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Abstract. Timed-Arcs Petri nets (TaPN-nets) are a time extension of Petri nets that allows assigning clocks to
tokens. System of dynamic points on a metric graph (DP-systems) is another dynamical model that is studied
in discrete geometry dynamics and motivated by study of localized Gaussian wave packets scattering on thin
structures; as well, DP-systems could be utilized to overapproximate the dynamics of messages scattering in
distributed systems. In the latter case, time-temporal properties of DP-systems become a matter of interest.
However, there are no tools that enable us to analyse them. In this work, we provide a new approach to
automated analysis of DP-systems using the translation of a DP-system into a TaPN-net which is implemented
as a TAPAAL plugin. The translation let us use the comprehensive tool support for TaPN-nets
(TAPAAL/UPPAAL) to analyze DP-systems dynamical characteristics expressed in TCTL language. We
demonstrated how to express some of them and verify time-temporal properties of a DP-system using the
suggested approach, and performed experiments to obtain empirical estimates of the tool performance.

Keywords: metric graphs; timed-arc Petri nets; time temporal properties

For citation: Izmaylov A.A., Dworzanski L.W. Analysis of DP-systems Using Timed-Arc Petri Nets via
TAPAAL Tool. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 6, 2020, pp. 155-166. DOI: 10.15514/ISPRAS-
2020-32(6)-12

Acknowledgements. This work was supported by the RFBR grant 20-07-01103 a.

ABTOMaTMUYECKUI aHanNM3 AUCKPETHbIX AUHAMUYECKMX CUCTEM Ha
MeTpuyeckux rpacpax c nomollblo ceten lNeTpu ¢ BpeMeHHbIMU
ayramu n uHctpymeHta TAPAAL

' A.A. Uszmaiinos, ORCID: 0000—0003—1721—-3347 <zinoviy23@gmail.com>
1 JI.B. Jeopanckuii, ORCID: 0000—0002—0074—7660 <leo@mathtech.ru>
! Hayuonanenwuii uccredosamensckuii ynusepcumem «Bolcuias wkona s5KoOHOMUKUY,
Poccus, 101000, 2. Mockea, yr. Macnuykas, 0. 20

Annoranus. Ceru Iletpu ¢ BpeMEHHBIMH JyraMu — 3TO BpeMeHHoe pacuiupenue cereii [lerpu (TaPN-cetn),
KOTOpOE I103BOJISIET PUCBANBaTh TaliMeph! ¢uirkam. CucreMa AMHAMHYECKUX TOYEK Ha METPHUUYECKOM rpade
(DP-cucrema) 3Tto apyras JMHaAMHYeCKas MOJENb, KOTOpas PacCMaTPUBAETCS B TEOPHU I€OMETPHUUYECKHX
JUCKPETHBIX IMHAMHYECKMX CHCTEM U, MHCTOPHYECKH, €€ H3ydeHHe MOTHBHPOBAHO H3ydEHHEM
PacIpOCTpaHEeHHs TOKAIM30BaHHBIX TayCCOBBIX BOIHOBBIX NTAKETOB II0 TOHKUM CTPYKTypaM; KpoMe Toro, DP-
CHUCTEMbI MOI'yT MCIOJB30BATBCA I l'lpl/IGJ'll/I)KCHHOFO NPEACTaBJICHUSA JUHAMHUKU pPaclpOCTpaHCHUSA
COOOLICHUI B pachpeieleHHbIX cucTemMax. B aroll palore, Mbl ONHCHIBAEM HOBBIN MOAXOJ IS
aBTOMaTHYeCKOro aHanu3a DP-cucteM mcmoms3yst TpaHcminuio B TaPN ceTb, koTopas pealn3oBaHa Kak
pacmimpenne uHctpymeHta TAPAAL. Tloaxox MO3BOJSET MCIOAb30BATH MOIIHBIE HHCTPYMEHTBI
Bepuduxarmun  (TAPAAL/UPPAAL) jns  aHanm3a  JUHAMHUYECKMX — XapakTepucTuk — DP-cucrem,
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npencraBieHEbX Ha si3bike TCTL. B pabore mpoaeMOHCTPHPOBAHO, KaK MOXKHO KOJHPOBAaTh BPEMEHHO-
TeMIopansHble cBoiictBa DP-cucTeM B paMKaxX HPEIIOXKEHHOTO IOAXOIA, M HPHUBENEHBI PE3ylbTaThl
9KCIEPUMEHTAIBHBIX TECTOB.

KaroueBbie cioBa: merpuueckue rpadbl; cetd Ilerpu ¢ BpeMEHHBIMH JyraMH; T€MIIOPalbHO-BPEMEHHBIE
JUHAMUYECKHe CBOHCTBa

Jos uurupoBanust: Msmaiinos A.A., JIBopsiHckuit JI.B. AHanu3 JUCKPETHBIX JMHAMHUYECKHUX CHCTEM Ha
METpUYeCcKuX rpadax ¢ nmomoupio cereil Ilerpu ¢ BpeMeHHbIMH Jyramu u MHCTpyMeHTa TAPAAL. Tpyast
HWCII PAH, tom 32, Bein. 6, 2020 1., ctp. 155-166 (Ha anrnumiickom si3bike). DOL: 10.15514/ISPRAS-2020—
32(6)-12

Buaaronapuocrtu: Padora BbinonHena npu nozjepxke rpanta POOU 20-07-01103 a.

1. Introduction

The notion of a Petri nets evolved from a chemistry process model to a model of indefinitely
expandable computing system consistent with laws of physics in C.A. Petri works [1]. Nowadays,
Petri nets are widely-used to model the behaviour of distributed concurrent computer systems and
concurrent processes in biology, chemistry, physics, and other fields [1]. Timed-arc Petri nets
(TaPN-nets) are an extension of Petri nets with time semantics: tokens are assigned clocks [2]; an
inscription on an incoming arc of a transition define tokens of which age can be consumed by the
firing of the transition.

Metric graphs are graphs with lengths assigned to edges. A dynamical system consisting of a metric
graph and dynamic points moving along the graph edges (DP-system) is a geometrical discrete
dynamical system originally motivated by the problem of evolution of wave packets in thin
structures. It could be considered as a simplified discrete model of a quantum graph — a metric graph
equipped with functions on its edges, a differential operator acting on such functions, and matching
conditions on its vertices [3], [4] — with narrow localized wave packets [5], [6]. Quantum graphs
occurred as a model or tool in a number of problems in chemistry, physics, engineering, and
mathematics since 1930s [7]. It was shown that there exists a correspondence between the statistics
of localized solutions on a quantum graph and the dynamics of a DP-system [6]. Points in a DP-
system may represent supports of Gaussian wave packets in a quantum graph and/or the projection
of wave propagation on medium geodesics. Both models, Petri nets and DP-systems, embrace real-
time dynamics of discrete entities moving within a topological structure defined by a graph.

Some results towards the characteristics of the dynamics of DP-systems were recently obtained in
[8—11]. The growth of the number of points moving along edges and its asymptotic are studied for
metric trees in [10] and, for some special cases, in [6]. In [11], polynomial approximation for the
growth of the number of dynamic points moving along metric graphs is studied, and explicit
formulae for the first two terms of the polynomial approximation are given. In [6], stabilization of
the number of points in a DP-system is studied and explicit formulae for graphs with edges of the
same length and star graphs are given, exploiting a connection with analytic number theory
problems. While the mentioned quantitative dynamic statistics of DP-systems are studied, finer
temporal properties of DP-systems are not; like, for example, which node v1 or v2 will receive a point
first, or whether e1 will have received ten or more points by the time ez received its first point. In
this work, we provide a translation of a DP-system into a TaPN-net [12], which allows reducing the
analysis of temporal properties of DP-system to analysis of TaPN-net and conduct it using the
effective widely-used TAPAAL tool [13], which is under active development (two golds, a silver,
and a bronze medal in MCC’20 [14]).

Temporal properties of Petri nets, such as liveness, boundedness, and reversibility, and their
complexities have been extensively studied (see comprehensive review [15]); and, many of them
are in PSPACE or, worse, in EXPSPACE complexity classes. The study and development of Petri
nets analysis methods is still active; for example, the long-standing question on whether reachability
and coverability problems have the same complexity has been recently resolved in [16] showing that
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reachability is not even elementary, thus, impacting complexity of many problems in other fields,
such as formal languages, logic, linear algebra, etc. However, for some restricted Petri net
subclasses, many important properties, which are undecidable in general case, are decidable or even
have polynomial time complexity.

There is a lot of ways to introduce time constraints in Petri nets [17-18]. Unfortunately, it was shown
that almost any of semantical extensions makes Petri nets Turing-complete and, by Rice-Uspensky
theorem, many of general behavioural problems immediately become undecidable. The widely
known time extensions of Petri nets — Time Petri nets [19] and Timed (Duration) Petri nets [20] —
are Turing-complete as they admit urgency and allow to model unbounded counters. Time
extensions of Petri nets, as well as other real-time models, are under active study as, for many real-
world software/hardware systems, time related aspects like performance, time-outs, delays, and
latency are crucial for correct functioning [21-23]. A time semantics with restricted urgency was
recently suggested for TaPN-nets in [24]; the suggested semantics allows urgent transitions to
consume tokens only from the bounded places of a Petri net, and this restriction makes some
behavioural problems decidable for TaPN-nets. In [25], author suggested an approach to use timing
specifications to improve the behavioural properties of an untimed P/T-net with an example of
making live and unbounded untimed P/T-net live and bounded by cutting off token generators using
time-based constraints.

TaPN-nets attract our attention as they feature dynamics that makes it possible to model DP-systems.
In [26], timed-arc Petri nets were consistently combined with ‘nets-within-nets’ hierarchical
structure and sound time semantics was provided; also, the decidability of behavioural coverability-
related properties using the notion of well-structured transition systems was established. For recent
review of results on TAPN-nets and their verification, we refer to [27]. Moreover, TaPN-nets have
comprehensive tool support via TAPAAL and UPPAAL software. Tool UPPAAL makes it possible
to model and verify networks of timed automata. TAPAAL is a tool for modelling, simulation, and
verification of TaPN-nets; it can utilize UPPAAL as a verification engine.

While a lot of results on temporal properties of timed and untimed versions of Petri nets were
obtained, quantitative statistics of the behaviour of Petri nets and their extensions are studied to
much lesser extent. The translation of TaPN-nets into DP-systems can be used to overapproximate
the number of different age-values in the TAPN-net. This translation is a part of the tool
implemented within the frame of this works — it extracts a metric graph in GraphML format from a
TaPN-net allowing one to use existing software for metric graphs to overapproximate the
stabilization time or growth rate of the number of clocks in the TaPN-net.

In Section 2, basic notions and notations are given. Section 3 covers the translation between DP-
systems and TaPN-nets and implementation details. In Section 4, we demonstrate how to verify
time-temporal properties of a DP-system using the suggested approach; results of performance
experiments are provided. Section 5 concludes the paper with some discussion.

2. Preliminaries

By N, Qs¢, R, we denote the sets of natural, non-negative rational, and real numbers, respectively.

The set of open and closed intervals over Qyy U {oo} is denoted by I (Qsq). For a set S, a bag

(multiset) m over S is a mapping m : S — N. The set of all bags over S is denoted by NS. We

denote addition and subtraction of two bags by + and —, the number of all elements in m taking into

account the multiplicity by |m|, and comparisons of bags by =, <, >, <, >. We start by giving the

definition of a metric graph [3].

Definition 1 (Metric graph). A graph I is said to be a metric graph, if

e ceach arc a is assigned a positive length l(a) € (0,00). An arc with l(a) = o has only one
incident vertex and is called a lead;

o the lengths of the arcs that are reversals of each other are assumed to be equal;

e acoordinate x(a) € [0,l(a)] increasing in the direction of the arc is assigned on each arc;
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o the relation x(a’) = l(a) — x(a) holds between the coordinates on mutually reversed arcs.

e forarc a, the length l(e) of its support edge e is equal to l(a).

A state s of a DP-system D on a metric graph I is a set of points located on the arcs of I'. When time
starts to flow, each point p moves along its arc a direction from 0 to [(a) with the same velocity; its
position is denoted by x(p). If p reaches a vertex v, new points are issued to all the outgoing arcs
of v (intuitively, this corresponds to wave packet scattering). New points generation may result in
more than one point on some arcs. Each produced point p’ starts moving along corresponding e.
When more than one points reach a vertex simultaneously at ¢, on each outgoing arc, only one point
is produced, as if only one point has reached the vertex at t; i.e., points met on a vertex fuse, and
each coordinate of an arc can carry only one dynamic point. However, points do not collide
anywhere on edges except vertices, i.e., if two points met on an edge, they both continue their
movement towards their own directions. In fig. 1, the initial set of points consists of two points in
vertices v; and v5. The point in v; produces a new point on edge {v;, v,}, The point in v; produces
points on edges leading to vertices v,, vy, Vs, Vg, V7. After a time unit, there are no points in v; and
v3 (coloured gray), but there are points (coloured black) moving from v, and v to their adjacent
vertices.

V4

Fig.1. System of dynamic points D on metric graph I’

The stabilization time t;(I") of a metric graph I with commensurable edge lengths is the value of
the period of time from the starting point to the point in time when the number of points N(t) on
the graph has been stabilized [6], ie., Vt = t,(I') : Np(t) = Np(t;(I")). Henceforth, when
stabilization time is discussed, discrete time instants when points collapse at vertices are excluded
from consideration as, strictly, at these instants the number of points can decrease.

A place/transition net (PT-net) is a Petri net with indistinguishable tokens.

Definition 2 (Place/transition nets). A PT-net is a tuple < P, T, F,y >, where

o PandT aredisjoint finite sets of places, respectively, transitions;

e F C (P XT)U (T x P)isasetof arcs (flow relation);

e y: F — Nisaweight function;

For an element x € P U T, an arc < y,x > is called an input arc, and arc < x,y > — an output
arc. A preset  x and a postset x o are subsets of P U T suchthat ex = {y | <y,x > € F} and
xe= {y| <x,y >€ F}. A marking of N is a function m: P — N. A pair < N, m > of a PT-net
and a marking is called a marked net.

Let N =< P,T,F,y >be aPT-net. A transition t € T is enabled in a marking m iff Vp €t =
m(p) = y <p,t >. An enabled transition t can fire yielding a new marking m'(p) = m(p) —
y<pt>+y<tp>foreachp € P(denotedm —-'m').

Now, we provide the definition of Timed-Arc Petri nets with token-based time semantics and
urgency [2], [12], [24].
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Definition 3 (Timed-Arc Petri net with Urgency). A TaPN-net is a tuple TaPN =< N,y', U >,
where

e N =<P,T,F,y >isaPT-net called the skeleton of TaPN and denoted by S(TaPN);

e yLP X T - I(Q = 0)is aset of token-age constraints on arcs;

o U: T - Qs is aset of urgency constraints on transitions.

The marking m = < mg, my, m,, > of a TaPN-net TaPN consists of a marking m; of S(TaPN), a
time marking m; : Tok(ms) — Qs that assigns clocks to tokens, and an urgency marking m,, :
T(m;) — Qo that assigns clocks to transitions, where T(mg) comprises all transitions and
Tok(mg) comprises all tokens of the marked PT-net < S(TaPN), m; >. The urgency constraint
U(t) means that t must fire if ¢t has been enabled for U(t) units of time. The token-age constraint
v (p, t) means that t may fire only by consuming a token z in p with m,(z) € y‘(p, t). The urgency
U of a transition is depicted as a number near the transition. The time constraints y¢ of an arc are
depicted as an interval on the arc.

The operational semantics of TaPN-nets is defined by incorporating time constraints into the firing
rules of PT-nets. A transition t is enabled in the marking m = < mg, m;,m, >, if t is enabled in
< §(TaPN), mg > and time constraints of t are satisfied, i.e., each token z from a place p involved
in the firing of ¢t satisfies m,(z) € y*(p, t).

A time elapsing step corresponds to the elapsing § time units in each clock of the marking m. We
assume that all token clocks and transition clocks run at the same pace. We denote by m + & the
marking with all its clocks increased by 6, i.e., for eachtokenz € m;: (m; + 6)(z) = m(2) +
6, and for each transition t : (m, + 8)(t) =m,(t) + &. Under urgency restrictions, a time
elapsing step & is allowed if there are no 6" € [0,8) such that the m + & marking has urgent
transitions.

3. Automated translation of DP-systems into TaPN-nets

In the context of communication networks and computer systems, we may consider a distributed
system of communicating reactive sensor-nodes (or other computational devices). One of the nodes
is a server that initiates communication by sending control messages (signals) while other sensor-
nodes react on such signals. On the assumption that the processing speed of nodes is much higher
than the speed of signal propagation, when a node receives one or more signals from its neighbour
nodes, it responds instantly by sending signals to some of its neighbours. In an extreme case, each
node sends signals to all of its neighbours upon each message arrival. This extreme behaviour
corresponds to the dynamics of a DP-system enabling us to use metric graphs to overapproximate
messages scattering in networks.

In the latter case, time-temporal properties of DP-systems become a matter of interest [28].
However, up to the knowledge of authors, there are no tools that enable us to conduct analysis of
such natural time-temporal properties as:

e s it possible that more than N signals come to node X in K seconds;
e Is it possible that in the next K minutes two messages come with the difference of their
time moments less that € milliseconds;

e  For the system initial phase of duration N, if a point comes to node X at time T, then no
points comes to node Y within K seconds from T;

In this section, we provide an algorithm for the translation of DP-systems in TaPN-nets. Tool
TAPAAL supports verification of specifications in timed computation tree logic (TCTL) language,
which allows expressing time and temporal properties of process dynamics [29] [30]. In the next
section, we demonstrate how to express these properties in TCTL-properties of converted TaPN-
nets.

159

Izmaylov A.A., Dworzanski L.W. Analysis of DP-systems Using Timed-Arc Petri Nets via TAPAAL Tool. Trudy ISP RAN/Proc. ISP RAS,
vol. 32, issue 6, 2020, pp. 155-166

To simulate DP-systems with models of Petri nets with real-time semantics, we need to represent
points moving along edges using clocks in a Petri net. The advance of a point along an edge in a
metric graph is modelled with the progress of the corresponding clock in a Petri net.

The number of points on a metric graph is not fixed and may grow (infinitely when edge lengths are
incommensurable); therefore, it is not possible to model DP-system using clocks in time or timed
Petri nets [19], [20] as these models have finite structurally-determined number of clocks. In TaPN-
nets, clocks are assigned to tokens [12], and the number of clocks can grow along with the number
of tokens in the net.

We start with the description of DP-system to TaPN-net translation procedure, and, later, cover some
design and technical details on the implementation of the translation.

We denote the set of points on the edge e by P(e). For a lead < vy, v, >, one of v, and v, is
marked with infinity. Note that, as movement of a point along an edge corresponds to a continuous
process, we model edges of DP-system with TaPN-net places; and, as arrival of a point at a vertex
corresponds to a discrete event, we model vertices of DP-system with TaPN-net transitions.

3.1 Algorithm for translation from a DP-system to a TAPN-net procedure

Step 1. For each edge e connecting vertices a and b in D, we create places e, and ey, in Ny 4;

Step 2. For each lead < a, b > in D with b marked with infinity, an arc from vertex a to a distinct
infinity-vertex is introduced in Nr,. We need to handle points moving away from vertex a
separately.

(a) create place ey, transition t,;, with urgency 0, and an arc from ey, to tg;, with time
interval [0,0];
(b) for each point on the arc < a, b >
i. create a token with 0 time at place e,;
ii. create transition t;, with urgency 0;
(c) for each point p;on arc < b,a >
i. create place e}, with a token;
ii. create an arc from e}, to t,, with time interval [x(p;), x(p))];
(d) for each arc from a to ¢, where ¢ # b, create an arc from t,, to e,.;

Step 3. For each already created place e, in Nr4 such that vertex a is not marked with infinity in D

(a) for each point p onarc < a,b >
i. create token at eqs with timer set to x(p);

(b) create transition t,;, with 0 urgency if b is not marked with infinity;

(c) create an arc with time interval [I(e), [(e)] from ey, to tgp;

(d) for each arc < b,c > in D, create an arc from ty, to ey, in Npy;

(e) create transition t'g;, an arc from eg, to t'y, with multiplicity 2, urgency 0, and zero
time interval, and arc from t';, back to eg,.

An example of such conversion is illustrated in fig. 2. As each undirected edge in D corresponds to

two opposite arcs, the number of places in NTA on the right is twice as the number of vertices in D

on the left. Transitions corresponds to the event of a point reaching a vertex; auxiliary transitions

are introduced to clean redundant tokens from edge-places in NTA to handle events when multiple
point came to a vertex simultaneously.

3.2 Algorithm for translation from timed-arc Petri nets to metric graphs

To use the results on the asympotics and estimates on growth and stabilization time of the number
of dynamic points in DP-system [6] to overapproximate TaPN-net the number of different token
age-values, we implement the translation of a restricted class of TaPN-nets into DP-systems.
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Fig.2. Metric graph D on the left and the resulting TAPN Nt1a on the right
Let us consider a class of TaPN-nets under the following restrictions:
1) The skeleton of TaPN-net is a marked graph, i.e., every place has exactly one incoming arc,

and exactly one outgoing arc [1];

2) All urgency time specifications are 0;

3) All arcs are labelled with point-intervals only, i.e., intervals of form [¢, t].

Let NTA be an input TaPN-net and D be the resulting DP-system. The next procedure converts the

TaPN-net to a DP-system. The DP-system D generates point each time NTA produces a new token

with timer.

1) For each transition t; in Np4, create vertex v; in D;

2) For each transition t;, place p, and transition t;, such that there is an arc from t; to p and an
arc from p to ¢;

a) create an edge connecting vertices v; and v; (which correspond to transitions t; and t;,
respectively) with a length equal to the time interval on the arc from p to t;; this
procedure may introduce multiple edges or self-loops, thus, an intermediate graph may be
not a metric graph; we provide a resolving strategy after the procedure;

b) for each token in p, put a point on beginning of edge from vito vj, i.e, at vertex vi;

3) For each place p, which has only inbound arcs or only outbound arcs

a) for each adjacent transition ¢, create a lead from corresponding vertex v;

b) if p has only outbound arcs, then for each token in p, for each adjacent transition ¢;, put a
point on the lead incident to corresponding vertex vimoving towards viand located on the
distance equal to the point-interval on arc < p, t; >.
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Fig.3. Example of self loop break
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To resolve multiple edges and self-loops introduced during the translation, we break one of edges e
into two edges by introduce a new vertex; lengths of these new edges are equal to the half [(e). For
self loops, we need to introduce two vertices, and they breaks edge e into three parts with lengths
equal to a third of [(e). This step, firstly, breaks the loop with one edge, and, secondly, breaks
multiple edges; the result of such step for a loop transition is illustrated in fig. 3.

3.3 Implementation details

The translation is implemented in tool mg-to-tapn as a TAPAAL extension; the tool uses TAPAAL

internal representation for storing and analysis of TaPN-nets. A JSON-based file format for

processing DP-systems was developed and its support was implemented. The file format is an

extension of JSON Graph Format [31]. To allow visualization of DP-systems, a support for

GraphML-based format compatible with yEd Graph Editor [32] was implemented.

As mg-to-tapn is an extension of TAPAAL, the following functions can be utilized both through

command line interface or graphical user interface of TAPAAL.

e Translate DP-system in JSON format to TaPN-net in TAPAAL representation;

e Translate TaPN-net in TAPAAL representation to DP-system in JSON format;

e Translate TaPN-net in TAPAAL representation to DP-system in GraphML-based yEd-
compatible format.

4. Checking TCTL properties of DP-system and experimental results

In this section, we demonstrate how to check DP-system time-temporal properties of a metric graph
using the implemented translation and provide results of performance experiments.

4.1 Checking time-temporal properties of a metric graph

Tool TAPAAL does not directly support the whole class of TCTL properties; therefore, for time-

temporal properties, we need to combine supported verification engines with additional auxiliary

net fragments to capture such properties. We demonstrate how to encode the following
propertiesusing this technique.

i. Isitpossible that more than N signals come to node X in K seconds. Firstly, we need to

capture the property that more than N signals come to node X. Arrival of a signal to X from Y
along arc <Y, X > corresponds to a firing of transition tyy in TaPN (see naming strategy in
section 3). We add a place p’y, which will be used as a counter for the number of signals-tokens
that came to X. Then, we connect each tyy to p'y with an arc; each firing of t,x will produce a
token in p'y. We call such a place counter for X. In addition, we need to determine a time point
when K seconds has passed. We introduce a new place pg;q, and put a token in pgyq,e. We add
urgent transition t;;,,, and connect P4, and ty;,With an arc specified by time interval [K, K].
So, place psiqare becomes empty when K seconds has passed. We call such a net fragment
consisting of place pg.q,¢ With a token, transition t;;,e, and arc < Pgyqre, trime > specified by
[K, K] as timer for K.
Finally, we can express the property as whether there is a reachable state when p’y has K or
more tokens, and pg.,,c has exactly one token. This property is purely temporal while time
features are captured using time specifications in timer for K. In CTL, the property is expressed
as EF((m(p'x) = N) & (m(Pstare) = 1))

ii. Is it possible that in the next K minutes two messages come with the difference of
their time moments less that € milliseconds. To check the property, we add timer for K
construction, counter for X, and transition t’. We add arc < p'y, t' > labelled with [g, £]. To
make, t' urgent, we use age invariant Inv: < € on p'. If there are two or more tokens inp'y, ,
then those tokens come to node X with time difference less than €. The corresponding CTL
property is EF (p'x = 2) & WDstare = 1))
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iii. For the system initial phase of duration N, if a point comes to node X at time T, then
no points comes to node Y within K seconds from T. We add counter for X, counter forY,
and timer for N. We add transition t'y, arc < p'y, t'y >labelled with [K, K], age invariant Inv: <
K' on p'y making t'y urgent, urgent transition t'y, and arc < p'y , t'y >. If a token is in p'y for
K seconds, then t'y fires consuming it; if a token came to p'y, it leaves the system via t'y
immediately.

The property become violated if p’y and p’y hold tokens simultaneously, as it corresponds to a
state where a token, which timer value is less than K, is in X, and a token came to Y . The resulting
CTL property is AG-((p'y = D& @'y = 1) & Wstare = 1))

Table 1. Performance results for verifying the first property

cie (innodes) © 519 20 30
Complete 0.05s |0.11s|1.36s (11mb) [41.29s (26mb) |-
Key 0.03s |0.07s/0.09s 0.4s (6mb) 11.91s (86mb)
Cycle 0.02s |0.03s|0.03s 0.02s 0.03s
Star 0.05s ]0.09s/1.10s (13mb) |51.53s (353mb) |> 300s (> 1.8gb)
Table 2. Performance results for verifying the third property

raph iz
(Ginazo (;Zf)e/ sizels 15 |10 20 30
Complete 0.015/0.01s/0.03s 0.65s (11mb) -
Key 0.01s|0.015/0.08s 4.21s (45mb) >300s (> 1.8gb)
Cycle 0.01s|0.01s/0.01s 0.01s 0.06s / 2mb
Star 0.01s|0.01s|> 300s (> 1.6gb) |14.16s (120mb) |>300s (> 1.1gb)

4.2 Experimental results

We conducted experiments on metric graphs of different topology: star graph, complete graph, cycle
graph, and «key» graph (linear graph joined with a cycle of 3 elements on the end). The metric
graphs were converted to TaPN-nets in TAPAAL format. The first and third property, encoded as
suggested in the previous section, were checked for the converted metric graphs; verification time
and memory consumed were measured.

The results for the first property are given in Table 1. For this experiment, we checked the first
property for the initial fragment of 1000 time units. Time and consumed memory were measured; if
the amount of consumed memory was negligible, the value is not provided. The results for metric
graph K3o were not obtained as more than a thousand nodes in the resulting TaPN-net exceeded some
internal restrictions of TAPAAL. The low verification time for a cycle metric graph is stipulated by
the low node degrees in the graph thus leading to a smaller number of transitions in the converted
TaPN-net. The results for the third property are given in Table 2. For this experiment, we checked
the second property with K= 20 and N = 1000. We see almost the same picture with the exception
of that for key metric graphs the memory restrictions come in play earlier. The experiments were
performed on a personal computer with 2 GHz Quad-Core Intel Core i5 processor and 16 GB of
memory (3733 MHz LPDDR4X) running under macOS 11.0.1 operating system.

5. Conclusion

In this paper, we developed an approach that enable us to analyze TCTL-properties of DP-systems
based on the implementation of the translation between DP-systems and TaPN-nets. We
demonstrated how to conduct analysis of TCTL properties of DP-systems by adding an auxiliary net
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fragment. For several time-temporal properties of metric graphs, we showed how to express the
properties in TAPAAL using an auxiliary subnet and TAPAAL TCTL queries.

The automated translation allows using the well-known efficient tool TAPAAL to carry out
simulation and verification (analysis of TCTL properties) of DP-system dynamics and interpreting
results for DP-systems on a given restricted subclass of TaPN-nets.

The experiments showed that for scarce mid-sized graphs analysis could be done quite effectively.
As these experiments were conducted for the first time, to get more straightforward results, we
neither used any optimizations nor tried to encode properties in a more compressed manner.
Therefore, we expect that optimizations could considerably improve performance on the benchmark
tests as complete and star graphs possess much symmetry.

To improve the precision of the overapproximation of a TaPN-net with a DP-system, the already
known counting functions and asymptotics for undirected metric graphs shall be extended to directed
metric graphs. This direction is being under current research.
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