked as outliers (farthest neighbour).

DBSCAN has the epsilon parameter, which is the radius that those neighbors have to be in for the
core to form. This algorithm is well suited for clustering single cell data as it copes well with noisy
data.

It also finds clusters of exotic shapes: nested and anomalous clusters, as well as low dimension folds.
Additionally, there is no need to specify the number of clusters.

HDBSCAN [2] uses a density-based approach, which makes few implicit assumptions about the
clusters. It is a non-parametric method that looks for a cluster hierarchy shaped by the multivariate
modes of the underlying distribution. Rather than looking for clusters with a particular shape, it
looks for regions of the data that are denser than the surrounding space. In addition to being better
for data with varying density, it is also faster than regular DBSCAN. HDBSCAN has a minimum
cluster size parameter, which defines how big a cluster needs to be in order to form.

2.3 Available workflows

The steps leading up to clustering can have a significant impact on the outcome, and numerous tools
are available for each step. There are software packages that implement the entire clustering
workflow, such as Seurat [1].

Satija et al. created Seurat, a single cell data analysis toolkit. The expression matrix includes the
number of genes, the number of cells and the number of genes in each cell, as well as the number of
cells in which each gene is expressed.

Seurat uses Louvain's graph-based algorithm [7]. The advantage is that most graph-based methods
do not require the user to specify the number of clusters for identification, instead, indirect resolution
parameters are used. The combination of common nearest neighbor graphs and Louvain community
detection was first applied to scRNA-seq data in the PhenoGraph method, and this approach has
since been incorporated into Seurat. For dimensionality reduction, PCA is used.

Because of their speed and scalability, the clustering techniques included in Seurat packages are a
popular choice for large datasets. However, Louvain clustering has proved to be ineffective for small
datasets.

3. Feature selection

Feature selection a collection of statistical approaches that identify and retain only variables that are
most relevant to the underlying structure of the data set.

114



AxumenkoBa M.A., Masuuna A.A., Haymos A.1O., Kapnynesuu E.A. IIpumenenne merona HDBSCAN s knmactepusanuu nannbix PHK-
CCKBEHMPOBAHHSA CIMHUYHBIX KIeToK. Tpyodet UCII PAH, Tom 32, BBIN. 5, 2020 1., ctp. 111-120

Due to the large number of genes analysed in scRNA-seq, that is, the high dimensionality, the
distances between data points (i.e., cells) become similar, which is known as the «curse of
dimensionality». Hence, distance differences tend to be small and therefore unreliable for identifying
cell groups. Using feature selection can reduce noise and speed up calculations. Feature selection
includes identifying the most informative genes, for example, with the highest variance [8].

The expression data of one cell contains a set of missing values and noise data that affects the next
step in the analysis. Feature selection with variance has been used to alleviate these issues. Inspired
by Prabhakaran et al. [9], we selected groups of genes with the greatest variance in expression. For
the Zeisel [10] and Romanov [11], the initial sizes were 19,972 and 24,341 respectively. We took
the feature selection data to select genes with high variance. Variance represents the degree of
differentiation of gene expression across all cells, and high variance indicates that the gene was
important for distinguishing cells. Therefore, we could easily get more biologically significant
clusters. Using feature selection, a subset with top 200 genes was generated for Zeisel [9] and
Romanov [11] data. We performed the following experiments with three clustering models. We
compared all three clustering algorithms (ie HDBSCAN+PCA, HDBSCAN+uMAP) on the subset
with the original data (19,972 and 24,341 genes without traits). Selection of the top 200 genes for
each of the three algorithms enhanced clustering quality as opposed to the use of the full set of genes
(19,972 and 24,341 genes).

In addition, HDBSCAN+DCA algorithm performed best among these clustering algorithms,
reaching an accuracy of 0.95 on 200 gene sets. The accuracy was 9.3% higher than the result without
gene selection. Meanwhile, using the gene selection method, HDBSCAN+uMAP,
HDBSCAN+PCA, it was possible to increase the accuracy by 11.8% and 21.9%, respectively. These
results showed that clustering with gene selection gives better performance than methods without it.

4. Imputation

The scRNA-seq data is characterized by excess zero counts, the so-called dropouts due to the low
number of mRNAs sequenced within individual cells. In order to reduce the number of dropouts in
some experiments, the scRNA-seq scImpute [12] method is used. ScImpute is a statistical method
for imputing dropouts. ScImpute automatically detects likely dropouts and imputes only those values
without changing the rest of the data. The scImpute algorithm also detects outliers in scRNA-seq
data and excludes them from imputation. The effectiveness of scImpute has been demonstrated on
both simulated and real human and mouse scRNA-seq data. ScImpute detects and imputes dropouts,
thereby enhancing the analysis of differential expression and clustering of cell subpopulations.

In the article scImpute is used to improve the quality of clustering in combination with feature
selection and dimensionality reduction methods (PCA [3], DCA [5], uMAP [4]).

5. Evaluation

To evaluate the performance of an array of popular clustering methods, we tested Seurat [1] and
HDBSCAN [2] with different methods of dimensionality reduction such as DCA [5], PCA [3],
uMAP [4] on 2 published datasets.

Since we have published cell type labels, for the assessment of clustering quality, we used two
external quality metrics — Adjusted Rand Index [13] and V-measure [14].

The Adjusted Rand index was chosen as the first metric of clustering quality. This metric is external,
i.e. the measures are based on comparing the clustering result with the a priori known division into
classes. This metric is robust to the size and number of clusters.

V-measure was used as the second quality metric. The main advantage of this metric is that it is
independent of the number of class labels, the number of clusters, the size of the data, and the
clustering algorithm used, and is very reliable.
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6. Experiments

The operation of the selected algorithms is demonstrated on two scRNA-seq gene expression
datasets for house mouse cells. The Zeisel [ 10] contains sScRNA-seq-derived cortical cell expression
data from the house mouse and describes 3005 different cells of 9 different types. The data are also
presented as a 19,772 x 3005 gene expression matrix. The Romanov [11] contains expression data
of hypothalamic cells from the cortex of the house mouse, obtained by scRNA-seq, and describes
2881 different cells of 7 different types. The data are also presented as a 24,341 x 2881 gene
expression matrix.

For a sufficient set of statistics, the Zeisel set was divided into 8 non-overlapping sets with a
balanced number of cells in each cluster: 7 sets of 19,772 x 353 and one set of 19,772 x 358. The
Romanov set was also divided into 8 non-overlapping sets: 7 sets of 24,341 x 346 and one sets of
24,341 x 342.

To investigate the effectiveness of clustering models with and without feature selection, as well as
various dimensionality reduction techniques, we directly clustered the original data and feature
selection data for 200 genes.

The results are illustrated in the Table 4 for ARI [13] metric and in the Table 5 for V-measure [14]
metric.

To test the results for statistical significance, we first used the Friedman test, which the null
hypothesis that repeated measurements of the same individuals have the same distribution. If the
null hypothesis was rejected, we calculated pairwise comparisons using Conover post hoc test. This
test is usually conducted post hoc after significant results of the Friedman test.

We discovered that HDBSCAN-+DCA (algorithms 9 and 10) clustering achieved the best results on
the original and feature-selected data. On the original data, HDBSCAN-+DCA reached an accuracy
of 0.87, which was 163% and 21.3% higher than those of HDBSCAN-+uMAP and
HDBSCAN+PCA, respectively. For 200 genes, HDBSCAN+DCA+fs achieved an accuracy of 0.95,
which was 4.7%, 17.6% and 25.2% higher than Seurat, HDBSCAN+uMAP+fs and
HDBSCAN+PCA+fs, respectively. P-value on Friedman test for HDBSCAN-+DCA+fs,
HDBSCAN+uMAP+fs, HDBSCAN+PCA-+fs and Seurat pipelines is 9.8 X 10~° and we calculated
pairwise comparisons using Conover post hoc test. From the Table 2, HDBSCAN+DCA+fs
demonstrated statistically significant result for all three other pipelines.

Table 2. Non-imputed algorithms posthoc p-values

seurat fs+dca+hdbscan | fstumap-+hdbscan fs+pca+hdbscan
seurat 1 0.0417 0.0146 0.0198
fs+dca+hdbscan | 0.0417 1 0.038 0.0039
fstuman+hdbsca | 0.0146 0.038 1 0.5329
fstpca+thdbscan | 0.0198 0.0039 0.5329 1

For the imputed data, P-value on Friedman test is 0.0002 we calculated pairwise comparisons using
Conover post hoc test. From the Table 3, scImputetHDBSCAN-+DCA+fs demonstrated statistically

significant result for all three other pipelines.
Table. 3. Imputed algorithms posthoc p-values

seurat fstdcat+hdbscan | fstumap+hdbscan | fs+pca+hdbscan
seurat 1 0.0475 0.0024 0.0078
fs+dca+hdbscan 0.0475 1 0.038 0.0029
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fs+tumap-+hdbscan | 0.0024 0.038 1 0.2079
fs+pcathdbscan 0.0078 0.0029 0.2079 1
Table 4. Adjusted Rand Index for different experiments
Dataset Seurat Impute Impute Impute Impute Impute fs | Impute
Seurat DCA fs DCA uMAP uMAP PCA
hdbscan | hdbscan | hdbscan hdbscan hdbscan

zeisell 0.754 0.81 0.55 0.81 0.518 0.55 0.65

zeisel2 0.83 0.829 0.861 0.851 0.651 0.651 0.47

zeisel3 0.748 0.794 0.738 0.803 0.608 0.607 0.17

zeisel4 0.793 0.798 0.604 0.858 0.549 0.633 0.45

zeisel5 0.781 0.798 0.747 0.785 0.676 0.734 0.5

zeisel6 0.827 0.777 0.628 0.865 0.555 0.621 0.15

zeisel7 0.76 0.705 0.828 0.763 0.893 0.819 0.17

zeisel8 0.827 0.869 0.861 0.907 0.57 0.657 0.508

romanovl 0.809 0.68 0.605 0.604 0.644 0.626 0.364

romanov2 0.772 0.625 0.608 0.667 0.599 0.696 0.325

romanov3 0.65 0.643 0.546 0.587 0.476 0.643 0.327

romanov4 0.696 0.537 0.553 0.621 0.533 0.675 0.256

romanov5s 0.801 0.535 0.516 0.614 0.568 0.654 0.077

romanov6 0.565 0.472 0.518 0.55 0.541 0.482 0.071

romanov’7 0.561 0.672 0.647 0.66 0.642 0.645 0.671

romanov8 0.704 0.641 0.66 0.691 0.637 0.656 0.291

Table 4 (cont.)

Dataset Impute DCA fs DCA uMAP fs uMAP PCA fs PCA
fs PCA hdbscan | hdbscan | hdbscan | hdbscan hdbscan hdbscan
hdbscan

zeisell 0.253 0.819 0.827 0.476 0.644 0.23 0.278

zeisel2 0.387 0.607 0.838 0.572 0.671 0.55 0.565

zeisel3 0.214 0.727 0.731 0.563 0.644 0.17 0.123

zeisel4 0.306 0.815 0.844 0.548 0.634 0.55 0.281

zeisel5 0.453 0.772 0.907 0.52 0.630 0.41 0.436

zeisel6 0.146 0.698 0.802 0.739 0.626 0.19 0.32

zeisel7 0.197 0.795 0.824 0.545 0.619 0.34 0.332

zeisel8 0.549 0.869 0.95 0.57 0.609 0.579 0.61

romanovl 0.495 0.754 0.768 0.747 0.668 0.184 0.356

romanov2 0.048 0.791 0.756 0.722 0.731 0.117 0.041

romanov3 0.195 0.641 0.702 0.629 0.689 0.694 0.372

romanov4 0.288 0.675 0.69 0.694 0.459 0.152 0.078

romanov5s 0.064 0.795 0.797 0.771 0.671 0.152 0.218

romanov6 0.083 0.598 0.624 0.472 0.626 0.121 0.153

romanov7 0.447 0.704 0.704 0.64 0.613 0.799 0.655

romanov8 0.382 0.677 0.686 0.512 0.656 0.293 0.266
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Table 5. V-measure for different experiments

Dataset Seurat Impute Impute Impute fs Impute Impute fs Impute
Seurat DCA DCA uMAP uMAP PCA
hdbscan hdbscan hdbscan hdbscan hdbscan

zeisell 0.741 0.802 0.696 0.835 0.695 0.71 0.412

zeisel2 0.793 0.798 0.824 0.894 0.709 0.785 0.424

zeisel3 0.762 0.786 0.834 0.885 0.702 0.705 0.411

zeisel4 0.778 0.813 0.736 0.846 0.677 0.702 0.402

zeisel5 0.768 0.8 0.733 0.777 0.695 0.699 0.41

zeisel6 0.792 0.754 0.678 0.759 0.643 0.651 0.395

zeisel7 0.779 0.745 0.829 0.851 0.875 0.75 0.394

zeisel8 0.817 0.869 0.822 0.873 0.71 0.794 0.42

romanovl | 0.773 0.629 0.597 0.596 0.591 0.522 0.315

romanov2 | 0.773 0.58 0.597 0.665 0.512 0.584 0.325

romanov3 | 0.661 0.624 0.531 0.587 0.459 0.521 0.328

romanov4 | 0.712 0.591 0.631 0.684 0.587 0.606 0.348

romanov5 | 0.76 0.59 0.565 0.57 0.515 0.543 0.309

romanov6 | 0.587 0.533 0.527 0.522 0.547 0.489 0.318

romanov7 | 0.636 0.636 0.623 0.638 0.545 0.553 0.322

romanov8 | 0.702 0.611 0.638 0.649 0.575 0.558 0.331

Table 5 (cont.)

Dataset Impute | DCA fs DCA uMAP fs uMAP PCA fs PCA
fs PCA hdbscan | hdbscan hdbscan hdbscan hdbscan hdbscan
hdbscan

zeisell 0.413 0.774 0.826 0.664 0.69 0.415 0.4

zeisel2 0.418 0.638 0.79 0.672 0.685 0.428 0.422

zeisel3 0.407 0.765 0.775 0.718 0.709 0.409 0.402

zeisel4 0.401 0.789 0.809 0.682 0.698 0.414 0.404

zeisel5 0.394 0.765 0.863 0.696 0.676 0.405 0.399

zeisel6 0.396 0.713 0.778 0.744 0.635 0.402 0.405

zeisel7 0.386 0.778 0.812 0.709 0.65 0.413 0.404

zeisel8 0.406 0.819 0.929 0.715 0.703 0.416 0.401

romanovl 0.316 0.704 0.72 0.687 0.585 0.347 0.345

romanov2 0.317 0.733 0.791 0.669 0.651 0.34 0.333

romanov3 0.325 0.616 0.631 0.598 0.592 0.332 0.329

romanov4 | 0.339 0.669 0.677 0.669 0.513 0.347 0.327

romanov5 | 0.305 0.739 0.745 0.722 0.617 0.349 0.345

romanov6 | 0.308 0.611 0.685 0.48 0.569 0.343 0.332

romanov7 | 0.314 0.679 0.712 0.64 0.595 0.333 0.343

romanov8 | 0.321 0.648 0.65 0.54 0.588 0.345 0.329

7. Conclusion

Dimensional reduction and clustering are important when analysing scRNA-seq data. A comparative
framework is pro-posed that combines three dimensionality reduction methods and feature selection
with HDBSCAN [2] clustering with an en-tire Seurat [1] pipeline. Fourteen experiments were
performed on two large scRNA-seq datasets using these combinations.

Two conclusions can be drawn from the results. Thus, feature selection and dimensionality reduction
with DCA [5] are critical to achieving better clustering results. If the result is unsatisfactory,
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imputation methods maybe introduced. HDBSCAN clustering can give satisfactory results in most
cases.
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