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Abstract. Real-time partitioned operating systems meet the current avionics standard of reliable software; they
are capable of responding to events from devices with an expected speed, as well as sharing processor time and
memory between isolated partitions. Model-based Checking is a formal verification technique in which a
software model is developed and then it is automatically checked for the compliance with formal requirements.
This method allows proving the correct operation of the model on all possible input data, all possible ways of
processes switching and interactions. In this article, we describe a formalized model of an open-source
partitioned operating system POK. We implement the model in Promela language for SPIN tool with the
purposes of formal verification using the Model Checking method. The model is designed to describe the
behavior of: partition and process schedulers, system calls through a software interrupt, kernel libraries for
working with synchronization primitives and processes awaiting, user code which consists of several processes
in different partitions that are synchronized through a semaphore. The described approach can be used to verify
the correct synchronization, the proper operation of the scheduler algorithms, and the accurate data access from
different partitions by introducing the corresponding requirements in the form of formulas of the linear-time
temporal logic.
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Annoranus. Texymuil cTaHTapT HAJSKHOIO IPOIPAMMHOTIO 00eCHeUeHYs Ui OOPTOBBIX KOHTPOJLIEPOB —
9TO MHOTOpa3jielibHasl OIEpallHOHHAs CHCTEMa PEalbHOrO0 BPEMEHH, KOTOpas CIIOCOOHA pearhpoBaTh Ha
COOBITHSL OT YCTPOMCTB C 0XKHJJAEMOI CKOPOCTBIO, a TAKXKE JIEIUTh MPOLIECCOPHOE BPEMs H IaMATh MEXKIY
M30JHPOBAHHBIMU pa3fenaMH. Bepudmukamus Ha OCHOBE MOJAETH — 3TO MeTOH (OPMANbHON MPOBEPKU
NPOrpaMMHOIO O0E€CIEUeHHs, IPH KOTOPOM pa3pabaThIBACTCSl HpPOTrpaMMHasi MOZENb, a 3aTeM OHa
aBTOMATHYECKH IIPOBEPSETCS Ha COOTBETCTBUE (hOPMAILHBIM TPEOOBAHUSIM. DTOT METO] HO3BOJISET JJOKa3aTh
NPaBHIBHOCTh PA0OTHI MOJENM HAa BCEX BO3MOXHBIX BXOJHBIX IaHHBIX, BCEX BO3MOXHBIX CIIOCOOOB
MEPEKITIOYEHNST MPOLIECCOB M B3aMMOJEHCTBUH. B 3TO# crarthe omnmchiBaeTcs (hOopManu30BaHHAs MOJIEIb
OTKpBITO MHOTropasjensHoil onepanuonHoil cucremsl POK, peannsoBanHast Ha si3bike Promela cpencrsa
SPIN mns dopmansaoii Bepupukanuu MeronoM Model Checking n npenna3HadeHHast ISl MOJEIUPOBAHYS
TIOBE/ICHHS: ITAHUPOBIIUKA Pa3/eTI0B U MPOLECCOB; CUCTEMHBIX BBI30BOB Uepe3 POrpaMMHOE NPEephIBaHHE;
6ubnuoTeKy sapa A paboThl C IPHMHTHBAMH CHHXPOHHU3AIMH U 0)KUIAHHEM HPOIIECCOB; MOJIb30BATEIbCKHI
KOJI, OCYIIECTBISIIOMNI paboTy HECKOJBKUX IIPOLECCOB B PA3HBIX pa3jelaX, KOTOPBIE CHHXPOHU3UPYIOTCS
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gepe3 ceMadopsl. JIaHHBIH TOAX0I MOXKET OBITh HCIOIB30BaH JUIsl IPOBEPKH KOPPEKTHOCTH CHHXPOHHU3AIIUH,
paboTHI AITOPUTMOB ITAHUPOBIIUKA, KOPPEKTHOTO JOCTYMNA K JaHHBIM M3 Pa3HBIX Pa3/elioB ITyTeM 3a/aHus
COOTBETCTBYIOIIUX TPeOOBaHMi! B BUIE (GOPMYI TEMIIOPAIbHON JOTHKH TMNHEHHOTO BPEMEHH.

KioueBsle ciioBa: opmanbHasi BepU(UKAIHs; ONepanuoHHble CHCTeMbl; napTuiuposanue; OC peaabHOro
Bpemenn; Model Checking; cucremHoe nporpammupoBanue; Promela; SPIN

Jst uutupoBanusi: Craponeros C.M. dopmanbHas MOJeIb NapTHLHPOBAHHON ONEPALIOHHON CHCTEMbI
peansHOro Bpemenu Ha Promela. Tpynst ICII PAH, Tom 32, Bbm. 6, 2020 r., c1p. 49-66 (Ha aHrIHICKOM
spike). DOI: 10.15514/ISPRAS-2020-32(6)—4

1. Introduction

This work is a part of a project to provide verification methods for controllers of cyber-physical
systems with high-reliability requirements [1]. In this paper, we refer to a concept of partitioned
operating systems, mostly related to avionics software standards. The main goal is to develop and
verify software based on existing open-source solutions, as well as to apply the results as a model
for teaching the courses «Components of operating systems» and «Software verificationy.

In this paper, we follow the creation of a model for POK (Partitioned Operating System Kernel) [2].
Using its source code, we create a corresponding code in Promela [3], an input language of SPIN
verifier. On the one side, the language offers to encode real algorithms close to original C
implementation, but on the other side, this language has a clear formal semantic and the model in
this language can (without any shortcomings) be translated to a Kripke structure and then verified
by querying LTL formulas with temporal properties of desired OS model behavior.

This publication has the following structure: in Section 2, we briefly describe the POK concept and
model checking with SPIN; in Section 3, we show the core of presented approach, how to model a
client program using an emulation of the instruction pointer; in Section 4, we highlight our
scheduling model; in Section 5, we present ways to model the syscalls; in Section 6, we browse
some existing solutions in this area; in Section 7, we discuss the solution and finally, in Section 8,
we make a conclusion and give a link to our resulting open-source model in Promela.

The main contributions of the paper are: (a) we show the applicability of Promela to model OS
behavior; (b) we create an executable model of a partitioned OS.

2. Background

2.1. A Concept of Partitioned Real-time OS

A BSD-licensed open-source OS POK, which satisfies avionics software standards with some
limitations, was created at a research institute in France as a PhD thesis by Julien Delange [4], it
applies the Model-Driven Engineering approach [5] for describing the system configurations, and
its source code is available in [2].

We have already summarized in [1] its main features as:

e MDE approach: initial OS kernel configuration in AADL language [6] with code generation
and a possibility to represent the configuration graphically;

e itisa good proof-of-concept with a set of working models and examples;
e partially conforms to the ARINC 653 real-time onboard aviation system standard [7];
e protected partitions with time and memory space resources isolation;

¢ real-time processes schedulers with different strategies of two types: (a) partition planner (b)
process planner in each partition;

e controllable port and message interactions between processes; also the BlackBoard concept
[7] is used.
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Fig. 1. A scheme of POK internal architecture

The use of OS, which is designed according to avionics standards and provides the isolation and
verifiable interprocess communication, increases the robustness of the functionality of a cyber-
physical system at the system level.
By browsing the source code [2], we created a scheme of internal POK architecture, shown in fig.
1. It comprises three principal layers:
e Arch with platform-dependent code (open-source repository includes realization for three

platforms: x86-qemu, PowerPC and Sparc), also there are some works on an ARM port;

e Core for internal kemel code, syscalls processing;
e [ibpok can be used to call from the user’s code as an APIL.
The ARINC 653-compatible API offers to work with partitions, processes, locking objects, ports,

queries and messages in a standardized and certifiable way. The API is a high-level abstraction, in
this paper, we do not touch it, and we proceed to model low-level things on which it is all based.

2.2. Model Checking with the SPIN tool

SPIN [8, 9] is a utility for verifying the correctness of distributed software models. The abbreviation
SPIN stands for Simple Promela INterpreter. The SPIN system checks not the programs themselves,
but their models. To build a model for an original parallel program or an algorithm, the verifying
engineer (usually manually) creates a representation of this program in the C-like input language,
called Promela (PROtocol MEta-L Anguage) [10].
To deal with the problem we are formalizing, we may rely upon the following language features
[11]:
e itis an actor-based (process- and message-oriented) language;
e it is primarily designed to describe protocols and interoperations;
e it has C-styled syntax and fix-size finite data types;
e ituses function inlining quite similar to the macros in C;
e itallows custom types definition (using typedef as similar in C);
e it introduces "atomic" sections to model code that is running in parallel without any context
switching inside.
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There are no pointers, so special techniques should be used here to provide abstractions for them.
For a long time, the language has been used mainly in academia, but instantly, the language authors
added syntax constructions to describe complicated programs, the project has moved to GitHub and
modern modular text editors (like Visual Studio Code) introduced support to highlight, refactor and
run programs in Promela.

As a result, we think that it is a suitable language to model OS internals with the aim of further
formal verification. Promela constructs are simple, they have clear and distinct semantics, which
allows the verifier to translate any program in this language into a verifiable transition system with
a finite number of states. The requirements for the model are expressed in LTL (Linear-time
Temporal Logic) [12].

The model checking process inside comprises (a) converting a model program into a Biichi
automaton by considering the change in its state, (b) resolving non-determinism, (c) modeling
context-switching as the creation of variants of possible transitions, (d) converting the negation of a
temporal formula of a requirement into an automaton, and (e) creating the resulting parallel
composition of automata [11]. During the verification process, a traversing is made through all the
states of the resulting automaton, plus at the same time, violations of requirements are checked as
generated asserts. If the requirement is violated, the verifier produces a counterexample as a
sequence of control states of the system (a trail) which points to the violation of the requirement.

3. OS Internals Modeling: Our Approach

3.1. The Sample to Study

To model the partitioned OS, we carefully studied an example with multi-threaded work of processes
(located at examples/semaphores in [2], see fig. 2). We setup a C development environment with
prescribed source and include paths. We walked through the source code and inspected all called
functions or macros. This made it possible to recreate the behavior of a real OS.

Machine View

p pok_thr
f1: I b
pok_sem
I will wait for the aphores

I will signal semaphores
Fig. 2. Minimal partitioned code example from [2], working in QEMU environment.
In Listing 1, we show part of the source activity code of the Thread 1, working in the Partition 1.
void* pinger job () {
pok ret t ret;
while (1) {
printf ("P1T1l: I will signal semaphores\n");
ret = pok_sem signal (sid);
printf ("P1T1l: pok sem signal, ret=%d\n", ret);
pok thread sleep (2000000);

}
}
Listing 1. A multi-threaded sample
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In the code, one thread signals a semaphore and sleeps, and continues to do it forever. The other
threads at the same time wait for the semaphore and do some work.

We choose this sample because of two things:

e itisreally a minimal behavior of a partitioned OS;

e it contains multi threads, multi partitions as well as locking primitives and sleeping, so it is
suitable to model dynamic scheduling algorithms.

3.2. Modeling the Activity Code in Promela

In Listing 2, we present a model for the above code.
proctype threadPlTl (short myPartId; short myThreadId) {

do
::(osLive == 1) ->
atomic {
if :: (currentPartition == myPartId
&& currentThread == myThreadId && currentContext.IP == 0) ->
{
pok_print (P1T1_I will signal_semaphores);
currentContext.IP++;
}
::else —>
if ::(currentPartition == myPartId &&
currentThread == myThreadId && currentContext.IP == 1) ->
{
pok sem signal (sid, currentContext.r0);
currentContext.IP++;
}
::else ->
if ::(currentPartition == myPartId &&
currentThread == myThreadId && currentContext.IP == 2) ->
{
pok printf(P1T1 pok sem signal ret, currentContext.r0);
currentContext.IP++;
}
::else ->
if ::(currentPartition == myPartId &&
currentThread == myThreadId && currentContext.IP == 3) ->
{
pok_delay (2000) ;
currentContext.IP = 0; /* inf loop */
}
::else -> skip;
fi
fi
fi
fi

}

::else -> break;

od

}

Listing 2. Model for the multi-threaded sample

Here we see a state machine that makes transitions between its states. A state of the process is
characterized by the /P (instruction pointer) register. There are also the guard conditions to check if
we are the current one to execute. The main idea here: all the processes are traversing thought their
states if they are active, and the OS scheduler is activated periodically and selects a current partition
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as well as a current process (changes the currentPartition and currentThread variables), and that
causes the whole system model to run.

Also, there are pok_print, pok_delay, pok_sem_signal macros that emulate the syscalls in the OS,
we consider them in the appropriate section.

As a result of the current section, we can state that any code that models some actions in a real OS
must satisfy the following properties:

e for each thread in the system, a corresponding process is created in Promela;
o for all his calculations, it uses only register variables from the current context;
e after each line of significant code, the register IP is incremented,

e cach line of code is executed in the switch by IP, current process and current partition.

3.3. Data Definition in the Model

Thanks to the support of typedef complex structures and arrays in Promela, we can build mostly a
normal data definition in our model (see fig. 3). Here we introduce Context, Thread, Partition and
Semaphore structures to model corresponding OS entities.

Partition Thread
-threads <> *__|-context 3
~threadsCount 1 ~timeSpacePerThread (<> — | Context
~-timeSpacePerPartition -wakeUpTime 1 ~1P
~-threadCount -id -sp
-schedulingStrategy -partition -r0
~-mainThread -prior -rl
-rate -r2
1
System Semaphore
-partitions . [-theadsAwaiting
phores (<> -maxCount
~-currentPartition | 1 ~-currentCount
-currentThread -threadAwaitingCount
~currentContext

Fig. 3. Data structures in our model
To simulate the code execution, we explicitly introduce the processor registers as Promela variables
and put them into the current execution context, which simulates one processor with its memory.
Those are primarily a register for the current instruction pointer (/P), a stack register (sp) and several
arithmetic registers (7-7), see Listing 3.
typedef Context {

int IP; //instruction pointer

int sp; //stack pointer - for further modeling
int r0; //arithmetic registers

int rl;

int r2;

}

Listing 3. Model for the state of the current thread

IP is used for the program flow in a thread (see Listing 2), arithmetic registers should be used in
calculations, sp is added for future use (for example, to model local memory, procedures and
parameter passing). Then we include such a context to the thread definition (see Listing 4).
typedef Thread {

Context context; //thread context to save
short timeSpacePerThread; //count of ticks to run
bit isLocked; //1 if it has been locked on a semaphore
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int wakeUpTime;
short id;

short partition;
short prior;
short rate;

//wake up time to schedule using ‘sleep’
//unique thread id

//number of the parent partition

//for further model with priorities
//current execution time - for rms

}
Listing 4. Data definition for threads

A thread is characterized by its context, some parameters and time space (amount of time to run the
thread before the switch). Now and after we are going to count time in ticks, countable by the
scheduler. After all, we introduce the partition definition as shown in Listing 5.

typedef Partition {
short timeSpacePerPartition;
short threadCount;
Thread threads[MAXTHREADS];
short schedulingStrategy;
short mainThread;

//count of ticks to run

//threads of this partition
//type of sched for threads
//first thread to run

}

Listing 5. Data definition for partitions

It consists of a number of threads, time space for the partition to run between a switch, scheduling
strategy of related threads and the main thread to peak at first.

4. Modeling the Scheduler

For the first iteration, we show a simple non-deterministic scheduler that randomly selects a partition
of two and a thread of two inside, see Listing 6.
proctype schedNonDeterministicInstance () {
do
realTime < MAXTIMESIM -> {
atomic {
saveCurrentContext () ;

//non-deterministic partitions scheduler

if
::true -> currentPartition = 0;
::true -> currentPartition = 1;
fi
if
:: (currentThread == 0) -> currentThread = 1; //stub
else -> currentThread = 0;
fi
realTime++;

restoreCurrentContext () ;
}
}

else -> {
printf (“Simulation time is over!\n");
osLive = 0;
break;

}
od

}

Listing 6. Simple scheduler that peaks random partitions and threads

The scheduler runs as a Promela process; it activates at some random time. The system runtime is
bounded to a constant, and the realTime variable is used to count time passed in the whole system,
so we are counting time right once the scheduler is activated (corresponds to the hardware timer
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interrupt handling). The saveCurrentContext and restoreCurrentContext macros are used to save the
current context to a place of the context of a current thread and restore it respectively. So, using
ideas in Listing 2 and Listing 6, one can implement a very simple model of the scheduling.

interrupts are disabled

Fig. 4. A model of a partitioned scheduler
The real scheduler that we use in our model is much more sophisticated. In fig. 4 we depicted its
block scheme. It runs in a loop that is fired on don-deterministic times. The first thing to do is to
increment the time variables of the whole system as well as time running of a current partition and
a current thread (remember, we have bounds for these times in the thread and partition definition
structures). Then only if a logical variable for disabled interrupts is not set (corresponds to disabling
the interrupts in the real OS), we continue to the switching process. The next thing to do — is to fix
wakeup time for all the sleeping threads. That means that for all threads with elapsed time of sleeping
we should remove their sleeping statuses (because we had already changed current time and some
threads have just become candidates to switch to). The resting behavior of the scheduler is the same
as the previous one: save current context, elect a partition, elect a thread and restore the context.
However, here we do the elections according to set election strategies and current locking statuses.
In Listing 7, we show a piece of code to elect the next thread. Here we introduce scheduling strategies
that are set in the partitions during the initialization phase. Then the right strategy can be applied in
the scheduling loop.
mtype = {sched part rms strategy, sched part rr strategy,
sched part_edf strategy, sched part 11f strategy}
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inline elect next thread(needPeakAThread) { 5. Modeling the SysCaIIs
if

In POK, all API that OS provides to its client processes (for example, creating a semaphore, waiting
for it or blocking it) are done through system calls. This means that for each interaction with a kernel
object, the generation of a software interrupt is performed. This approach allows to control such
calls from the OS, to be able to prioritize them, to perform them in a protected context.

During the modeling, we create an enumeration of possible syscalls, available to the user. Then we
create macros to wrap API calls in a syscall executor routine (it fully compliments to the POK code).
The executor prepares the syscall parameters in registers and generates a software interrupt. We
model it as a message passing to a Promela channel. The syscall executor puts a signal to the channel
and the syscall handler waits here for the signal in a loop, awakens and actually performs the call.
In Listing 8 we demonstrate the user syscall library (see also Listing 1 for the example of its

::(partitions[currentPartition].schedulingStrategy ==

sched _part_rms_strategy) -> sched part_ rms (needPeakAThread) ;
:: (partitions[currentPartition].schedulingStrategy ==

sched _part rr_strategy) -> sched part rr(needPeakAThread) ;
:: (partitions[currentPartition].schedulingStrategy ==

sched part 11f strategy) -> sched part 11f(needPeakAThread);
::(partitions[currentPartition].schedulingStrategy ==

sched part edf strategy) -> sched part edf (needPeakAThread) ;
::else -> skip;

£1 utilization).

) //syscalls types

Listing 7. An extensible thread election. mtype = {syscall sem p, syscall sem v, syscall delay,
In Fig. 5 we show our implementation of the round-robin thread election. syscall printf}

//library available to user
inline pok sem signal(sid, ret) {
printf ("pok sem signal\n");
pok do_syscall (syscall_sem_ v, sid, NOPARAM, ret);

}

needPeackAThread=1

runtime > time space
for the current thread

nextThread = (nextThread + 1) % MAXTHREADS

is nextThread sleeping
or locked now?

inline pok sem wait (sid, ret) {
printf ("pok sem wait\n");
pok _do_syscall (syscall_sem_p, sid, NOPARAM, ret);
}
Listing 8. Syscalls user library
In Listing 9 we show the model of syscalls executor.
inline pok do syscall(N, paraml, param2, ret) {
atomic
//pass the params
currentContext.r0 N;

currentContext.rl = paraml;
if

po

Did we go through all the
threads in the partition? :: (param2 != NOPARAM) -> currentContext.r2 = param2;

::else -> skip

fi

}

//emit the interrupt
InterruptController ! POK_INTERRUPT;
//wait for iret

InterruptRet ? ret;

nextThread is elected

idle thread is elected

}

Listing 9. Syscalls executor
In Listing 10, we show part of the model of syscalls handler with a switch by a syscall id.

Fig. 5. A model of a round-robin scheduler with the possibility of locking and sleeping interruptsDisabled = 1; //stop the scheduler (soft model)
In a loop, we select a next thread and check whether it is runnable (it means it can sleep after iivecurrentconteXt L
requesting to sleep in the code or to be locked on a semaphore). If we are not able to select the next :: (intNum == POK INTERRUPT) -> {
thread, we select the virtual one (idle thread) with no code to execute. The guard conditions to start if -
the elections are (a) the current thread has run out of its time or (b) the scheduler is asked to select a ::(id == syscall sem v) -> sem signal (paraml);
new thread (due to sleep or locking have queued). ::(id == syscall_sem p) -> sem wait(paraml);
To select a new partition, we only use the condition that the current partition has run out of its time. ::(id == syscall delay) -> sleep(paraml);

::(id == syscall printf) -> print(paraml, param2);

:else -> skip; //unknown syscall id
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fi
}
::else -> skip;
fi
restoreCurrentContext () ;
Listing 10. A part of syscalls handling

pok_delay(2000);

pok_do_syscall(syscall_delay,
time, NOPARAM, currentContext.r0);

prepare params in registers

InterruptController ! POK_INTERRUPT

proctype InterruptHandler:
InterruptController ? intNum

restore params from the registers

if:: (id == syscall_delay) -> sleep(paraml);

execute sleep(), possible in kernel space

InterruptRet ! ret

InterruptRet ? ret

Fig. 6. Syscalls processing model

The handler gets the parameters from the registers and uses the switch operator to decide which
kernel function it should execute. The overall scheme of interrupts modeling is presented in fig. 6.
In addition, we focus on the implementation of our syscalls:

sleep is implemented using the calculation of a wakeup time for the current thread based on the
given delay value and call the scheduler;

wait on a semaphore is implemented by updating the semaphore counter and adding the current
thread to a list of awaiters of the given semaphore if it is necessary;
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signal a semaphore is implemented by updating the semaphore counter and removing the
current thread from a list of awaiters of the given semaphore if it is necessary;

print is implemented using switching by the parameter and printing a corresponding string.
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Fig. 7. Automaton representation of a process in our OS model.
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Fig. 8. Automaton representation of the scheduler in our OS model.
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6. Related work

Today’s OS for reliable cyber-physical systems like flight machines should be definitely real-time
and must offer memory space and time division capabilities. There exists the avionics industry-
related standard for these requirements, created by the Aeronautical Radio, Inc., ARINC 653 [7].
Methods of validation of ARINC architectures were given in [13]. Some techniques on verification
of OS (mostly related to Linux) were presented by the ISP RAS in [14-16].

In Russia, a certified partitioned operating system intended for the aircraft, was created by
GosNIIAS and ISP RAS with advanced debugging capabilities, rewritten scheduler, system partition
feature and different platforms support [17, 18], some results were GPLv3 licensed.

The most famous approach to verification of OS is presented in [19]. The authors created executable
specifications of an L4 microkernel in Haskell based on initial C implementation and then refined
them into an Isabelle/HOL model. There is also a good literature review on this area in their paper.
Our approach follows theirs: we created an executable specification in Promela according to the C
code of POK, but then we are going to use model checking methods instead of theorem proving.

7. Discussions

7.1. Visualization of the Model

Using the SPIN capability to export model automata as .dot diagrams (./pan -D [11]), we created the
automata representations of a process (see fig.7) as well as of the scheduler (see fig.8). These images
are presented here to estimate the complexity of resulting automata.

The process automation (corresponds to Listing 1) consists of about 80 states, we can see that some
states are duplicated due to inline macros to execute the syscalls (see Section 5). The scheduler
automaton consists of about 150 states.

Building such automata by hand is very costly, so the executable specification in Promela really
helps to obtain a formal model to provide further checks. In addition, the model is very extensible,
it is easy to add scheduling strategies (see Listing 7 for the reference) as well as implement additional
syscall types, etc.

7.2. Simulation of the Model

In fig. 9 we depict a simulation process of our model, using the command-line SPIN run.

Elected thread: @ in partition @
[1] PIT1: I will signal semaphores
pok_sem_signal
Elected thread: 1 in partition @
Elected thread: @ in partition @
[3] P1T1: pok_sem_signal_ret = 1
Elected thread: 1 in partition @
[5] P1T2: I will wait for the semaphores
pok_sem_wait
[5] P1T2: pok_sem_wait ret = 1
Elected thread: @ in partition @
Elected thread: 1 in partition @
pok_sem_wait
[6] P1T2: pok_sem_wait ret = 1
pok_delay
Elected thread: @ in partition @
[7] P1T1: I will signal semaphores
ok_sem_signal

pok_
Elected thread: @ in partition @
pok_sem_signal
[9] P1T1: pok_sem_signal_ret = 1
pok_delay
Elected thread: @ in partition 1
[101] P2T1: begin of task
pok_delay

Elected thread: © in partition @
Elected thread: 1 in partition @
pok_delay
Elected thread: @ in partition @
[2022] P1T1: I will signal semaphores
pok_sem_signal
Fig. 9. Model simulation using SPIN
We see that the processes work as expected (we apply the soft real-time strategy here), the scheduler
does partitions as well as threads switching, and the processes wait expected time then do the

interprocess communications using the semaphore.
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7.3. On the Model Verification

Although we are still thinking about properties for verification, in this subsection we provide a way
to check the correctness of partitions switching. According to our model, we use some string
constants (see the parameters to pok print in Listing 1). Since we know which partition each string
belongs to, we can set the expected match of each string to its partition, see Listing 11.

//string constants

#define PIT1 I will signal_ semaphores 0
#define PI1T1 pok sem signal ret 1

#define PI1T2 I will wait for the semaphores 2
#define P1T2 pok sem wait ret 3

#define P2T1 begin of task 4

//map data-partition
short partitionByDataIndex[5] = ({
PARTITIONL1,
PARTITIONL1,
PARTITIONL,
PARTITIONL,
PARTITION2
bi
Listing 11. Output strings and a mapping to the partitions
Then, as we know the expected partition matching and will know the actual one when we run the
model, we provide the following check macro, see Listing 12.

//check if we are in the correct partition
inline checkPointer (expectedPartition, actualPartition) {

if
(expectedPartition != actualPartition) -> {
pointersOk = 0;
printf ("segmentation fault!\n");
}
:: else -> skip
fi

}
Listing 12. A macro to check the safety of data strings

And the macro checkPointer is now used in the implementation of print syscall, see Listing 13.
inline print(string, param) {

checkPointer (partitionByDataIndex|[string], currentPartition);
if

::(string == P1T1 I will signal semaphores) ->
printf ("[%d] P1T1l: I will signal semaphores\n", realTime) ;
: (string == P1T1 pok sem signal ret) ->
printf (" [%d] P1Tl: pok sem signal ret = %d\n", realTime, param);

::else -> skip

fi
}
Listing 13. A fragment of print syscall implementation
Therefore, the verification process will be checking an LTL formula «it is always that pointers are
ol»:

G (pointersOk ) €]

where pointersOk variable can be changed when a string is requested from an incorrect partition (see
Listing 12) during all possible runs of the model.
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8. Conclusion

In this paper, we analyzed the purpose, composition, and structure of the partitioned real-time OS.
We discussed a possible approach for creating a model of such an OS in Promela. The proposed
solution allows us to move from complex architecturally dependent code in C to general operating
system behavioral models that can be used in the education process. Also, having a formalized OS
model, we can check the security properties of code execution in partitioned systems with a
possibility to apply different scheduling algorithms.

Possible future steps are:

e modeling of different scheduling strategies;

e modeling of ARINC API[7];

e creation of control variables, construction of LTL formulas and model verification;

e multicore scheduling models;

e models both for the hard real-time as well as the soft real-time using scheduling strategies;

e checking of cyber-physical models running in such an OS using our library [20].

The current code for the implementation of the approach described in this paper is freely available
in [21]. The authorship is registered in the database of the Federal Institute of Industrial Property
[22].
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