Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

A Model Checking-Based Method of
Functional Test Generation for HDL
Descriptions

M.S. Lebedev <lebedev@ispras.ru>
S.A. Smolov <smolov@ispras.ru>
Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. Automated test generation is a promising direction in hardware verification research
area. Functional test generation methods based on models are widespread at the moment. In
this paper, a functional test generation method based on model checking is proposed and
compared to existing solutions. Automated model extraction from the hardware design’s source
code is used. Supported HDLs include VHDL and Verilog. Several kinds of models are used
at different steps of the test generation method: guarded action decision diagram (GADD),
high-level decision diagram (HLDD) and extended finite-state machine (EFSM). The high-
level decision diagram model (which is extracted from the GADD model) is used as a
functional model. The extended finite-state machine model is used as a coverage model. The
aim of test generation is to cover all the transitions of the extended finite state machine model.
Such criterion leads to the high HDL source code coverage. Specifications based on transition
and state constraints of the EFSM are extracted for this purpose. Later, the functional model
and the specifications are automatically translated into the input format of the nuXmv model
checking tool. nuXmv performs model checking and generates counterexamples. These
counterexamples are translated to functional tests that can be simulated by the HDL simulator.
The proposed method has been implemented as a part of the HDL Retrascope framework.
Experiments show that the method can generate shorter tests than the FATE and RETGA
methods providing the same or better source code coverage.

Keywords: hardware design; functional verification; static analysis; test generation; guarded
action; high-level decision diagram; extended finite state machine; model checking.

DOI: 10.15514/ISPRAS-2016-28(4)-3

For citation: Lebedev M.S., Smolov S.A. A Model Checking-Based Method of Functional
Test Generation for HDL Descriptions. Trudy ISP RAN / Proc. ISP RAS], vol. 28, issue 4, 2016,
pp. 41-56. DOI: 10.15514/ISPRAS-2016-28(4)-3

1. Introduction

Functional verification is an expensive and time-consuming stage of hardware design
process [1]. Due to hardware designs increasing complexity, automated test
generation seems to be important and challenging. To avoid design complexity,
automated verification methods often utilize mathematical abstractions of system

41

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

properties and behavior, so-called models. Models can be created manually or
automatically extracted from the system’s source code. Automated verification
methods based on model extraction from the HDL (Hardware Description Language
— a collective name for several languages described below) source code are
considered in this paper. Models can be based on the following formal descriptions:
finite-state machines, decision diagrams, Petri nets [2], etc.

Model checking [3] is an approach to set up the correspondence between the model
of the system and formal conditions (specifications). For every specification a model
checker tries to produce a counterexample — an input stimuli sequence that leads the
system into a specification-contradicting state. Counterexample construction is often
used for functional test generation purposes.

Proof of equivalence of a model and the corresponding system is an important issue
when model checking is used for hardware verification. There is no need in such proof
when the model is automatically extracted from the system’s source code and
translated into the model checker’s format.

A method of functional test generation for hardware is proposed in this paper. It is
based on automatic extraction of High-Level Decision Diagrams (HLDD) [4] from
the system’s source code. Synthesizable sets of VHDL [5] and Verilog [6] HDLs are
supported. Extracted models are then automatically translated into SMV (Symbolic
Model Verifier) language supported by the nuXmv [7] model checker. Extended
Finite State Machine (EFSM) transition constraints are used as specifications for
model checking. EFSM model is also extracted from the system’s source code.
Counterexamples built by the nuXmv model checker are then translated into an HDL
testbench which can be simulated by an HDL simulator.

The rest of the paper is organized as follows. Section 2 contains a review of functional
test generation methods based on model extraction from the HDL source code. In
Section 3 basic definitions are given. Section 4 contains HLDD construction and test
generation methods. Section 5 is dedicated to the experimental results. Section 6
concludes the paper.

2. Related works

The idea of model extraction from the HDL source code and following test generation
is not new. A prototype of CV tool for VHDL description model checking is presented
in [8]. The tool’s execution process consists of five stages. On the first stage, a VHDL
description is parsed and an internal representation is constructed. A Binary Decision
Diagram (BDD) based model is built on the second stage. On the third stage a CTL-
based specification is parsed. The specification language syntax is described in the
paper. On the fourth stage the specification parsing result and the BDD-based model
are passed to the CBMC [9] model checker. On the final stage, the model checker
output is translated into tests that can be executed by the HDL simulator. It is stated
that BDD-based model size plays the key role in the model checking process. Model

42

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

size reduction heuristics usage is suggested to avoid state space explosion but no
heuristics are offered in the paper.

In [10], extraction of the EFSM model and generation of tests that cover all the model
transitions are described (so-called FATE method). This method assumes that the user
provides additional information for the tool about signal semantics (for example,
which of the signals encodes state). The EFSM extraction process contains several
stages of transition structure simplification (embedded conditions elimination,
compatible transitions union, dataflow dependency analysis). The test generation
method is based on the state graph traversal through random walk and backjumping
techniques.

In [11] an improved modification of method [10] is proposed. Optimizations
described concern path reachability (weakest precondition [12] is used instead of the
approximate approach) and test filtering tasks. A new functional test generation
method called RETGA is also proposed in [11]. This method is based on the algorithm
[13] for automated EFSM model extraction from HDL descriptions. The algorithm
does not require additional information about signals\variables semantics; for state
and clock-like variable detection it uses heuristics based on dataflow dependencies.
Experiments have shown that RETGA method produces shorter tests with higher
HDL code coverage than FATE and even improved FATE do.

It should be noted, that state graph traversal techniques (that FATE and RETGA
methods use) do not guarantee coverage of all the EFSM model transitions. One of
the problems concerns counter [11] variables that are defined in transition loops and
used in transition guards, so an EFSM simulation engine needs to recognize at which
value of the counter it is going to finish the loop execution.

3. Basic definitions

Suppose that all models described below run in discrete time that implies clock
presence. Clock C is a set of events {cu,...,ck} where an event ¢ = {signal, edge} is a
pair, consisting of a one-bit signal (so-called clock pulse) and a type of registration
called edge (i.e. positive edge when signal changes its value from 0 to 1 and negative
edge otherwise).

Let V be a set of variables. A valuation is a function that associates a variable v e V
with a value [v] from the corresponding domain. Let Domy be a set of all valuations
of V. A guard is a Boolean function defined on valuations (Domy — {true, false}).
An action is a transform of valuations (Domy — Domy). A pair y — &, where y is a
guard and ¢ is an action, is called a guarded action (GA). It is implied that there is a
description of every function in some HDL-like language (thus, we can reason about
not only semantics, but syntax).

Let guarded actions be synchronized [14], if each GA is associated with a clock. A
system {{C®, y0) — & M};_; | of synchronized guarded actions can be represented by
an oriented acyclic graph G = (N, E, C) called Guarded Actions Decision Diagram
(GADD). Here N is a set of graph nodes, E is a set of graph edges, and C is a clock.

43

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

N contains two non-intersecting subsets: a set Ns of non-terminal nodes ns that are
marked by expressions y(ns); a set N; of terminal nodes n; that are marked by actions
d(ny). Graph edges can start from non-terminal nodes only and finish either in terminal
or in non-terminal nodes. Edges e e E are marked by sets Val(e, n) of accepted values
y(n) (here edge e is an outgoing edge for the node n, e € Out(n)). The node n € Ns
can have no more than one eq € Out(n) that is marked by default keyword — it means
that for this path in G an expression y(n) equals to a value that does not belong to any
marking sets of the other edges outgoing from the node n. Supposing that the GADD
contains exactly one root node nreot (the node without incoming edges, In(Nroot) = &),
a set of paths from the root node to all the terminal nodes produces a system of
synchronized guarded actions. For example, the i path, including n1@,...nn® nodes
and e®,..., en1® edges (MO =nwo, Nm® e Ny e® e out(nu®) A In(nus1®),
u=1,..,m-1), defines a guarded action with pi@...pn1® (p/ = AND(y(n;) == q),
r=1,....,m-1, q € Val(er, ny)) conjunction as a guard and 5(nn®) as an action. The
guarded action clock is a subset of the GADD clock.

In [4] a definition of a high-level decision diagram (HLDD) is given and is shown
that every variable of an HDL description can be represented by a function
v = f(vy,...,va) = f(V) in terms of HLDD H,. Let Z(v) be a finite set of all possible
values of a variable v € V. A High-Level Decision Diagram for v is an oriented
acyclic graph Hy, = (M, 7, V) where M is a set of nodes, and 7"is a mapping M — 2M.
Let 7{m) be a set of subsequent nodes of the node m € M and 7}(m) be a set of
preceding nodes of the node m. A node mo of the graph Hy is said to be initial if the
set of its preceding nodes is empty: 7"-I(mg) = &. M consists of two non-intersecting
subsets: My for non-terminal nodes and M; for terminal nodes. All the non-terminal
nodes m; € M, are marked by variables v(mc) € V and meet the following condition:
2 <|Tmc)| < |Z(v(m))]- This means that m¢ has at least two subsequent nodes but not
more than the number of possible values of v(mc). All the terminal nodes my € M; are
marked by functions v(my) = fi(Vi), f(Vi) € F (Vk < V). Usually some of these
functions are trivial and equal either to variables vy € V or to constants. All the edges
are marked by sets of accepted values of variables in the same manner as in the GADD
definition; the semantics of the default edges is also similar.

On every tick of the clock, the HLDD Hy assigns a value to the target variable v
through an activation procedure. Starting from the initial node my it calculates values
of the variables which mark non-terminal nodes. For a value e of the variable v(mc),
e € Z(v(mc)), the corresponding edge from the node m: € M to the subsequent node
meé e /{m) is activated. A vector V' of variable values activates the path 1(mg, my)
from mq to the terminal node my marked by the function fi(Vi) that determines the
value of the target variable v.

4. HLDD model construction and test generation method
The proposed test generation method consists of the following steps:

44

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

e HDL (VHDL/Verilog) description parsing and GADD model construction.

e HLDD model construction using the GADD model.

e HLDD model and specification translation into the nuXmv model checker
input language (SMV maodel) [16].

e SMV model checking by the nuXmv model checker and translation of
counterexamples into HDL tests.

The first step has been implemented in [13] so we will start from the second step.
Note that all the actions, which mark the terminal nodes of the GADD model, are
represented in the static single assignment (SSA) [15] form.

4.1. HLDD model construction

GADD and HLDD models preserve the module structure of the original HDL
description. Every HDL description process is represented by a single GADD. The
GADD G = (N, E, C) is used as a basis for HLDD construction for every non-input
variable of the process. HLDD construction algorithm pseudo code is listed below:

proto = new;

for node e N do
hldd_node = transform_node(node);
proto.add(hldd_node);

end

copy_edges(E, proto);

for (v : non_input_variables(G)) do
hldd = proto.keep_assigns(v);
hldd.add_missing_terminals();
hldd.transform_identical_assigns();

end

At the first step the HLDD prototype proto is created. GADD nodes are transformed
into HLDD nodes with the help of the transform_node method and added to the
prototype. Terminal GADD nodes n; € N; are transformed into terminal HLDD nodes
my € M. Every terminal node n; marked by multiple assignment action o(ny) is
transformed into a sequence of nodes. Every node in this sequence is marked by a
corresponding single assignment ax. Every terminal HLDD node is marked by a target
variable vy (which is the left-hand side of ax) and a function fi(Vi) (which is the right-
hand side of ay).

Non-terminal GADD nodes ns € N are transformed into non-terminal HLDD nodes
m; € M,. Guard y which marks the node ns is replaced by a new variable guard(mc)
which marks the node m¢. The new HLDD that contains a single terminal node
marked by y is created for this variable (create variable from_ switch method).
GADD edges are transformed into HLDD edges by the copy_edges method. The
corresponding values are not changed.

45

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

Then for every non-input variable v the HLDD hldd is created which is actually a
modified copy of proto. The keep_assigns method removes from M; the terminal
nodes which are not marked by v. After that the add_missing_terminals method adds
new terminal nodes marked by f(v) =v to the edges which lack the subsequent
terminal nodes. This means that the value of v does not change if any path to such
node is activated. The transform_identical_assigns method searches for such non-
terminal nodes m. whose reachable terminal nodes are marked by the same function
f(vk), and replaces mc and its reachable subgraph with the only terminal node marked
by fi(v).

Consider an example of the HLDD model construction for a simple VHDL
description. This description contains a single module and a single process. The
module interface consists of input variables clk, rst, X, y and an output variable res
(all of 1-bit size). The process contains two internal variables: a 1-bit size vector cnt
and an integer state (that can be assigned either 0 or 1). The source code of the process
is listed below:

process (clk, rst, X, y)
variable cnt: std_logic;
variable state: integer range 0 to 1;

begin

if (rst =“1") then
cnt =0’

state :=0;

elsif (clk = “1”) then
if (state = 1) then
cnt:=xory;
state := 0;
elsif (state = 0) then
cnt:=xandy;

state :=1;
end if;
res <= cnt;
end if;

end process;

0 shows the GADD model of the process. Non-terminal nodes of the GADD are
shown as diamonds and correspond to branch expressions. Terminal nodes are shown
as rectangles and correspond to basic blocks. Outgoing edges from the non-terminal
nodes are marked by possible values of the branch expressions. Note that the default
edge on 0 is unreachable because the state variable can only take the value of 0 or 1.
The clock of the GADD is formed by events of clk, rst, x and y signals.

46

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

/
cnt<=0
state<=0

y \ Y
cnt<=(x | y) cnt<=(x & y)
state <= 0 state <=1 res<=cnt empty
res<=(x |y) res<=(x & y)

Fig. 1. GADD model.

0 shows the HLDD prototype. Expressions, which mark the non-terminal nodes, are
replaced by guard0, guardl, guard? variables.

cnt<=(x | y)

res<=(x | y)

res<=(x &y)

Fig.2. HLDD prototype.

Consider the HLDD construction for the cnt variable. Terminal nodes marked by cnt
are highlighted in grey on 0. Terminal nodes, which are not marked by this variable,
are removed. New terminal nodes marked by cnt are added to the free non-terminal

47

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

node edges (this means that the value of cnt does not change on these paths). The final
HLDD is represented on 0. Similar diagrams are constructed for the other non-input
variables of the HDL description (in our example those are: state and res).

Fig. 3. HLDD of a cnt variable.

4.2. SMV model construction and checking

The constructed HLDD model is translated into an SMV language description.
Hardware design module structure is preserved. Any variable constraints (like the
range of possible values that is specified for the state variable) and their initial values
described in the HDL description are added to the SMV model.

Specification construction is based on the EFSM model extracted from the same HDL
description. Formal definition of the EFSM model and its extraction algorithm from
an HDL description are presented in [13]. Here we provide only the informal
definition. Extended finite-state machine is a special case of an ordinary finite-state
machine (FSM). It contains sets of inputs, outputs and internal variables. EFSM
transitions are marked by guard expressions, which depend on input and internal
variable values, and by actions that can change internal and output variable values. A
transition can be enabled only if its guard becomes true. When a transition is enabled,
its action is executed. Specifications used by the proposed method are represented as
negations of the EFSM transition guards. Negation is used to make the model checker
build a counterexample — a sequence of data states and input stimuli that contradicts
the specification (and thus satisfies the corresponding guard).

48

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

The nuXmv model checker checks the SMV model along with the specifications.
Output counterexamples are translated into a test set aimed at covering reachable
EFSM transitions.

Below you can see the HLDD-to-SMV translation result for the cnt and guard0
variables. NuXmv-compatible SMV language format is used. The description
consists of the variable declaration section (VAR) and the assignment section
(ASSIGN). The init construct defines the initial value of a variable. The next construct
defines the value of a variable in the next model state. The assignment (“:=") defines
the value of a variable in the current model state. Numeric values in the example are
of bit vector type and are represented by “O<type><size> <value>" construct.

VAR
cnt : word[1];
guardoO : boolean;

AéSIGN
init(cnt) := 0d1_0;

ASSIGN
next(cnt) :=
case
(guard0 = TRUE) : 0d1_0;
(guardO = FALSE) :
case
(guardl = TRUE) :
case
(guard2 = 0sd32_1) : (x| y);
(guard2 = 0sd32_0) : (x & Y);

TRUE : cnt;
esac;
(guardl = FALSE) : cnt;
esac;
esac;

Q.Liardo = (rst=0d1_1);
guardl := (clk = 0d1_1);
guard?2 := state

The example of an SMV specification is listed next:

LTLSPEC ! F ((state = 0sd32_0) & (clk = 0d1_1) & !(rst = 0d1_1));

EFSM transition reachability condition consists of the state variable constraint (which
determines the source state of the transition) and the guard condition depending on
the clk and rst variables.

The nuXmv model checker generates the following counterexample for this
specification:

49

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

Trace Type: Counterexample

-> State: 1.1 <-
SAMPLE.process.state = 0sd32_0
SAMPLE.process.cnt = 0udl 0
SAMPLE.process.guard2 = 0sd32_0
SAMPLE.process.guardl = FALSE
SAMPLE.process.guard0 = FALSE
SAMPLE.process.res = Qud1l_0
clk =0ud1_0
y=0udl_0
X =0ud1_0
rst=0udl 0

-> State: 1.2 <-
SAMPLE.process.guardl = TRUE
clk =0ud1_1

The first state shows the initial values assigned to the variables. The second state
shows only the values that have changed. We can see that the second state contradicts
the given SMV specification: clk is equal to 1, while the rst and state variables are
equal to 0.

5. Experimental results

The proposed test generation method was implemented as a part of the HDL
Retrascope 0.2.1 software tool [17]. Java language was used for development along
with the Fortress formulae manipulation library [18]. Some HDL descriptions from
the ITC’99 benchmark [19] were used for testing of the proposed approach.

The nuXmv model checker supports both symbolic model checking and bounded
model checking [21] methods. In some cases, symbolic model checking needed too
much time and computer resources because of the state explosion (for example, B04,
B10 and B11 designs). Bounded model checking could manage this problem by
exploring the model state space only up to some bound. However, bound value affects
the model checking results (not all the counterexamples may be obtained at the
specified bound). Therefore, in some cases the bound size was iteratively increased
in order to get all possible counterexamples.

Generated tests were simulated by the QuestaSim HDL simulator [20]. Test properties
(length and source code coverage) were compared to existing test generation methods
like FATE [10], RETGA [11] (these methods are based on EFSM model extraction
from the HDL descriptions and are targeted at covering the EFSM model transitions)
and random test generation.

Ocontains information about the ITC’99 designs that were used for test generation:
their source code size and the corresponding SMV model size (without
specifications). Size is given in lines of code.

50

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

Table 1. HDL description and SMV model size

Design HDL SMV
B01 102 207
B02 70 143
B03 134 637
B04 101 809
B06 127 442
B07 92 370
B08 88 315
B09 100 263
B10 167 755
B1l 118 368

Ocontains the test length information. Test length is given in clock cycles. The length
of tests generated by the random generation method corresponds to the point when
the test coverage growth stops (maximum length was chosen as 1000000 clock
cycles). The sign “-” means that the corresponding method failed to generate tests for
the corresponding HDL design.

Table 2. Test length

Design FATE RETGA SMV Random
B01 115 49 69 300
B02 62 33 47 80
B03 - - 504 2000
B04 104 36 67 200
B06 198 76 88 700
B07 246 166 249 1000
B08 31 52 31 1000000
B09 19 231 84 1000000
B10 173 135 134 650000
B11 101 721 194 1000000

In 5 of 10 cases tests generated by the proposed method are shorter than tests
generated by the FATE method and longer that RETGA tests. Either the rest tests are
of comparable length with the leader (RETGA), or tests generated by the FATE
method provide lower coverage. Definitive conclusion about the advantages or
disadvantages of the proposed method in comparison with the RETGA method cannot
be made using the selected HDL description set.

Notice that unlike the FATE and RETGA methods the proposed method is not based
on EFSM traversal. So it was able to generate the test for BO3 design in contrast to
those methods (EFSM extracted from this design is too complex for traversal).
Oshows the HDL source code statement coverage in comparison to the FATE,
RETGA and random generation methods.

51

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

Table 3. Source code statement coverage

Design FATE RETGA SMV Random
B0O1 97,14% 100% 100% 100%
B02 100% 100% 100% 100%
B03 - - 100% 100%
B04 100% 100% 100% 100%
B06 100% 100% 100% 100%
B07 93,93% 93,93% 93,93% 84,85%
B08 81,81% 100% 100% 90,91%
B09 35,29% 100% 100% 61,77%
B10 95,94% 100% 100% 97,29%
B11l 69,23% 94,87% 94,87% 87,18%

Oshows the HDL source code branch coverage in comparison to the FATE, RETGA
and random generation methods.

Table 4. Source code branch coverage

Design FATE RETGA SMV Random
B01 96,15% 100% 100% 100%
B02 100% 100% 100% 100%
B03 - - 100% 100%
B04 100% 100% 100% 100%
B06 100% 100% 100% 100%
B07 94,73% 94,73% 94,73% 73,69%
B08 76,92% 100% 100% 84,62%
B09 35,71% 100% 100% 57,15%
B10 90,47% 100% 100% 97,61%
B11 71,87% 96,87% 96,87% 90,63%

The proposed method achieved the same code coverage as the RETGA method at the
specified set of HDL descriptions. BO7 and B11 HDL description coverage is less
than 100% because of the unreachable code in these designs.

6. Conclusion and future work

The functional test generation method based on automated HLDD model extraction
and checking with nuXmv is presented in this paper. The main advantage of this
method is its flexibility in choosing a test target (through using different kinds of
specifications). EFSM transition coverage is presented for comparison to the other
test generation methods (FATE, RETGA). Any other specifications can be formulated
and checked in order to get a test aimed at covering the corresponding property of a
model. The presented implementation of the proposed approach does not produce
shorter tests than existing approaches on the chosen hardware design set. Simple
optimizations (like test filtering) can be helpful and are going to be implemented in
the nearest future.

52

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

Future work is focused on applying the method to more complex hardware designs
(including Verilog-based). In this case complexity is defined by the number of
execution paths in processes and the number of processes and modules in an HDL
description. Process decomposition using dataflow analysis methods and predicate
abstraction [22] test generation methods are under research now.

Acknowledgment

Authors would like to thank Russian Foundation for Basic Research (RFBR). The
reported study was supported by RFBR, the research project number is 15-07-03834.

References

(1]

[2].
[3].
[41.

(5]

[6].

[7].

[8].

[9].
[10].

[11].

[12].
[13].

. J. Bergeron. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003. 478 p.

V.G. Lazarev, E.I. Piil'. Control automata synthesis. Energoatomizdat, Moscow, 1989.
328 p. (in Russian).

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, Cambridge,
2000. 314 p.

R.J. Ubar, J. Raik, A. Jutman, M. Jenihhin. Diagnostic modeling of digital systems with
multi-level decision diagrams. Design and Test Technology for Dependable Systems-on-
Chip, 2011. pp. 92-118.

IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of
IEEE Std 1076-2002), 2009. pp.c1-626.

IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), 2006. pp.0_1-560.

D. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M.
Roveri, S. Tonetta. The nuXmv symbolic model checker. Proceedings of the 16%
International Conference on Computer Aided Verification (CAV), 2014, Ne 8559. pp.
334-342.

D. Deharbe, S. Shankar, E.M. Clarke. Model checking VHDL with CV. Proceedings of
the Second International Conference on Formal Methods in Computer-Aided Design
(FMCAD), 1998. pp. 508-514.

CBMC model checker. Available at: http://www.cprover.org/cbmc/

G. Guglielmo, L. Guglielmo, F. Fummi, G. Pravadelli. Efficient generation of stimuli for
functional verification by backjumping across extended FSMs. Journal of Electronic
Functional Testing: Theory and Application, 2011, Ne 27(2). pp. 137-162.

I. Melnichenko, A. Kamkin, S. Smolov. An extended finite state machine-based approach
to code coverage-directed test generation for hardware designs. Trudy ISP RAN / Proc.
ISP RAS, 2015, vol. 27, issue 3,. pp. 161-182. DOI: 10.15514/ISPRAS-2015-27(3)-12.
E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976. 217 p.

S. Smolov, A. Kamkin. A method of extended finite state machines construction from
HDL descriptions based on static analysis of source code. Nauchno-tehnicheskie
vedomosti Sankt-Peterburgskogo gosudarstvennogo politehnicheskogo universiteta.
Informatika. Telekommunikacii. Upravlenie. [St. Petersburg State Polytechnical
University Journal. Computer Science. Telecommunication and Control Systems],
Ne 1(212), 2015. pp. 60-73 (in Russian).

53

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

[14]. J. Brandt, M. Gemiinde, K. Schneider, S. Shukla, J.-P. Talpin. Integrating system
descriptions by clocked guarded actions. Forum on Design Languages, 2011. pp. 1-8.

[15]. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, Ne 13(4), 1991. pp. 451-490.

[16]. M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S.
Mover, M. Roveri, S. Tonetta. NuXmv 1.0 User Manual. 2014. pp. 7-44. Available at:
https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home.

[17]. HDL Retrascope toolkit. Available at: http://forge.ispras.ru/projects/retrascope.

[18]. Fortress library. Available at: http://forge.ispras.ru/projects/solver-api.

[19]. ITC 99 benchmark. Available at: http://www.cad.polito.it/tools/itc99.html.

[20]. QuestaSim simulator. Available at: https://www.mentor.com/products/fv/questa/.

[21]. E. Clarke, A. Biere, R. Raimi, Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 2001, vol. 19, issue 1, pp. 7-34.

[22]. E. Clarke, M. Talupur, H. Veith, D. Wang. SAT based predicate abstraction for hardware
verification. Lecture Notes in Computer Science, 2004, vol. 2919, pp. 78-92.

NeHepauunsa pyHKUMOHANbHbLIX TECTOB ANs
HDL-onucaHn Ha OCHOBE NPOBEPKMU

Moaerneu

M.C. Jlebedes<lebedev@ispras.ru>
C.A. Cmonos <smolov@ispras.ru>
Hnemumym cucmemnoezo npoepammuposanus PAH,
109004, Poccus, 2. Mockea, yn. A. Conocenuyvina, 0. 25

AHHOTamms. Pa3paboTka MeETONOB aBTOMAaTUYECKOM TIeHepald TEeCTOB COCTaBIAET
TIepCTIEKTUBHOE HAIlpaBJICHUE B 00IacTH BepHpHUKaINK IHppoBoi ammapaTypsl. Ha Texymumit
MOMEHT OOJIBIIIOE PACTIPOCTPAHEHHE UMEIOT METO/Ibl TeHepaluy (HYHKIMOHAIBHBIX TECTOB Ha
ocHOBe Mojieneil. B maHHO# paboTe nmpencTaBieH METo/1 reHepaliy (QYHKIHOHAIBHBIX TECTOB
Ha OCHOBEC ITPOBEPKHU MO}leHeﬁ U pE3YyJIbTAThI €T0 CPABHECHUS C CYIIECTBYIOIIUMHU PECUICHUSAMU.
B Meroze ncmosb3yercs aBTOMaTHUECKOE M3BJIE€YeHHEe Mofeneld u3 ucxoaHoro koma HDL-
onucanus anmnaparypsl. [TognepskuBatores s3eiku VHDL n Verilog. Meton renepanuy TectoB
BKITIOYAa€T aBTOMATHYECKOE IIOCTPOCHHE MOJeNeld CIEAyIONMX THIIOB: peIIaloliue
JMarpaMMbl CHCTeMbI oxpaHsiembix aeiicteuii (Guarded Action Decision Diagram,GADD),
BBICOKOYpOBHeBbIe permraromie nuarpammel (High-Level Decision Diagrams, HLDD) wu
paciupenHbie koneunbie aBTomatsl (Extended Finite-State Machines, EFSM). HLDD-mozens
HCHONB3yeTCsl B KauecTBe (yHKUMOHaNbHOH Momenu. Mopens EFSM wucnomesyercs B
KauecTBE MOJETH MOKpHITHA. Llenplo TecTUpOBaHMS SBISETCS MOKPBHITHE BCEX IEPEXOJ0B
PaCIIMPEHHOT0 KOHEYHOTO aBTOMaTa. BeIOOp Takoro KpuTepHst MO3BOJISET MOTYYHTh BBICOKOE
nokpeitTHe ucxoanoro koga HDL-onucanus. V3 EFSM-moznenu usBnekaroTces cerudukamnim,
OCHOBAaHHbIE HA OrPAaHUYCHMSX HA IIEPEXOJbl M COCTOSHMA. 3aTeM crenuuKamuud u
(yHKIMOHATBHASI MOJISIb aBTOMAaTUIECKH TPAHCIUPYIOTCS BO BXOIHOH ()opMaT HHCTPYMEHTa

54

Jle6enes M.C., CmonoB C.A. I'enepauust GpyHKIMOHAIBHBIX TecToB Juisi HDL-onucanuit Ha 0OCHOBE MIPOBEPKH MOJEICH.
Tpyowt UCII PAH, Tom 28, Beim. 4, 2016, ctp. 41-56.

npoBepkud Mozened nuXmv. MHCTpYMEHT BBINOIHAET IIPOBEPKY MOJAEIM U CTPOUT
KOHTpHpHMepsl. KOHTpIIpHMepHI TpaHCIHPYIOTCS B (QYHKIHOHAIBHEBIE TECTHI, KOTOPBIE MOTYT
ObITh UcToNHEeHH ¢ noMomsio HDL-cumynsatopa. IIpemnaraemplii Meton ObIT peaan3oBaH
nporpamMmmHo B uHctpymente HDL Rertrascope. Pe3ynbTaThl S3KCIIEpUMEHTOB MOKa3bIBAIOT,
YTO METOJ reHepupyer Oomnee kopoTkue TecThl, yeM Metoabl FATE um RETGA, mpu
obecriedeHIN TaKoOTO0 e WM JIYYIIero MOKPHITHS HCXOIHOTO KOJa.

KmioueBsie cioBa: nudposast ammaparypa; GyHKIMOHAIbHAs BepH(UKanus; CTaTHYECKHit
aHaIM3; FeHepalus TECTOB; OXPaHsIeMOe JeHCTBHE; BHICOKOYPOBHEBAsI peIaroIasl AUarpaMma;
pacUIMpeHHBII KOHEUHbIH aBTOMAT; IPOBEPKA MOJEIIH.

DOI: 10.15514/ISPRAS-2016-28(4)-3

I nutupoBanus: Jieoenes M.C., Cmonor C.A. ['eHepanus GyHKIIMOHATBHBIX TECTOB IS
HDL-onucanuii Ha ocHOBe TipoBepku moxeneid. Tpyast UCIT PAH, tom 28, Boim. 4, 2016 .
crp. 41-56 (na anrmuiickom). DOI: 10.15514/ISPRAS-2016-28(4)-3

Cnucok nutepatypbl

[1]. J. Bergeron. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003. 478 p.

[2]. Tasapes B.T'., Iuitne E.M. CuHTe3 ympaBJsOIMX aBTOMATOB. DHEProaTOMH3/AT,
Mocksa, 1989. 328 c.

[3]. E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking. MIT Press, Cambridge, 2000.
314 p.

[4]. RJ. Ubar, J. Raik, A. Jutman, M. Jenihhin. Diagnostic modeling of digital systems with
multi-level decision diagrams. Design and Test Technology for Dependable Systems-on-
Chip, 2011. pp. 92-118.

[5]. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of
IEEE Std 1076-2002), 2009. pp.c1-626.

[6]. IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), 2006. pp.0_1-560.

[7]. D. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M.
Roveri, S. Tonetta. The nuXmv symbolic model checker. Proceedings of the 16%
International Conference on Computer Aided Verification (CAV), 2014, Ne 8559. pp.
334-342.

[8]. D. Deharbe, S. Shankar, E.M. Clarke. Model checking VHDL with CV. Proceedings of
the Second International Conference on Formal Methods in Computer-Aided Design
(FMCAD), 1998. pp. 508-514.

[9]. CBMC model checker. Toctymro 1o cepuike: http://www.cprover.org/cbhmc/

[10]. G. Guglielmo, L. Guglielmo, F. Fummi, G. Pravadelli. Efficient generation of stimuli for
functional verification by backjumping across extended FSMs. Journal of Electronic
Functional Testing: Theory and Application, 2011, Ne 27(2). pp. 137-162.

[11]. 1. Melnichenko, A. Kamkin, S. Smolov. An extended finite state machine-based approach
to code coverage-directed test generation for hardware designs. Proceedings of the
Institute for System Programming, 2015, Ne 27(3). pp. 161-182. DOI: 10.15514/ISPRAS-
2015-27(3)-12.

55

Lebedev M.S, Smolov S.A. A Model Checking-Based Method of Functional Test Generation for HDL Descriptions.
Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 41-56.

[12].
[13].

[14].

[15].

[16].

[17].
[18].
[19].
[20].

[21].

56

E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976. 217 p.

C. A. Cmonos, A. C. Kamkus. MeTos OCTPOEHUS paCIIMPEHHBIX KOHEUHBIX aBTOMAaTOB
no HDL-omucaHuio Ha OCHOBE CTaTMYECKOro aHanmuM3a koxa. HaydHo-TexHHYeckue
Bemomoctu CIIGITIY. Wudopmaruka. TemexkommyHukauuu. Yupaeienue, 2015,
Ne 1(212), 60-73.

J. Brandt, M. Gemiinde, K. Schneider, S. Shukla, J.-P. Talpin. Integrating system
descriptions by clocked guarded actions. Forum on Design Languages, 2011. pp. 1-8.

R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, Ne 13(4), 1991. pp. 451-490.

M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S.
Mover, M. Roveri, S. Tonetta. NuXmv 1.0 User Manual. 2014. pp. 7-44. [TocTymHO 1Mo
cewuike: https://es-static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home.
Fortress library. TocrynHo mo ccsuike: http://forge.ispras.ru/projects/solver-api.

ITC’99 benchmark. TocrymHo mo ceeuike: http://www.cad.polito.it/tools/itc99.html.
QuestaSim simulator. JToctymnHo 1o cchUIKe:
https://www.mentor.com/products/fv/questa/.

E. Clarke, A. Biere, R. Raimi, Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 2001, Vol. 19 Iss. 1. pp. 7-34.

E. Clarke, M. Talupur, H. Veith, D. Wang. SAT based predicate abstraction for hardware
verification. Lecture Notes in Computer Science, 2004, Vol. 2919. pp. 78-92.

