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Abstract. One of the main tasks in the analysis of single cell RNA sequencing (scRNA-seq) data is the 
identification of cell types and subtypes, which is usually based on some method of clustering. There is a 
number of generally accepted approaches to solving the clustering problem, one of which is implemented in 
the Seurat package. In addition, the quality of clustering is influenced by the use of preprocessing algorithms, 
such as imputation, dimensionality reduction, feature selection, etc. In the article, the HDBSCAN hierarchical 
clustering method is used to cluster scRNA-seq data. For a more complete comparison Experiments and 
comparisons were made on two labeled datasets: Zeisel (3005 cells) and Romanov (2881 cells). To compare 
the quality of clustering, two external metrics were used: Adjusted Rand index and V-measure. The experiments 
demonstrated a higher quality of clustering by the HDBSCAN method on the Zeisel dataset and a poorer quality 
on the Romanov dataset. 
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Аннотация. Одной из основных задач при анализе данных РНК-секвенирования единичных клеток 
является идентификация типов и подтипов клеток, которая обычно основана на каком-либо методе 
кластеризации. Существует ряд общепринятых подходов к решению проблемы кластеризации, один из 
которых реализован в пакете Seurat. На качество кластеризации, помимо прочего, влияет использование 
алгоритмов предварительной обработки, таких как импутация, уменьшение размерности, отбор 
признаков и т. д. В статье для кластеризации данных scRNA-seq используется метод иерархической 
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кластеризации HDBSCAN. Для более полного сравнения эксперименты и сравнения проводились на 
двух размеченных наборах данных: Zeisel (3005 клеток) и Romanov (2881 клетка). Для сравнения 
качества кластеризации использовались две внешние метрики: скорректированный индекс Рэнда и V-
мера. Эксперименты продемонстрировали более высокое качество кластеризации методом HDBSCAN 
на наборе данных Zeisel и более низкое качество на наборе данных Romanov. 

Ключевые слова: hdbscan; кластеризация данных РНК-секвенирования единичных клеток; 
шумоподавляющий автокодировщик  
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1. Introduction 

The cell can be considered the fundamental unit in biology. For centuries, biologists have known 
that multicellular organisms are characterized by many different types of cells. Cells can be 
distinguished by their size and shape with a microscope, and attributes based on their appearance 
have traditionally been the main factor in determining cell type. Advances in microfluidics have 
made it possible to isolate large numbers of cells, and, along with improvements in methods for 
isolating and amplifying RNA, it is now possible to profile the transcript of single cells using next 
generation sequencing technologies.  
For researchers to make full use of these rich datasets, efficient computational techniques are needed. 
Numerous steps are neaded before clustering, such as imputation, feature selection, dimensionality 
reduction. Moreover, there are also software packages that implement the entire clustering 
workflow, such as Seurat [1]. In this article, we want to compare the use of the popular HDBSCAN 
[2] algorithm with the steps leading up to clustering, with a Seurat tool.  

2. Methods 

Many clustering algorithms can be applied to any type of data that is supplied with a measure of the 
distance between data points. Due to a large number of genes analysed in scRNA-seq, namely the 
high dimensionality, the distances between data points (i.e., cells) become similar, which is known 
as the «curse of dimensionality». Hence, distance differences tend to be small and therefore 
unreliable for identifying clustering. Applying feature selection and / or dimensionality reduction 
can reduce noise and speed up computations. Feature selection involves identifying the most 
informative genes, such as genes with the greatest variance, while decreasing dimensionality 
projects data into a lower-dimensional space. Many tools use variations of standard methods such 
as PCA [3], uMap [4], DCA [5]. 
Usually pipelines for scRNA-seq analysis contain tools for imputation, feature selection, 
dimensionality reduction, etc. This article compares the 14 pipelines shown in the Table. 1. 
Table 1. Pipelines 

pipeline imputation feature 
selection 

dimensionality 
reduction 

clustering 
method 

Seurat no yes PCA Louvain 

Seurat* yes yes PCA Louvain 

3 yes no DCA HDBSCAN 

4 yes yes DCA HDBSCAN 

5 yes no uMAP HDBSCAN 
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6 yes yes uMAP HDBSCAN 

7 yes no PCA HDBSCAN 

8 yes yes PCA HDBSCAN 

9 no no DCA HDBSCAN 

10 no yes DCA HDBSCAN 

11 no no uMAP HDBSCAN 

12 no yes uMAP HDBSCAN 

13 no no PCA HDBSCAN 

14 no yes PCA HDBSCAN 

2.1 Dimensionality reduction methods 
ScRNA-seq data are always large, which increases the complexity of the analysis to some extent. 
Therefore, to process the initial data we used dimensionality reduction methods. 
1) Principal Component Analysis 

The most common dimensionality reduction technique is principal component analysis (PCA) 
[3], which requires no control and aims to find a lower-dimensional representation of the data.  
PCA is a widely used method of uncontrolled dimensionality reduction. PCA assumes the data 
is normally distributed, diagonalizes the covariance matrix of the original matrix, and the 
resulting covariance matrix is a set of new variables for the diagonal matrix. Orthogonal 
transformation is used to transform a set of potential linear correlation variables into linear 
explanatory variables, which means that linear dimensionality reduction is realized. One of the 
main problems with linear dimensionality reduction algorithms is that, when they concentrate 
disparate data points in a lower-dimensional area, the data points are far apart. 

2) Deep Count Autoencoder 
The deep counting autoencoder network (DCA) [5] denoises scRNA-seq datasets. DCA 
accounts for the computed distribution, excess variance, and data sparsity using a negative 
binomial noise model with or without zero inflation, while capturing nonlinear gene-gene 
relationships.  
One of the main advantages of DCA is that the user only needs to specify the noise model. To 
provide maximum flexibility, DCA implements a set of scRNA-seq-specific noise models, 
including negative binomial distribution with (ZINB) and no zero inflation (NB). 
For example, using the ZINB noise model, DCA examines the meaning of gene-specific 
parameters, variance, and dropout probability based on gene expression inputs. The derived 
average distribution parameter is the denoised reconstruction and DCA output. 
In our work, we used a 32-dimensional inner layer. 

3) uMAP 
Uniform Manifold Approximation and Projection (uMAP) [4] is a graph-based dimension 
reduction method similar to t-SNE, introduced by McInnes et al. in 2018. The algorithm builds 
a high-dimensional graph representation and then optimizes the low-dimensional graph so that 
it looks structurally as similar as possible to the original. 
The advantages of the algorithm include computational efficiency (compared to t-SNE), 
preservation of the global structure (also compared to t-SNE). In addition, uMAP has no 
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restrictions on the size of the embedded layer, which allows the use of the algorithm for 
preprocessing to improve the performance of clustering algorithms.  
The disadvantages of the uMAP algorithm are lack of interpretability and false detection of 
noise, uMAP tends to find a diverse structure in the noise of a dataset. uMAP is more reliable 
with larger datasets as the amount of structure evident to noise tends to decrease in larger 
datasets. 

2.2 Clustering methods 
Density-based methods work well even when the data is noisy and the clusters are oddly shaped. 
These methods are not generally used for single cell clustering, but they have their advantages. 
Both algorithms have the minimum number of samples parameter, which is the neighbor threshold 
for a record to become a core point. Both algorithms start by finding the core distance of each point, 
which is the distance between that point and its farthest neighbor, defined by the minimum samples 
parameter. 
DBSCAN [6] is a density-based clustering algorithm – given a set of points in space, the algorithm 
groups together points that are closely spaced (points with many close neighbors), with lone points 
in low-density areas marked as outliers (farthest neighbour). 
DBSCAN has the epsilon parameter, which is the radius that those neighbors have to be in for the 
core to form. This algorithm is well suited for clustering single cell data as it copes well with noisy 
data. 
It also finds clusters of exotic shapes: nested and anomalous clusters, as well as low dimension folds. 
Additionally, there is no need to specify the number of clusters. 
HDBSCAN [2] uses a density-based approach, which makes few implicit assumptions about the 
clusters. It is a non-parametric method that looks for a cluster hierarchy shaped by the multivariate 
modes of the underlying distribution. Rather than looking for clusters with a particular shape, it 
looks for regions of the data that are denser than the surrounding space. In addition to being better 
for data with varying density, it is also faster than regular DBSCAN. HDBSCAN has a minimum 
cluster size parameter, which defines how big a cluster needs to be in order to form. 

2.3 Available workflows 
The steps leading up to clustering can have a significant impact on the outcome, and numerous tools 
are available for each step. There are software packages that implement the entire clustering 
workflow, such as Seurat [1]. 
Satija et al. created Seurat, a single cell data analysis toolkit. The expression matrix includes the 
number of genes, the number of cells and the number of genes in each cell, as well as the number of 
cells in which each gene is expressed. 
Seurat uses Louvain's graph-based algorithm [7]. The advantage is that most graph-based methods 
do not require the user to specify the number of clusters for identification, instead, indirect resolution 
parameters are used. The combination of common nearest neighbor graphs and Louvain community 
detection was first applied to scRNA-seq data in the PhenoGraph method, and this approach has 
since been incorporated into Seurat. For dimensionality reduction, PCA is used. 
Because of their speed and scalability, the clustering techniques included in Seurat packages are a 
popular choice for large datasets. However, Louvain clustering has proved to be ineffective for small 
datasets. 

3. Feature selection 

Feature selection a collection of statistical approaches that identify and retain only variables that are 
most relevant to the underlying structure of the data set. 
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Due to the large number of genes analysed in scRNA-seq, that is, the high dimensionality, the 
distances between data points (i.e., cells) become similar, which is known as the «curse of 
dimensionality». Hence, distance differences tend to be small and therefore unreliable for identifying 
cell groups. Using feature selection can reduce noise and speed up calculations. Feature selection 
includes identifying the most informative genes, for example, with the highest variance [8]. 
The expression data of one cell contains a set of missing values and noise data that affects the next 
step in the analysis. Feature selection with variance has been used to alleviate these issues. Inspired 
by Prabhakaran et al. [9], we selected groups of genes with the greatest variance in expression. For 
the Zeisel [10] and Romanov [11], the initial sizes were 19,972 and 24,341 respectively. We took 
the feature selection data to select genes with high variance. Variance represents the degree of 
differentiation of gene expression across all cells, and high variance indicates that the gene was 
important for distinguishing cells. Therefore, we could easily get more biologically significant 
clusters. Using feature selection, a subset with top 200 genes was generated for Zeisel [9] and 
Romanov [11] data. We performed the following experiments with three clustering models. We 
compared all three clustering algorithms (ie HDBSCAN+PCA, HDBSCAN+uMAP) on the subset 
with the original data (19,972 and 24,341 genes without traits). Selection of the top 200 genes for 
each of the three algorithms enhanced clustering quality as opposed to the use of the full set of genes 
(19,972 and 24,341 genes). 
In addition, HDBSCAN+DCA algorithm performed best among these clustering algorithms, 
reaching an accuracy of 0.95 on 200 gene sets. The accuracy was 9.3% higher than the result without 
gene selection. Meanwhile, using the gene selection method, HDBSCAN+uMAP, 
HDBSCAN+PCA, it was possible to increase the accuracy by 11.8% and 21.9%, respectively. These 
results showed that clustering with gene selection gives better performance than methods without it. 

4. Imputation 

The scRNA-seq data is characterized by excess zero counts, the so-called dropouts due to the low 
number of mRNAs sequenced within individual cells. In order to reduce the number of dropouts in 
some experiments, the scRNA-seq scImpute [12] method is used. ScImpute is a statistical method 
for imputing dropouts. ScImpute automatically detects likely dropouts and imputes only those values 
without changing the rest of the data. The scImpute algorithm also detects outliers in scRNA-seq 
data and excludes them from imputation. The effectiveness of scImpute has been demonstrated on 
both simulated and real human and mouse scRNA-seq data. ScImpute detects and imputes dropouts, 
thereby enhancing the analysis of differential expression and clustering of cell subpopulations. 
In the article scImpute is used to improve the quality of clustering in combination with feature 
selection and dimensionality reduction methods (PCA [3], DCA [5], uMAP [4]). 

5. Evaluation 

To evaluate the performance of an array of popular clustering methods, we tested Seurat [1] and 
HDBSCAN [2] with different methods of dimensionality reduction such as DCA [5], PCA [3], 
uMAP [4] on 2 published datasets.  
Since we have published cell type labels, for the assessment of clustering quality, we used two 
external quality metrics – Adjusted Rand Index [13] and V-measure [14]. 
The Adjusted Rand index was chosen as the first metric of clustering quality. This metric is external, 
i.e. the measures are based on comparing the clustering result with the a priori known division into 
classes. This metric is robust to the size and number of clusters. 
V-measure was used as the second quality metric. The main advantage of this metric is that it is 
independent of the number of class labels, the number of clusters, the size of the data, and the 
clustering algorithm used, and is very reliable. 
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6. Experiments 

The operation of the selected algorithms is demonstrated on two scRNA-seq gene expression 
datasets for house mouse cells. The Zeisel [10] contains scRNA-seq-derived cortical cell expression 
data from the house mouse and describes 3005 different cells of 9 different types. The data are also 
presented as a 19,772 x 3005 gene expression matrix. The Romanov [11] contains expression data 
of hypothalamic cells from the cortex of the house mouse, obtained by scRNA-seq, and describes 
2881 different cells of 7 different types. The data are also presented as a 24,341 x 2881 gene 
expression matrix. 
For a sufficient set of statistics, the Zeisel set was divided into 8 non-overlapping sets with a 
balanced number of cells in each cluster: 7 sets of 19,772 x 353 and one set of 19,772 x 358. The 
Romanov set was also divided into 8 non-overlapping sets: 7 sets of 24,341 x 346 and one sets of 
24,341 x 342. 
To investigate the effectiveness of clustering models with and without feature selection, as well as 
various dimensionality reduction techniques, we directly clustered the original data and feature 
selection data for 200 genes. 
The results are illustrated in the Table 4 for ARI [13] metric and in the Table 5 for V-measure [14] 
metric.  
To test the results for statistical significance, we first used the Friedman test, which the null 
hypothesis that repeated measurements of the same individuals have the same distribution. If the 
null hypothesis was rejected, we calculated pairwise comparisons using Conover post hoc test. This 
test is usually conducted post hoc after significant results of the Friedman test. 
We discovered that HDBSCAN+DCA (algorithms 9 and 10) clustering achieved the best results on 
the original and feature-selected data. On the original data, HDBSCAN+DCA reached an accuracy 
of 0.87, which was 16.3% and 21.3% higher than those of HDBSCAN+uMAP and 
HDBSCAN+PCA, respectively. For 200 genes, HDBSCAN+DCA+fs achieved an accuracy of 0.95, 
which was 4.7%, 17.6% and 25.2% higher than Seurat, HDBSCAN+uMAP+fs and 
HDBSCAN+PCA+fs, respectively. P-value on Friedman test for HDBSCAN+DCA+fs, 
HDBSCAN+uMAP+fs, HDBSCAN+PCA+fs and Seurat pipelines is 9.8 × 10ିହ and we calculated 
pairwise comparisons using Conover post hoc test. From the Table 2, HDBSCAN+DCA+fs 
demonstrated statistically significant result for all three other pipelines. 
Table 2. Non-imputed algorithms posthoc p-values 

 seurat fs+dca+hdbscan fs+umap+hdbscan fs+pca+hdbscan 

seurat 1 0.0417 0.0146 0.0198 

fs+dca+hdbscan 0.0417 1 0.038 0.0039 

fs+umap+hdbsca 0.0146 0.038 1 0.5329 

fs+pca+hdbscan 0.0198 0.0039 0.5329 1 

For the imputed data, P-value on Friedman test is 0.0002 we calculated pairwise comparisons using 
Conover post hoc test. From the Table 3, scImpute+HDBSCAN+DCA+fs demonstrated statistically 
significant result for all three other pipelines. 
Table. 3. Imputed algorithms posthoc p-values 

 seurat fs+dca+hdbscan fs+umap+hdbscan fs+pca+hdbscan 

seurat 1 0.0475 0.0024 0.0078 

fs+dca+hdbscan 0.0475 1 0.038 0.0029 
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fs+umap+hdbscan 0.0024 0.038 1 0.2079 

fs+pca+hdbscan 0.0078 0.0029 0.2079 1 

Table 4. Adjusted Rand Index for different experiments 

Dataset Seurat Impute 
Seurat 

Impute  
DCA 
hdbscan 

Impute 
fs DCA 
hdbscan 

Impute 
uMAP 
hdbscan 

Impute  fs 
uMAP 
hdbscan 

Impute 
PCA 
hdbscan 

zeisel1 
zeisel2 
zeisel3 
zeisel4 
zeisel5 
zeisel6 
zeisel7 
zeisel8 

0.754 
0.83 
0.748 
0.793 
0.781 
0.827 
0.76 
0.827 

0.81 
0.829 
0.794 
0.798 
0.798 
0.777 
0.705 
0.869 

0.55 
0.861 
0.738 
0.604 
0.747 
0.628 
0.828 
0.861 

0.81 
0.851 
0.803 
0.858 
0.785 
0.865 
0.763 
0.907 

0.518 
0.651 
0.608 
0.549 
0.676 
0.555 
0.893 
0.57 

0.55 
0.651 
0.607 
0.633 
0.734 
0.621 
0.819 
0.657 

0.65 
0.47 
0.17 
0.45 
0.5 
0.15 
0.17 
0.508 

romanov1 
romanov2 
romanov3 
romanov4 
romanov5 
romanov6 
romanov7 
romanov8 

0.809 
0.772 
0.65 
0.696 
0.801 
0.565 
0.561 
0.704 

0.68 
0.625 
0.643 
0.537 
0.535 
0.472 
0.672 
0.641 

0.605 
0.608 
0.546 
0.553 
0.516 
0.518 
0.647 
0.66 

0.604 
0.667 
0.587 
0.621 
0.614 
0.55 
0.66 
0.691 

0.644 
0.599 
0.476 
0.533 
0.568 
0.541 
0.642 
0.637 

0.626 
0.696 
0.643 
0.675 
0.654 
0.482 
0.645 
0.656 

0.364 
0.325 
0.327 
0.256 
0.077 
0.071 
0.671 
0.291 

Table 4 (cont.) 

Dataset Impute  
fs PCA 
hdbscan 

DCA 
hdbscan 

fs DCA 
hdbscan 

uMAP 
hdbscan 

fs uMAP 
hdbscan 

PCA 
hdbscan 

fs PCA 
hdbscan 

zeisel1 
zeisel2 
zeisel3 
zeisel4 
zeisel5 
zeisel6 
zeisel7 
zeisel8 

0.253 
0.387 
0.214 
0.306 
0.453 
0.146 
0.197 
0.549 

0.819 
0.607 
0.727 
0.815 
0.772 
0.698 
0.795 
0.869 

0.827 
0.838 
0.731 
0.844 
0.907 
0.802 
0.824 
0.95 

0.476 
0.572 
0.563 
0.548 
0.52 
0.739 
0.545 
0.57 

0.644 
0.671 
0.644 
0.634 
0.630 
0.626 
0.619 
0.609 

0.23 
0.55 
0.17 
0.55 
0.41 
0.19 
0.34 
0.579 

0.278 
0.565 
0.123 
0.281 
0.436 
0.32 
0.332 
0.61 

romanov1 
romanov2 
romanov3 
romanov4 
romanov5 
romanov6 
romanov7 
romanov8 

0.495 
0.048 
0.195 
0.288 
0.064 
0.083 
0.447 
0.382 

0.754 
0.791 
0.641 
0.675 
0.795 
0.598 
0.704 
0.677 

0.768 
0.756 
0.702 
0.69 
0.797 
0.624 
0.704 
0.686 

0.747 
0.722 
0.629 
0.694 
0.771 
0.472 
0.64 
0.512 

0.668 
0.731 
0.689 
0.459 
0.671 
0.626 
0.613 
0.656 

0.184 
0.117 
0.694 
0.152 
0.152 
0.121 
0.799 
0.293 

0.356 
0.041 
0.372 
0.078 
0.218 
0.153 
0.655 
0.266 
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Table 5. V-measure for different experiments 

Dataset Seurat Impute 
Seurat 

Impute  
DCA 
hdbscan 

Impute fs 
DCA 
hdbscan 

Impute 
uMAP 
hdbscan 

Impute fs 
uMAP 
hdbscan 

Impute 
PCA 
hdbscan 

zeisel1 
zeisel2 
zeisel3 
zeisel4 
zeisel5 
zeisel6 
zeisel7 
zeisel8 

0.741 
0.793 
0.762 
0.778 
0.768 
0.792 
0.779 
0.817 

0.802 
0.798 
0.786 
0.813 
0.8 
0.754 
0.745 
0.869 

0.696 
0.824 
0.834 
0.736 
0.733 
0.678 
0.829 
0.822 

0.835 
0.894 
0.885 
0.846 
0.777 
0.759 
0.851 
0.873 

0.695 
0.709 
0.702 
0.677 
0.695 
0.643 
0.875 
0.71 

0.71 
0.785 
0.705 
0.702 
0.699 
0.651 
0.75 
0.794 

0.412 
0.424 
0.411 
0.402 
0.41 
0.395 
0.394 
0.42 

romanov1 
romanov2 
romanov3 
romanov4 
romanov5 
romanov6 
romanov7 
romanov8 

0.773 
0.773 
0.661 
0.712 
0.76 
0.587 
0.636 
0.702 

0.629 
0.58 
0.624 
0.591 
0.59 
0.533 
0.636 
0.611 

0.597 
0.597 
0.531 
0.631 
0.565 
0.527 
0.623 
0.638 

0.596 
0.665 
0.587 
0.684 
0.57 
0.522 
0.638 
0.649 

0.591 
0.512 
0.459 
0.587 
0.515 
0.547 
0.545 
0.575 

0.522 
0.584 
0.521 
0.606 
0.543 
0.489 
0.553 
0.558 

0.315 
0.325 
0.328 
0.348 
0.309 
0.318 
0.322 
0.331 

Table 5 (cont.) 

Dataset Impute 
fs PCA 
hdbscan 

DCA 
hdbscan 

fs DCA 
hdbscan 

uMAP 
hdbscan 

fs uMAP 
hdbscan 

PCA 
hdbscan 

fs PCA 
hdbscan 

zeisel1 
zeisel2 
zeisel3 
zeisel4 
zeisel5 
zeisel6 
zeisel7 
zeisel8 

0.413 
0.418 
0.407 
0.401 
0.394 
0.396 
0.386 
0.406 

0.774 
0.638 
0.765 
0.789 
0.765 
0.713 
0.778 
0.819 

0.826 
0.79 
0.775 
0.809 
0.863 
0.778 
0.812 
0.929 

0.664 
0.672 
0.718 
0.682 
0.696 
0.744 
0.709 
0.715 

0.69 
0.685 
0.709 
0.698 
0.676 
0.635 
0.65 
0.703 

0.415 
0.428 
0.409 
0.414 
0.405 
0.402 
0.413 
0.416 

0.4 
0.422 
0.402 
0.404 
0.399 
0.405 
0.404 
0.401 

romanov1 
romanov2 
romanov3 
romanov4 
romanov5 
romanov6 
romanov7 
romanov8 

0.316 
0.317 
0.325 
0.339 
0.305 
0.308 
0.314 
0.321 

0.704 
0.733 
0.616 
0.669 
0.739 
0.611 
0.679 
0.648 

0.72 
0.791 
0.631 
0.677 
0.745 
0.685 
0.712 
0.65 

0.687 
0.669 
0.598 
0.669 
0.722 
0.48 
0.64 
0.54 

0.585 
0.651 
0.592 
0.513 
0.617 
0.569 
0.595 
0.588 

0.347 
0.34 
0.332 
0.347 
0.349 
0.343 
0.333 
0.345 

0.345 
0.333 
0.329 
0.327 
0.345 
0.332 
0.343 
0.329 

7. Conclusion 

Dimensional reduction and clustering are important when analysing scRNA-seq data. A comparative 
framework is pro-posed that combines three dimensionality reduction methods and feature selection 
with HDBSCAN [2] clustering with an en-tire Seurat [1] pipeline. Fourteen experiments were 
performed on two large scRNA-seq datasets using these combinations.  
Two conclusions can be drawn from the results. Thus, feature selection and dimensionality reduction 
with DCA [5] are critical to achieving better clustering results. If the result is unsatisfactory, 
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imputation methods maybe introduced. HDBSCAN clustering can give satisfactory results in most 
cases.  
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