
Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

57

Checking Parameterized PROMELA Models of
Cache Coherence Protocols

1 V.S. Burenkov <burenkov_v@mcst.ru>
2 A.S. Kamkin <kamkin@ispras.ru>

1 JSC MCST,

24 Vavilov str., Moscow, 119334, Russian Federation
2 Institute for System Programming of the Russian Academy of Sciences,

25 Alexander Solzhenitsyn str., Moscow, 109004, Russian Federation

Abstract. This paper introduces a method for scalable verification of cache coherence

protocols described in the PROMELA language. Scalability means that resources spent on

verification (first of all, machine time and memory) do not depend on the number of processors

in the system under verification. The method is comprised of three main steps. First, a PROMELA

model written for a certain configuration of the system is generalized to the model being

parameterized with the number of processors. To do it, some assumptions on the protocol are

used as well as simple induction rules. Second, the parameterized model is abstracted from the

number of processors. It is done by syntactical transformations of the model assignments,

expressions, and communication actions. Finally, the abstract model is verified with the SPIN

model checker in a usual way. The method description is accompanied by the proof of its

correctness. It is stated that the suggested abstraction is conservative in a sense that every

invariant (a property that is true in all reachable states) of the abstract model is an invariant of

the original model (invariant properties are the properties of interest during verification of

cache coherence protocols). The method has been automated by a tool prototype that, given a

PROMELA model, parses the code, builds the abstract syntax tree, transforms it according to the

rules, and maps it back to PROMELA. The tool (and the method in general) has been successfully

applied to verification of the MOSI protocols implemented in the Elbrus computer systems.

Keywords: multicore microprocessors, shared memory multiprocessors, cache coherence

protocols, model checking, SPIN, PROMELA.

DOI: 10.15514/ISPRAS-2016-28(4)-4

For citation: Burenkov V.S, Kamkin A.S. Checking Parameterized PROMELA Models of

Cache Coherence Protocols. Trudy ISP RAN / Proc. ISP RAS], volume 28, issue 4, 2016. pp.

57-76. DOI: 10.15514/ISPRAS-2016-28(4)-4

1. Introduction

Shared memory multiprocessors (SMP) constitute one of the most common classes of

high-performance computer systems. In particular, it includes multicore

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

58

microprocessors, which combine several processors (cores) on a single chip [1].

Nowadays, 8- and 16-core microprocessors are in mass production; hardware vendors

have announced forthcoming 48-, 80-, and even 100-core designs. Multicore

microprocessors and SMP systems are also designed by Russian companies such as

MCST and INEUM, e.g., Elbrus-4C (4 cores, 2014) and Elbrus-8C (8 cores, 2015)

[2].

The main problem arising in the development of SMP systems is ensuring memory

coherency. As each processor contains a local cache, multiple copies of the same data

may exist in the system: one copy is in the main memory, and several copies are in

the processors’ caches. Modification of a copy should cause either the invalidation of

the other copies or their consistent modification. This is supported by so-called cache

controllers, i.e. memory devices connected into a network and cooperating in

accordance with a special protocol, so-called cache coherence protocol (CCP) [3].

Development of cache coherence mechanisms includes two stages: first, design of a

CCP; second, its implementation in hardware. The both stages are error-prone;

accordingly, methods for protocol verification and methods for hardware verification

are in use [4]. Protocol bugs are especially critical and should be revealed before

implementing the hardware. The widely recognized method for protocol verification

is model checking [5]. It is fully automated, but suffers from a principal drawback –

it is not scalable due to the state space explosion problem. Using the traditional

methods for verifying a CCP of a system with four and more processors is impossible

(at least, highly problematic) [6].

To overcome the issue and develop scalable verification technologies, researchers

utilize parameterized model checking [7]. The idea is to construct abstract models

that are independent of the number of processors and may be verified with the existing

tools. Correctness of the abstract model guarantees correctness of the original one

(checking, however, may produce wrong error messages, so-called false positives).

The proposed approach is also of that type. In contrast to the existing ones, it supports

the PROMELA language used in the SPIN model checker [8] and the message passing

primitives. The method was successfully used for verifying the CCPs implemented in

the Elbrus computer systems [2].

The paper is structured as follows. In Section 2, we analyze the existing approaches

to CCP verification. In Section 3, we propose a method for constructing an abstract

model out of a PROMELA protocol model. In Section 4, we describe theoretical

foundations of the suggested method. In Section 5, we provide a case study on using

the method for verifying a MOSI protocol. In Section 6, we summarize our work and

outline directions of further research.

2. Related work

As it has been said, classical model checking is inapplicable to CCPs with an arbitrary

number of processors. There exists an alternative approach, called deductive

verification; however, it is hardly automated due to the need of so-called inductive

invariants [9] and does not provide any diagnostic information if there are errors.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

59

Parameterized model checking seems to be a more promising approach. It is worth

mentioning two directions.

First, verification of a parameterized model (in essence, a family of models) can be

reduced to the verification of a single model of the family. Corresponding methods

are aimed at finding such number 𝑁 that verification of the model for 𝑁 components

(processors, cache controllers, etc.) is sufficient for proving correctness in general. In

[7], such kind of method is presented, and it is reported that 𝑁 = 7 is enough for the

protocols having been examined. However, that value is too big to make the method

applicable to industrial SMP systems [6].

Second, a model (parameterized model) can be abstracted so as to reduce the state

space size (make it independent of the number of components). In [10], a method for

abstracting a model from the exact number of replicated identical components (e.g.,

caches in which the cache line is in a given state) is introduced. The technique

significantly reduces the state space size; however, the use of a modified version of

the Mur tool complicates its real-life application. A similar idea, called (0,1, ∞)-

counter abstraction, is employed in [11]-[13]. Though the technique seems to be

powerful, it often leads to overly detailed abstract models, which makes the approach

inapplicable to complex protocols.

In [14], a general method for compositional verification is proposed. The idea is to

replace a subset of identical components with an abstract one, called environment.

Such replacement usually leads to false positives, and considerable efforts are

required to eliminate them. In [15]-[18], the approach has been adapted to CCPs. The

suggested method is based on syntactical transformations of Mur models and

counterexample-guided abstraction refinement (CEGAR). The main drawbacks are

as follows:

 Mur does not support the message passing primitives, which complicates

CCP description;

 restrictions on Mur models of CCPs are not clearly defined;

 the tools are not in open access.

3. Suggested method

The problem to be solved is as follows. Given a PROMELA model of a CCP for some

configuration of an SMP system (i.e. a model with a fixed number 𝑛 > 2 of

processors), it is required to check the CCP correctness for an arbitrary configuration

of the system (i.e. for any 𝑁 ≥ 𝑛).

Models considered in this paper satisfy the following conditions (obtained from the

verification practice and shown to be sufficient for specifying CCPs). The allowed

statements are 𝐢𝐟, 𝐝𝐨, 𝐠𝐨𝐭𝐨, = (assignment), ! (send), and ? (receive). Each guarded

action is placed in an 𝐚𝐭𝐨𝐦𝐢𝐜 block and therefore is executed with no interruption;

else alternatives are absent. Assignments’ right-hand sides contain only primary

expressions, i.e. variables and constants; left-hand sides are variables and array

elements (an array index is a primary expression). Atomic logic formulaе are of the

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

60

form 𝑥 == 𝑐 or 𝐵(𝑐ℎ), where 𝑥 is a variable (or an array element), 𝑐 is a constant,

𝑐ℎ is a channel, and 𝐵 is a predicate: 𝐞𝐦𝐩𝐭𝐲, 𝐟𝐮𝐥𝐥, etc.

3.1 Model parameterization

From the conceptual point of view, a CCP model consists of an unbounded number

of replicated identical processes, so-called basic processes, and a fixed number of

auxiliary processes. Without loss of generality we will assume that there is only one

auxiliary process. All processes are enumerated from 0 to 𝑁, where 𝑁 is a parameter:

0 is the identifier of the auxiliary process, while 1, … , 𝑁 are the identifiers of the basic

processes. All arrays used in the model (arrays of variables and arrays of channels)

are of length 𝑁 and indexed with the identifiers of the basic processes.

To generalize the original model to a parameterized one, the following induction rules

are used:

 each condition containing an array is either a conjunction or a disjunction of

similar conditions on all array elements:

o 𝜑{𝑖/1} ∧ … ∧ 𝜑{𝑖/𝑛} is interpreted as ∀𝑖 ∈ {1, … , 𝑁}: 𝜑;

o 𝜑{𝑖/1} ∨ … ∨ 𝜑{𝑖/𝑛} is interpreted as ∃𝑖 ∈ {1, … , 𝑁}: 𝜑;

 each sequence of statements 𝛼{𝑖/1}; … ; 𝛼{𝑖/𝑛} is interpreted as a loop

𝐟𝐨𝐫 (𝑖: 1 . . 𝑁) {𝛼}.

Here, 𝜑 (α) is a formula (statement) containing an index 𝑖 as a free variable, and

𝜑{𝑖/𝑡} (𝛼{𝑖/𝑡}) denotes the result of substitution of 𝑡 for all occurrences of 𝑖 in 𝜑 (α).

3.2 Assumptions

Let us consider a CCP where request processing is coordinated by a system

commutator of the home processor (the processor that owns the requested data).

Accordingly, the PROMELA model contains two process types: 𝑝𝑟𝑜𝑐 is a cache

controller (a basic process), and ℎ𝑜𝑚𝑒 is a home processor’s commutator (an

auxiliary process). As usual, the CCP model deals with a single cache line.

Broadly speaking, the CCP works as follows. Each 𝑝𝑟𝑜𝑐 instance may initiate an

operation on the cache line by sending a primary request to the ℎ𝑜𝑚𝑒 process. Upon

its reception and analysis, ℎ𝑜𝑚𝑒 sends snoop requests to all processes except for the

sender. After snoop reception, a 𝑝𝑟𝑜𝑐 sends a response to the sender (data or an

acknowledgement that it has completed an action on the cache line). Having collected

all of the answers, the sender informs ℎ𝑜𝑚𝑒 on the completion of the operation. As

soon as the completion message is received, ℎ𝑜𝑚𝑒 can accept the next primary

request (see Fig. 1).

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

61

Fig. 1. Generalized scheme of a CCP

It is worth emphasizing that at most one primary request is being processed at each

moment of time. It is assumed that values of global variables (e.g., a current sender

identifier) are set by ℎ𝑜𝑚𝑒 upon reception of a primary request and do not change

during its processing.

Each channel can be read by a single process; however, multiple processes are

allowed to write into it. A channel is called simple if there is only one sender;

otherwise, it is called multiplexed. Let 𝐶𝑆→𝑟 be the set of channels with the reader 𝑟

and senders from the set 𝑆. Channels are divided into three groups (hereinafter,

singletons are written without brackets, e.g., 0 → 𝑗 stands for {0} → 𝑗):

 𝐶∗ = ⋃ 𝐶{1,…,𝑁}→𝑗
𝑁
𝑗=0 is the set of multiplexed channels of capacity 𝑁 used by

ℎ𝑜𝑚𝑒 and 𝑝𝑟𝑜𝑐 to receive messages from the basic processes (e.g., a channel

over which ℎ𝑜𝑚𝑒 receives primary requests, and channels over which

processes receive responses);

 𝐶ℎ→𝑝 = ⋃ 𝐶0→𝑗
𝑁
𝑗=1 is the set of simple channels of positive capacity (which

is defined by the CCP, but independent of 𝑁) used by the basic processes to

receive messages from ℎ𝑜𝑚𝑒 (e.g., channels over which ℎ𝑜𝑚𝑒 transmits

snoop requests);

 𝐶𝑝→ℎ = ⋃ 𝐶𝑖→0
𝑁
𝑖=1 is the set of simple channels of capacity 1 used by ℎ𝑜𝑚𝑒

to receive messages from the basic processes (e.g., channels over which a

sender informs ℎ𝑜𝑚𝑒 on operation completion).

Messages transmitted via channels are ordered pairs of the form (𝑜𝑝𝑐, 𝑖), where 𝑜𝑝𝑐

is an operation code, and 𝑖 is an identifier of the message sender.

A verified CCP property looks as follows:

𝐆{∀𝑘, 𝑙 ∈ {1, … 𝑁}: (𝑘 ≠ 𝑙) → 𝜑{𝑖/𝑘, 𝑗/𝑙}},

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

62

where 𝐆 is an operator that requires its argument to be true in all reachable states of

the model [5]; 𝜑 is a formula with two free indices (𝑖 and 𝑗) that characterizes cache

coherency in the corresponding caches. For MOSI protocols [3], 𝜑 is as follows:

{
¬(𝑐𝑎𝑐ℎ𝑒[𝑖] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[𝑗] ≠ 𝐼);

¬(𝑐𝑎𝑐ℎ𝑒[𝑖] = 𝑂 ∧ 𝑐𝑎𝑐ℎ𝑒[𝑗] = 𝑂);

where 𝑐𝑎𝑐ℎ𝑒 is an array that stores the cache line states.

3.3 Informal description

The core of the proposed method is syntactical transformation of PROMELA code. The

transformations change the process types and retain four processes of 𝑁 + 1: a

modified ℎ𝑜𝑚𝑒 process (ℎ𝑜𝑚𝑒𝑎𝑏𝑠), two modified 𝑝𝑟𝑜𝑐 processes (𝑝𝑟𝑜𝑐𝑎𝑏𝑠), and an

environment process representing the rest of the processes (𝑝𝑟𝑜𝑐𝑒𝑛𝑣). Accordingly,

the initialization process of the abstract model is as follows (𝐴𝐵𝑆 is a constant distinct

from 0, 1, and 2):

init {

 atomic {

 run homeabs(0);

 run procabs(1);

 run procabs(2);

 run procenv(ABS);

 }

}

The length of all arrays is changed from 𝑁 to 2 (recall that arrays are indexed with

the identifiers of the 𝑝𝑟𝑜𝑐 processes). Each array access is supplied with the guard

𝑖 ≤ 2, where 𝑖 is the index of the element being accessed.

 On read (in a condition), the atomic formula containing the array access, is

replaced with 𝑢𝑛𝑑𝑒𝑓 (an undefined value) if the index is rejected by the

guard:

𝐵(𝑥[𝑖], …) ⟹ (𝑖 ≤ 2 → 𝐵(𝑥[𝑖], …) ∶ 𝑢𝑛𝑑𝑒𝑓).

In PROMELA, a formula of the kind (𝐵 → 𝑡1 ∶ 𝑡2) corresponds to the

conditional construct 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝑡1 𝐞𝐥𝐬𝐞 𝑡2 𝐟𝐢.

 On write (in an assignment), the assignment to the array is placed inside the

selection statement:

𝑥[𝑖] = 𝑡 ⟹ 𝐢𝐟 ∷ 𝐚𝐭𝐨𝐦𝒊𝐜 {𝑖 ≤ 2  𝑥[𝑖] = 𝑡} ∷ 𝐞𝐥𝐬𝐞 𝐟𝐢.

Assignments to the global variables as well as conditions on the global

variables remain unchanged.

Channels of the set 𝐶ℎ→𝑝 are represented as an array (let us denote it as 𝑐ℎ). Similarly

to other arrays, it is truncated to length 2. Each atomic formula over 𝑐ℎ[𝑖], where 𝑖 >
2, is replaced with 𝑢𝑛𝑑𝑒𝑓, while each operation on such a channel is removed.

Channels of the sets 𝐶∗ and 𝐶𝑝→ℎ are represented by individual variables, not arrays.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

63

Send statements are either unchanged or removed. A statement 𝑐ℎ! 𝑚 in a process

type 𝑃 is removed only in the following cases:

 𝑐ℎ ∈ 𝐶ℎ→𝑒 and 𝑃 = ℎ𝑜𝑚𝑒𝑎𝑏𝑠, where 𝐶ℎ→𝑒 = ⋃ 𝐶0→𝑗
𝑁
𝑗=3 ;

e.g., ℎ𝑜𝑚𝑒𝑎𝑏𝑠 does not send snoop requests to 𝑝𝑟𝑜𝑐𝑒𝑛𝑣;

 𝑐ℎ ∈ 𝐶∗ и 𝑃 = 𝑝𝑟𝑜𝑐𝑒𝑛𝑣;

e.g., 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 does not send primary requests / snoop responses.

Receive statements may be left unchanged, modified, or removed. A statement 𝑐ℎ? 𝑚

in a process type 𝑃 is removed only in the following case:

 𝑐ℎ ∈ 𝐶ℎ→𝑒 and 𝑃 = 𝑝𝑟𝑜𝑐𝑒𝑛𝑣;

e.g., 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 does not receive snoop requests.

Modification of 𝑐ℎ? 𝑚 takes place solely in the following case:

 𝑐ℎ ∈ 𝐶∗ and 𝑃 ∈ {ℎ𝑜𝑚𝑒𝑎𝑏𝑠, 𝑝𝑟𝑜𝑐𝑎𝑏𝑠}.

The corresponding transformation replaces a guarded action of the kind

𝐚𝐭𝐨𝐦𝐢𝐜 {𝐵 → 𝑐ℎ? 𝑚} with the following selection statement:

if

:: atomic {B  ch?m}

:: atomic {m.opc = opc1; m.i = ABS}

...

:: atomic {m.opc = opck; m.i = ABS}

fi

where 𝐵′ is the result of 𝐵 transformation, and 𝑜𝑝𝑐1, … , 𝑜𝑝𝑐𝑘 are all possible

operation codes that may be sent along the channel 𝑐ℎ.

Fig. 2. Abstraction of a CCP model

Fig. 2 provides a simplified view on CCP model abstraction. All processes except for

ℎ𝑜𝑚𝑒(0), 𝑝𝑟𝑜𝑐(1), and 𝑝𝑟𝑜𝑐(2) are merged into the environment process

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

64

𝑝𝑟𝑜𝑐𝑒𝑛𝑣(𝐴𝐵𝑆). Solid arrows represent the unmodified send / receive statements.

Dashed arrows correspond to the removed sends / modified receives.

Having performed the above transformations, all logical formulae containing 𝑢𝑛𝑑𝑒𝑓

(in essence, formulae of Kleene’s strong three-valued logic) are transformed into

classic logic formulae such that 𝑢𝑛𝑑𝑒𝑓 in the outer scope is interpreted as 𝑡𝑟𝑢𝑒. This

is achieved by the obvious transformation 𝐹:

 𝐹(𝜑) ⟹ 𝐺(𝜑, 𝑡𝑟𝑢𝑒);

 𝐺(𝑢𝑛𝑑𝑒𝑓, 𝑇) ⟹ 𝑇;

 𝐺(𝐵, 𝑇) ⟹ 𝐵, where 𝐵 is an atom distinct from 𝑢𝑛𝑑𝑒𝑓;

 𝐺(¬𝜑, 𝑇) ⟹ ¬𝐺(𝜑, ¬𝑇);

 𝐺(𝜑 ∘ 𝜓, 𝑇) ⟹ 𝐺(𝜑, 𝑇) ∘ 𝐺(𝜓, 𝑇), where ∘ ∈ {∧,∨}.

When transforming the PROMELA model, the following optimizations are applied:

 constant propagation and folding;

 dead code elimination.

Here are some simple examples:

 (𝑖 ≤ 2) ⟹ 𝑡𝑟𝑢𝑒 in ℎ𝑜𝑚𝑒𝑎𝑏𝑠 and 𝑝𝑟𝑜𝑐𝑎𝑏𝑠;

 (𝑡𝑟𝑢𝑒 ∧ 𝐵) ⟹ 𝐵 and (𝑓𝑎𝑙𝑠𝑒 ∧ 𝐵) ⟹ 𝑓𝑎𝑙𝑠𝑒;

 𝐚𝐭𝐨𝐦𝐢𝐜 {𝑡𝑟𝑢𝑒 → 𝛼} ⟹ 𝛼.

It should be said that in general case the abstraction procedure transforms 𝑁 + 1

processes to the 𝑘 + 2 ones, where 𝑘 ∈ {2, … 𝑁 − 1}: 𝑝𝑟𝑜𝑐𝑎𝑏𝑠 (in the number 𝑘),

ℎ𝑜𝑚𝑒𝑎𝑏𝑠, and 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 .

4. Theoretical foundations

4.1 Basic definitions

Let 𝑉𝑎𝑟 be a set of variables and 𝐶ℎ𝑎𝑛 be a set of channels. 𝐷𝑎𝑡𝑎 = 𝑉𝑎𝑟 ∪ 𝐶ℎ𝑎𝑛 is

referred to as the set of data. For each 𝑐 ∈ 𝐶ℎ𝑎𝑛, a value |𝑐| > 0, called capacity, is

defined. A data state (or state for short) is a valuation of data, i.e. a mapping 𝑠 that

maps each variable 𝑣 to the value 𝑠(𝑣) ∈ ℕ and each channel 𝑐 to the sequence of

messages 𝑠(𝑐) ∈ 𝕄∗ such that |𝑠(𝑐)| ≤ |𝑐|. The set of all states is denoted by 𝑆. A

designated state 𝑠0 ∈ 𝑆 is called initial.

Let us assume that there is a language over the data that includes logic formulae and

statements, such as 𝑥 = 𝑡 (assignment), 𝑐 ! 𝑚 (send), and 𝑐 ? 𝑚 (read).

A guard is a formula; an action is a sequence of statements; a guarded action is a pair

𝛾 → 𝛼, where 𝛾 is a guard, and 𝛼 is an action. The guarded action 𝑡𝑟𝑢𝑒 → 𝜖, where

𝜖 is the empty sequence of statements, is called empty and designated as 𝜀. The set of

all guarded actions is denoted by 𝐴𝑐𝑡. A guarded action 𝛾 → 𝛼 is called executable

in 𝑠 ∈ 𝑆 iff (if and only if) 𝑠 ⊨ 𝛾.

A process graph (or process for short) is a triple 〈𝑉, 𝑣0, 𝐸〉, where 𝑉 is a set of vertices,

𝑣0 ∈ 𝑉 is an initial vertex, and 𝐸 ⊆ 𝑉 × 𝐴𝑐𝑡 × 𝑉 is a set of edges.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

65

Process structure is defined by the control statements: 𝐢𝐟 (selection), 𝐝𝐨 (repetition),

and 𝐠𝐨𝐭𝐨 (jump). Correspondence between code and processes is straightforward and

not described here.

A system is a set of processes, i.e. {〈𝑉𝑖 , 𝑣0𝑖
, 𝐸𝑖〉}

𝑖=0

𝑁
. Hereinafter, 𝑃𝑖 is considered to be

a shortcut for 〈𝑉𝑖 , 𝑣0𝑖
, 𝐸𝑖〉. A configuration of {𝑃𝑖}𝑖=0

𝑁 is a pair 〈𝑙, 𝑠〉, where

𝑙: {0, … , 𝑁} → ⋃ 𝑉𝑖
𝑁
𝑖=0 such that 𝑙(𝑖) ∈ 𝑉𝑖 for all 𝑖 ∈ {0, … , 𝑁}, so-called the control

state, and 𝑠 ∈ 𝑆. The configuration 〈𝑙0, 𝑠0〉, where 𝑙0(𝑖) = 𝑣0𝑖
 for all 𝑖 ∈ {0, … , 𝑁}, is

called initial.

The state space of a system {𝑃𝑖}𝑖=0
𝑁 is a triple 〈𝐶, 𝑐0, 𝑇〉, where 𝐶 is the set of all

configurations of the system, 𝑐0 is the initial configuration, and 𝑇 ⊆ 𝐶 ×

({0, … , 𝑁} × (⋃ 𝐸𝑖
𝑁
𝑖=0)) × 𝐶 is a transition relation such that the following property

holds: (〈𝑙, 𝑠〉, (𝑖, (𝑣, 𝛾 → 𝛼, 𝑣′)), 〈𝑙′, 𝑠′〉) ∈ 𝑇 iff:

 𝑙(𝑖) = 𝑣;

 (𝑣, 𝛾 → 𝛼, 𝑣′) ∈ 𝐸𝑖;

 𝑠 ⊨ 𝛾;

 𝑙′ = (𝑙 ∖ {𝑖 ↦ 𝑣}) ∪ {𝑖 ↦ 𝑣′};

 𝑠′ = ⟦𝛼⟧(𝑠), where ⟦𝛼⟧: 𝑆 → 𝑆 is the semantics of 𝛼 (actions are assumed

to be deterministic).

It is worth mentioning that the restrictions on the transition relation conform to the

notion of asynchronous parallelism.

A configuration 𝑐 is called reachable in a state space 〈𝐶, 𝑇, 𝑐0〉 iff there is a path in 𝑇

from 𝑐0 to 𝑐. A state 𝑠 is called reachable iff a configuration 〈𝑙, 𝑠〉, for some 𝑙, is
reachable.

4.2 System abstraction

A process transformation (or transformation for short) is a function that maps one

process to another.

Let 𝐷𝑎𝑡𝑎𝑆 = (𝑉𝑎𝑟𝑆 ∪ 𝐶ℎ𝑎𝑛𝑆) ⊆ 𝐷𝑎𝑡𝑎 be a set of significant data. States 𝑠 and 𝑠′ are

called equivalent (it is designated as 𝑠 ~ 𝑠′) iff 𝑠|𝐷𝑎𝑡𝑎𝑆
= 𝑠′|𝐷𝑎𝑡𝑎𝑆

.

A guarded action 𝛾′ → 𝛼′ is referred to as an abstraction of a guarded action 𝛾 → 𝛼

in 𝑠 ∈ 𝑆 iff:

 the truth of 𝛾′ is determined only by the significant data: for all 𝑠′ ∈ 𝑆 such

that 𝑠′ ~ 𝑠, 𝑠′ ⊨ 𝛾′ iff 𝑠 ⊨ 𝛾′;

 the effect of 𝛼′ is determined only by the significant data: for all 𝑠′ ∈ 𝑆 such

that 𝑠′ ~ 𝑠, there holds ⟦𝛼′⟧(𝑠′) ~ ⟦𝛼′⟧(𝑠);

 𝛾′ is weaker than 𝛾: 𝑠 ⊨ 𝛾 → 𝛾′;

 𝛼′ acts similar to 𝛼: ⟦𝛼′⟧(𝑠) ~ ⟦𝛼⟧(𝑠).

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

66

A set of guarded actions {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 is referred to as an abstraction of a guarded

action 𝛾 → 𝛼 in 𝑠 ∈ 𝑆 iff there exists 𝑖 ∈ {1, … , 𝑚} such that 𝛾𝑖
′ → 𝛼𝑖

′ is an abstraction

of 𝛾 → 𝛼 in 𝑠.

A guarded action 𝛾′ → 𝛼′ (a set {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚) is referred to as an abstraction of 𝛾 →

𝛼 iff 𝛾′ → 𝛼′ ({𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚) is an abstraction of 𝛾 → 𝛼 in all states.

An abstraction function is a mapping 𝑓: 𝐴𝑐𝑡 → 2𝐴𝑐𝑡 such that for all 𝛾 → 𝛼 ∈ 𝐴𝑐𝑡,

𝑓(𝛾 → 𝛼) is an abstraction of 𝛾 → 𝛼. The abstraction function 𝐼(𝛾 → 𝛼) ≡ {𝛾 → 𝛼}

is called trivial.

It should be emphasized that this view to abstraction is a bit simplified. An abstraction

function should take into account context of a guarded action (the process edge, the

process, and the model). Thus, it is assumed that each guarded action contains the

context information.

Let 𝑃 = 〈𝑉, 𝑣0, 𝐸〉 be a process, 𝑓 be an abstraction function, 𝑉′ be some set, and

𝑅: 𝑉 → 𝑉′ be a mapping. An abstraction of 𝑃 induced by 𝑓 and 𝑅 is the process

𝑓(𝑃, 𝑅) = 〈𝑉′, 𝑅(𝑣0), 𝐸′〉, where 𝐸′ is defined as follows:

 if (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸 and 𝑓(𝛾 → 𝛼) = {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 , then {(𝑅(𝑣), 𝛾𝑖

′ →
𝛼𝑖

′, 𝑅(𝑢))}𝑖=1
𝑚 ⊆ 𝐸′;

 no other edges belong to 𝐸′.

An abstraction 𝑓(𝑃, 𝑅), where 𝑅 is a bijection, is referred to as a bijective abstraction.

Besides transforming individual processes, there are of interest transformations that

merges several processes into one. Let us consider a particular kind of such

transformations, where processes to be merged are identical.

Given a system {𝑃𝑖}𝑖=0
𝑁 , the following denotations can be introduced (𝑖 ∈ {0, … , 𝑁}):

 𝑈𝑠𝑒𝑖 is the set of variables read by 𝑃𝑖;

 𝐷𝑒𝑓𝑖 is the set of variables assigned by 𝑃𝑖;

 𝑉𝑎𝑟𝑖 = 𝑈𝑠𝑒𝑖 ∪ 𝐷𝑒𝑓𝑖 is the set of variables of 𝑃𝑖;

 𝑉𝑎𝑟𝐿𝑖
 is the set of local variables of 𝑃𝑖 (we do not define the set 𝑉𝑎𝑟𝐿𝑖

assuming that it is provided);

 𝑉𝑎𝑟𝐺 = 𝑉𝑎𝑟 ∖ (⋃ 𝑉𝑎𝑟𝐿𝑖

𝑁
𝑖=0) is the set of global variables.

Similarly, the following sets of channels (including the sets of local channels and the

set of global channels) can be defined: 𝐼𝑛𝑖, 𝑂𝑢𝑡𝑖, 𝐶ℎ𝑎𝑛𝑖, 𝐶ℎ𝑎𝑛𝐿𝑖
, and 𝐶ℎ𝑎𝑛𝐺. In

addition,

 𝐷𝑎𝑡𝑎𝑖 = 𝑉𝑎𝑟𝑖 ∪ 𝐶ℎ𝑎𝑛𝑖 is the set of data of 𝑃𝑖;

 𝐷𝑎𝑡𝑎𝐿𝑖
= 𝑉𝑎𝑟𝐿𝑖

∪ 𝐶ℎ𝑎𝑛𝐿𝑖
 is the set of local data of 𝑃𝑖;

 𝐷𝑎𝑡𝑎𝐺 = 𝑉𝑎𝑟𝐺 ∪ 𝐶ℎ𝑎𝑛𝐺 is the set of global data.

Processes are called identical if they can be transformed one another by renaming

their local data. More formally, processes 𝑃𝑖 and 𝑃𝑗 are called identical if there are a

bijection 𝑅: 𝑉𝑖 → 𝑉𝑗 and a bijection 𝑟: 𝐷𝑎𝑡𝑎𝐿𝑖
→ 𝐷𝑎𝑡𝑎𝐿𝑗

 such that 𝑅(𝑣0𝑖
) = 𝑣0𝑗

 and

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

67

(𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝑖 iff (𝑅(𝑣), 𝑟(𝛾 → 𝛼), 𝑅(𝑢)) ∈ 𝐸𝑗, where 𝑟(𝛾 → 𝛼) is the result of

renaming the local data in 𝛾 → 𝛼 in accordance with 𝑟.

Let {𝑃𝑖}
𝑖=𝑘1

𝑘2 be a system of identical processes, 𝐷𝑎𝑡𝑎𝑆 ∩ (⋃ 𝐷𝑎𝑡𝑎𝐿𝑖

𝑘2
𝑖=𝑘1

) = ∅ (the

processes’ local data are insignificant), 𝑔 be an abstraction function, 𝑉′ be some set,

and 𝑅: 𝑉𝑘1
→ 𝑉′ be a mapping. The process 𝑔(𝑃𝑘1

, … , 𝑃𝑘2
; 𝑅) = 𝑔(𝑃𝑘1

, 𝑅) is called

a unifying abstraction of {𝑃𝑖}𝑖=1
𝑘 induced by 𝑔 and 𝑅.

The definition needs to be clarified. Provided that the processes {𝑃𝑖}𝑖=𝑘1

𝑘2 operate

simultaneously, there are control states that cannot be represented by a single vertex

of the abstraction 𝑔(𝑃𝑘1
, … , 𝑃𝑘2

; 𝑅). Thus, a unifying abstraction may appear to be

inadequate. Let us assume that each process can be either active or passive, and it is

prohibited two or more processes to be active simultaneously. Besides, the passive

mode is organized as the following loop:

 a request is received;

 the local data are updated;

 a response is sent;

 the control is returned to the initial vertex.

Let 𝑉(𝐸′) be the set of all vertices of the edges from 𝐸′.

A process 𝑃 = 〈𝑉, 𝑣0, 𝐸𝐴 ∪ 𝐸𝑃〉 is referred to as a bimodal process with the set of

active edges 𝐸𝐴 and the set of passive edges 𝐸𝑃 iff 𝐸𝐴 ∩ 𝐸𝑃 = ∅ and the graph

〈𝑉(𝐸𝑃), 𝐸𝑃〉 is strongly connected.

Given a bimodal process 𝑃 = 〈𝑉, 𝑣0, 𝐸𝐴 ∪ 𝐸𝑃〉, the following denotation can be

introduced: 𝑉𝐴 = 𝑉(𝐸𝐴) and 𝑉𝑃 = 𝑉(𝐸𝑃) (generally speaking, 𝑉𝐴 ∩ 𝑉𝑃 ≠ ∅).

The process 𝑔(𝑃, 𝑅) = 〈𝑉′, 𝑣0
′ , 𝐸′〉, where 𝑔 is an abstraction function, and 𝑅: 𝑉 → 𝑉′

is a mapping, is called a serializing abstraction of 𝑃 iff 𝑅 satisfies the following

properties:

 𝑅(𝑣) = 𝑣0
′ for all 𝑣 ∈ 𝑉𝑃 ∖ 𝑉𝐴;

 𝑅: 𝑉𝐴 → 𝑉′ is a bijection;

and 𝐸′ is defined as follows:

 if (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝐴 and 𝑔(𝛾 → 𝛼) = {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 , then {(𝑅(𝑣), 𝛾𝑖

′ →
𝛼𝑖

′, 𝑅(𝑢))}𝑖=1
𝑚 ⊆ 𝐸′;

 (𝑣0
′ , 𝜀, 𝑣0

′) ∈ 𝐸′ (so-called 𝜀-self loop);

 no other edges belong to 𝐸′;

and for every (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝑃 , the empty guarded action 𝜀 is an abstraction of 𝛾 →
𝛼, i.e. 𝛼 depends on and affects solely insignificant data.

The nature of serializing abstraction is removing all passive edges and replacing them

with the 𝜀-self loop (𝑣0
′ , 𝜀, 𝑣0

′). Being applied to identical bimodal processes, such

abstraction makes them unimodal and serializable (at most one process is operating,

i.e. being in a non-initial state, at each moment of time) and allows constructing an

adequate unifying abstraction.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

68

Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 be a system where all processes, except maybe {𝑃𝑖}𝑖=0

𝑘 , for some 𝑘 ∈
{0, … , 𝑁}, are identical and bimodal; 𝐷𝑎𝑡𝑎𝑆 be significant data; 𝑉𝑖

′, where 𝑖 ∈
{0, … , 𝑘 + 1}, be some sets; 𝑅𝑖: 𝑉𝑖 → 𝑉𝑖

′ be some mappings; 𝑓𝑖, where 𝑖 ∈ {0, … , 𝑘},

and 𝑔 be abstraction functions; at that, 𝑓𝑖(𝑃𝑖 , 𝑅𝑖) are bijective abstractions, while

𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is a serializing abstraction. Then, the system

𝑀′ = {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 ∪ {𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1)}

is called an abstraction of 𝑀. A process 𝑓𝑖(𝑃𝑖 ; 𝑅𝑖), where 𝑖 ∈ {0, … , 𝑘}, is called an

abstraction of the process 𝑃𝑖 . The process 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is called an

abstraction of the environment.

Statement. Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a system and its

abstraction. Given an arbitrary state 𝑠, if 𝑠 is reachable in the state space of 𝑀, then

there is a state 𝑠′ reachable in the state space of 𝑀′ such that 𝑠′ ~ 𝑠.

Proof. Let 𝐴𝐵𝑆 = 𝑘 + 1. This denotation is introduced to emphasize that the

abstraction of the environment, the process 𝑃𝐴𝐵𝑆
′ = 𝑃𝑘+1

′ , generalizes not only the

process 𝑃𝑘+1, but also the processes 𝑃𝑘+2, … , 𝑃𝑁 .

A configuration 〈𝑙′, 𝑠′〉 of 𝑀′ is said to conform to a configuration 〈𝑙, 𝑠〉 of 𝑀 iff the

following conditions are satisfied:

 𝑙′(𝑖) = 𝑅𝑖(𝑙(𝑖)) for all 𝑖 ∈ {0, … , 𝑘};

 if 𝑙′(𝐴𝐵𝑆) = 𝑅𝐴𝐵𝑆(𝑣0𝐴𝐵𝑆
), then 𝑙(𝑖) = 𝑣0𝑖

 for all 𝑖 ∈ {𝑘 + 1, … , 𝑁};

 if 𝑙′(𝐴𝐵𝑆) ≠ 𝑅𝐴𝐵𝑆(𝑣0𝐴𝐵𝑆
), then there is only one index 𝑖 ∈ {𝑘 + 1, … , 𝑁}

such that 𝑙′(𝐴𝐵𝑆) = 𝑅𝑖(𝑙(𝑖));

 𝑠′ ~ 𝑠.

Let us consider a path in the state space of 𝑀 starting with 〈𝑙0, 𝑠0〉:

𝜋 = {(〈𝑙𝑗 , 𝑠𝑗〉, (𝑖𝑗 , (𝑣𝑗 , 𝛾𝑗 → 𝛼𝑗 , 𝑣𝑗+1)) , 〈𝑙𝑗+1, 𝑠𝑗+1〉)}
𝑗=0

𝑚−1

.

Here, 𝑖𝑗 ∈ {0, … , 𝑁} is a process index; 𝑣𝑗 = 𝑙𝑗(𝑖𝑗) ∈ 𝑉𝑖𝑗
 and 𝑣𝑗+1 = 𝑙𝑗+1(𝑖𝑗) ∈ 𝑉𝑖𝑗

 are

the process’s vertices connected with the edge labelled by 𝛾𝑗 → 𝛼𝑗; 𝑠𝑗 ⊨ 𝛾𝑗 and 𝑠𝑗+1 =

⟦𝛼𝑗⟧(𝑠𝑗) for all 𝑗 ∈ {0, … , 𝑚 − 1}.

Our goal is to show that, in the state space of 𝑀′, there is a path 𝜋′ of the same length

as 𝜋 such that each configuration of 𝜋′ conforms to the corresponding configuration

of 𝜋:

𝜋′ = {(〈𝑙𝑗
′, 𝑠𝑗

′〉, (𝑖𝑗
′, (𝑣𝑗

′, 𝛾𝑗
′ → 𝛼𝑗

′, 𝑣𝑗+1
′)), 〈𝑙𝑗+1

′ , 𝑠𝑗+1
′ 〉)}

𝑗=0

𝑚−1
.

Obviously, existence of such a path implies that there is a state 𝑠𝑚
′ reachable in the

state space of 𝑀′ such that 𝑠𝑚
′ ~ 𝑠𝑚. Let us consider how to construct 𝜋′.

Induction basis. The initial configuration 〈𝑙0
′ , 𝑠0

′ 〉 certainly conforms to 〈𝑙0, 𝑠0〉: 𝑣0𝑖

′ =

𝑙′(𝑖) = 𝑅𝑖(𝑙(𝑖)) = 𝑅𝑖(𝑣0𝑖
) for all 𝑖 ∈ {0, … , 𝑁}.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

69

Inductive step. Given an arbitrary index 𝑞 ∈ {0, … , 𝑚 − 1}, we will show that if the

configuration 〈𝑙𝑞
′ , 𝑠𝑞

′ 〉 conforms to 〈𝑙𝑞 , 𝑠𝑞〉, then there are a process of 𝑀′ (let us denote

its index as 𝑖𝑞
′) and an edge (𝑣𝑞

′ , 𝛾𝑞
′ → 𝛼𝑞

′ , 𝑣𝑞+1
′) of that process such that

〈𝑙𝑞+1
′ , 𝑠𝑞+1

′ 〉 = 〈(𝑙𝑞
′ ∖ {𝑖𝑞

′ ↦ 𝑣𝑞
′ }) ∪ {𝑖𝑞

′ ↦ 𝑣𝑞+1
′ }, ⟦𝛼′⟧(𝑠𝑞

′)〉 (see the definition of the

state space) conforms to 〈𝑙𝑞+1, 𝑠𝑞+1〉. There are two cases:

 𝑖𝑞 ∈ {0, … , 𝑘};

 𝑖𝑞 ∈ {𝑘 + 1, . . . , 𝑁}.

Case 1. If 𝑖𝑞 ∈ {0, . . . , 𝑘}, let 𝑖𝑞
′ = 𝑖𝑞: the transition is executed by the process 𝑃𝑖𝑞

′ =

𝑓𝑖𝑞
(𝑃𝑖𝑞

, 𝑅𝑖𝑞
).

The edge (𝑣𝑞 , 𝛾𝑞 → 𝛼𝑞 , 𝑣𝑞+1) of the process 𝑃𝑖𝑞
 is abstracted to the set of edges

{(𝑅𝑖𝑞
(𝑣𝑞), 𝛾𝑞

(𝑖)
→ 𝛼𝑞

(𝑖)
, 𝑅𝑖𝑞

(𝑣𝑞+1))}
𝑖=1

𝑡

, where 𝑓𝑖𝑞
(𝛾𝑞 → 𝛼𝑞) = {𝛾𝑞

(𝑖)
→ 𝛼𝑞

(𝑖)
}

𝑖=1

𝑡

.

Among them, there is selected an edge whose label, 𝛾𝑞
′ → 𝛼𝑞

′ , is an abstraction of

𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞. Such an edge always exists (see the definition of the process

abstraction). We need to proof that the chosen edge belongs to the state space of 𝑀′
and the configuration 〈𝑙𝑞+1

′ , 𝑠𝑞+1
′ 〉 conforms to 〈𝑙𝑞+1, 𝑠𝑞+1〉. It is sufficient to proof

the following statements:

 𝑠𝑞
′ ⊨ 𝛾𝑞

′;

 ⟦𝛼′⟧(𝑠𝑞
′) ~ ⟦𝛼⟧(𝑠𝑞).

The first of them can be deduced from the facts that 𝑠𝑞 ⊨ 𝛾𝑞 (otherwise, the state

space of 𝑀 would not include the transition under consideration), 𝛾𝑞
′ → 𝛼𝑞

′ is an

abstraction of 𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞 , and 𝑠𝑞
′ ~ 𝑠𝑞 (the induction assumption). Obviously, 𝑠𝑞 ⊨

𝛾𝑞 and 𝑠𝑞 ⊨ 𝛾𝑞 → 𝛾𝑞
′ lead to 𝑠𝑞 ⊨ 𝛾𝑞

′ , which, in couple with 𝑠𝑞
′ ~ 𝑠𝑞 , leads to 𝑠𝑞

′ ⊨ 𝛾𝑞
′ .

The second statement is an implication of the facts that 𝛾𝑞
′ → 𝛼𝑞

′ is an abstraction of

𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞 and 𝑠𝑞
′ ~ 𝑠𝑞 .

Case 2. If 𝑖𝑞 ∈ {𝑘 + 1, . . . , 𝑁}, let 𝑖𝑞
′ = 𝐴𝐵𝑆: the transition is executed by the process

𝑃𝐴𝐵𝑆
′ = 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝐴𝐵𝑆). There are two subcases:

 the edge (𝑣𝑞 , 𝛾𝑞 → 𝛼𝑞 , 𝑣𝑞+1) is active;

 the edge (𝑣𝑞 , 𝛾𝑞 → 𝛼𝑞 , 𝑣𝑞+1) is passive.

Subcase 2.1. If the edge is active, then, by definition of configuration conformance,

𝑙′(𝐴𝐵𝑆) = 𝑅𝑖𝑞
(𝑣𝑞). In 𝑃𝐴𝐵𝑆

′ , there is selected an edge between 𝑅𝑖𝑞
(𝑣𝑞) and 𝑅𝑖𝑞

(𝑣𝑞+1)

whose label is an abstraction of 𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞 . Such an edge always exists (active

edges are abstracted in a usual way). The further proof is similar to that in Case 1.

Subcase 2.2. If the edge is passive, then 𝑅𝑖𝑞
(𝑣𝑞) = 𝑅𝑖𝑞

(𝑣𝑞+1) = 𝑅𝑖𝑞
(𝑣0𝑖𝑞

) = 𝑣0𝐴𝐵𝑆
′ .

In 𝑃𝐴𝐵𝑆
′ , there is selected an edge (𝑣0𝐴𝐵𝑆

′ , 𝜀, 𝑣0𝐴𝐵𝑆
′). Conformance of the configuration

follows from the facts that passive edges do not depend on sufficient data and do not

affect them.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

70

Conclusion. Given an arbitrary path 𝜋 in the state space of 𝑀, there is a path 𝜋′ in the

state space of 𝑀′ such that the ending state of 𝜋′ is equivalent to the ending state of

𝜋.

Q.E.D.

Corollary. Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a system and its

abstraction. Given an arbitrary formula 𝜑 over significant data, if 𝜑 is true (false) in

all states reachable in the state space of 𝑀′, then 𝜑 is true (false) in all states reachable

in the state space of 𝑀.

4.3 Model transformation

This section defines abstraction functions used for protocol model transformation.

The description is not quite formal: rigorous definition requires, first, formalization

of the PROMELA semantics and, seconds, usage of formalisms for describing code

transformations. Nevertheless, we believe that the explanations below are sufficient

for formalizing and automating the abstraction procedure.

Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a system (referred to as an

original model) and its abstraction (referred to as an abstract model).

Let us recall that each message circulating in the model includes the sender’s

identifier. A state of a channel being written by {𝑃𝑖}𝑖=𝑘+1
𝑁 , as well as messages being

read from the channel may contain identifiers from the set {𝑘 + 1, … , 𝑁}. In the

abstract model, there are no such identifiers: they are mapped to 𝐴𝐵𝑆 (usually, 𝐴𝐵𝑆 =
𝑘 + 1). The definition of state equivalence should be modified so as not to distinguish

between 𝑖 and 𝐴𝐵𝑆 if 𝑖 ∈ {𝑘 + 1, … , 𝑁}.

Another issue is as follows. State of a channel’s buffer is not of importance until a

message is read. The idea is to ignore some messages (in particular, messages written

by {𝑃𝑖}𝑖=𝑘+1
𝑁). In this case, a send statement can be replaced with 𝜀. To preserve the

abstraction properties, each read from the channel should be supplied (as alternative

behavior) with the assignments of all possible values that could be sent via the

channel by the removed statement to the message variable.

To be more precise, the definition of state equivalence should take into account the

following considerations:

 given a channel 𝑐 ∈ 𝐶∗, an abstract state 𝑠′ is (quasi) equivalent to a state 𝑠

(state is a sequence of messages) iff 𝑠′ is produced from 𝑠 by removing all

messages with identifiers from {𝑘 + 1, … , 𝑁};

 the channels from 𝐶ℎ→𝑒 = ⋃ 𝐶0→𝑗
𝑁
𝑗=𝑘+1 are insignificant (every two states of

a channel are equivalent);

 an abstract state 𝑠′ of the channels 𝐶𝑒→ℎ = ⋃ 𝐶𝑖→0
𝑁
𝑖=𝑘+1 (as a whole) is

equivalent to a state 𝑠 iff there is 𝑖 ∈ {𝑘 + 1, … , 𝑁} such that for each 𝑐 ∈
𝐶𝑖→0, the state 𝑠′(𝑐′), where 𝑐′ is a channel that corresponds to 𝑐 in 𝑃𝐴𝐵𝑆, is

produced from 𝑠(𝑐) by replacing 𝑖 with 𝐴𝐵𝑆 while the remaining channels

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

71

are empty in both states.

The suggested approach implies the following restrictions on the input model:

 𝐷𝑎𝑡𝑎𝑆 = 𝐷𝑎𝑡𝑎 ∖ (⋃ 𝐷𝑎𝑡𝑎𝐿𝑖

𝑁
𝑖=𝑘+1);

 for each 𝑖 ∈ {1, … , 𝑁}, there holds 𝐶ℎ𝑎𝑛𝑖 = 𝐶ℎ𝑎𝑛𝐴𝑖
∪ 𝐶ℎ𝑎𝑛𝑃𝑖

, where

𝐶ℎ𝑎𝑛𝐴𝑖
 and 𝐶ℎ𝑎𝑛𝑃𝑖

 are the sets of channels used, respectively, in the active

and passive modes, and:

o 𝐶ℎ𝑎𝑛𝐴𝑖
∩ 𝐶ℎ𝑎𝑛𝑃𝑖

= ∅;

o 𝐶ℎ𝑎𝑛𝐴𝑖
⊆ 𝐶ℎ𝑎𝑛𝐺 (𝐶ℎ𝑎𝑛𝐴𝑖

= 𝐶{1,…,𝑁}→0 ∪ 𝐶𝑖→0);

o 𝐶ℎ𝑎𝑛𝑃𝑖
⊆ 𝐶ℎ𝑎𝑛𝐿𝑖

 (𝐶ℎ𝑎𝑛𝑃𝑖
= 𝐶0→𝑖 ∪ (⋃ 𝐶{1,…,𝑁}→𝑗

𝑁
𝑗=1));

 the only channel predicate in use is 𝐞𝐦𝐩𝐭𝐲 (behavior does not depend on

the number of messages in the channels’ buffers);

 there are no dependencies via variables between the processes {𝑃𝑖}𝑖=1
𝑁 (all

dependencies are via messages);

 each guarded action is closed under data dependencies via variables;

 there are no data dependencies from the local data (control dependencies

from the local data are allowed).

𝑀′ = {𝑃𝑖
′}𝑖=0

𝑘+1 = {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 ∪ {𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1)}, the abstract model, is

constructed as follows (the description below can be viewed as a definition of the

mappings 𝑅𝑖 and the abstraction functions 𝑓𝑖 and 𝑔). Initially, each process 𝑃𝑖
′, where

𝑖 ∈ {0, … , 𝑘 + 1}, is isomorphic to 𝑃𝑖: 𝑃𝑖
′ = 𝐼(𝑃𝑖 , 𝑅0𝑖

), where 𝐼 is the trivial

abstraction function, while 𝑅0𝑖
: 𝑉𝑖 → 𝑉𝑖

′ is a bijection. Then, the following

transformations are applied to 𝑃𝐴𝐵𝑆
′ = 𝑃𝑘+1

′ and the rest of the processes:

 all passive edges of 𝑃𝐴𝐵𝑆
′ are removed and replaced with the 𝜀-self loops;

 when removing a passive edge whose action contains a read from some

channel 𝑐 (a write to some channel 𝑐):

o in {𝑃𝑖
′}𝑖=0

𝑘 , for all 𝑗 ∈ {𝑘 + 1, … , 𝑁}, all writes to 𝑐𝑗 (all reads from

𝑐𝑗), where 𝑐𝑗 is a channel of 𝑃𝑗 that corresponds to 𝑐 (the processes

are identical), are removed;

o when removing a read of a message 𝑚:

 in the guards dependent on 𝑚, the minimal subformulae

dependent on 𝑚 are replaced with 𝑢𝑛𝑑𝑒𝑓;

 the active edges of 𝑃𝐴𝐵𝑆
′ are processed as follows:

o all assignments to the local variables are removed;

o when removing an assignment to a local variable 𝑥:

 in the guards dependent on 𝑥, the minimal subformulae

dependent on 𝑥 are replaced with 𝑢𝑛𝑑𝑒𝑓;

o each read from a global channel 𝑐 is not modified:

 in {𝑃𝑖
′}𝑖=0

𝑘 , writes to 𝑐 are not modified;

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

72

o each write to a global channel 𝑐 is removed:

 in {𝑃𝑖
′}𝑖=0

𝑘 , each read 𝑐 ? 𝑚 is supplemented with the

alternatives {𝑚 = 𝑣𝑗}
𝑗=1

𝑡
, where {𝑣𝑗}

𝑗=1

𝑡
 contains all

possible values that 𝑃𝐴𝐵𝑆
′ can send via 𝑐.

Statement. The processes {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 (constructed as it is described above) are

bijective abstractions, while the process 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is a serializing

abstraction. Thus, 𝑀′ is an abstraction of 𝑀.

As the description is informal, the statement is given without a proof. It should be

noticed that the abovementioned method has been implemented in a tool prototype.

Given a PROMELA model, the tool parses the code, builds the abstract syntax tree,

transforms it according to the rules, and maps it back to PROMELA.

5. Case study

The tool and the underlying method were used to verify the MOSI family CCPs

implemented in the Elbrus computer systems. The developed PROMELA model

supports memory accesses of the types Write Back, Write Through, and Write

Combined. The experiments were performed on Intel Core i7-4771 with a clock rate

of 3.5 GHz. The verified properties are as follows:

 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑀)};

 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑂 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑂)};

 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] ∈ {𝑂, 𝑆})}.

Table 1 and Table 2 show time and memory resources consumed for checking the

property (1), respectively, on the original model (𝑛 = 3) and on the abstract one. Note

that in the case 𝑛 = 3 abstraction preserves the number of processes: ℎ𝑜𝑚𝑒(0),

𝑝𝑟𝑜𝑐(1), and 𝑝𝑟𝑜𝑐(2) are replaced with their abstract counterparts, while proc(3) is

replaced with 𝑝𝑟𝑜𝑐𝑒𝑛𝑣(𝐴𝐵𝑆).

Table 1. Resources required for checking the original model

SPIN

optimization

State space

size

Memory

consumption

Verification

time

𝐴𝑏𝑠𝑒𝑛𝑡 5.1  106 682 Mb 9 s

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 5.1  106 328 Mb 15 s

Table 2. Resources required for checking the abstract model

SPIN

optimization

State space

size

Memory

consumption

Verification

time

𝐴𝑏𝑠𝑒𝑛𝑡 2.2  106 256 Mb 3.7 s

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 2.2  106 108 Mb 6.2 s

The tables show that even for 𝑛 = 3 there is a gain in state space size and memory

consumption. Meanwhile, correctness of the abstract model implies correctness of the

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

73

original one for any 𝑛 ≥ 3. It is shown that the suggested approach reduces

verification of the parameterized CCP model to visiting and testing ~106 states,

which requires ~100 Mb of memory.

6. Conclusion

SMP computer systems utilize complicated caching mechanisms. To ensure that

multiple copies of the same data are kept up-to-date, CCPs are employed. Errors in

the CCPs and their implementations may cause data corruption and system hanging.

This explains why CCP verification methods are of high value and importance.

The main problem arising in CCP verification is state explosion. In this paper, we

have proposed an approach to overcome the issue and make verification scalable. The

method having been described is aimed at transforming a CCP PROMELA model so as

the result is independent of the number of processors and can be verified by the SPIN

model checker on a regular basis. The approach was successfully applied to the MOSI

family CCPs implemented in the Elbrus computer systems.

In the future, we are planning to extend the method with CEGAR, to develop an open-

source tool for syntactical transformations of PROMELA models (a prototype is already

available), and to create a unified model-based technology for checking CCPs and

verifying memory management units.

References
[1]. Patterson D.A., Hennessy J.L. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p.
[2]. Kim A.K., Perekatov V.I., Ermakov S.G. Microprocessors and computer systems of the
Elbrus familty. SPb.: Piter, 2013. 272 p. (in Russian).
[3]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.
[4]. Kamkin A.S., Petrochenkov M.V. A system to support formal methods-based
verification of coherence protocol implementations. Voprosy radioehlektroniki. Ser. EVT.
[Issues of radio electronics], 2014, issue 3, pp. 27-38 (in Russian).
[5]. Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999. 314 p.
[6]. Burenkov V.S. An analysis of the SPIN model checker applicability to cache coherence
protocols verification. Voprosy radioehlektroniki. Ser. EVT [Issues of radio electronics], 2014,
issue 3, pp. 126-134 (in Russian).
[7]. Emerson E.A., Kahlon V. Exact and Efficient Verification of Parameterized Cache
Coherence Protocols. Correct Hardware Design and Verification Methods, IFIP WG 10.5
Advanced Research Working Conference, 2003, pp. 247-262.
[8]. Holzmann, G.J. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003, 608 p.
[9]. Park S., Dill D.L. Verification of FLASH Cache Coherence Protocol by Aggregation of
Distributed Transactions. Annual ACM Symposium on Parallel Algorithms and Architectures,
1996, pp. 288-296.
[10]. Ip C.N., Dill D.L. Verifying Systems with Replicated Components in Murphi.
International Conference on Computer Aided Verification, 1996, pp. 147-158.
[11]. Pnueli A., Xu J., Zuck L. Liveness with (0, 1, )-Counter Abstraction. International
Conference on Computer Aided Verification, 2002, pp. 107-122.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

74

[12]. Clarke E., Talupur M., Veith H. Environment Abstraction for Parameterized Verification.
Verification, Model Checking, and Abstract Interpretation, 2006. LNCS, vol. 3855, pp. 126-
141.
[13]. Clarke E., Talupur M., Veith H. Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008, pp. 33-47.
[14]. McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. Conference on Correct Hardware Design and Verification
Methods, 2001, pp. 179-195.
[15]. Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS,
vol. 3312, pp. 382-398.
[16]. Krstic S. Parameterized System Verification with Guard Strengthening and Parameter
Abstraction. International Workshop on Automated Verification of Infinite-State Systems,
2005.
[17]. Talupur M., Tuttle M.R. Going with the Flow: , pp. 1-8.
[18]. O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial
Experience. Formal Methods in Computer-Aided Design, 2009, pp. 172-179.

Проверка параметризованных PROMELA-
моделей протоколов когерентности

памяти

1 В.C. Буренков <burenkov_v@mcst.ru>
2 А.C. Камкин <kamkin@ispras.ru>

1 АО «МЦСТ»

119334, Россия, г. Москва, ул. Вавилова, 24.
2 Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, 25

Аннотация. В статье представлен метод масштабируемой верификации PROMELA-

моделей протоколов обеспечения когерентности памяти. Под масштабируемостью

понимается независимость затрат на верификацию (прежде всего, машинного времени

и памяти) от числа процессоров в системе. Метод состоит из трех основных шагов. На

первом шаге в модель протокола, созданную для определенной конфигурации системы

(для конкретного числа процессоров), вводится параметр, представляющий число

процессоров в системе. Для этого используются простые индуктивные правила, что

возможно только при определенных допущениях на вид протокола. На втором шаге

построенная параметризованная модель абстрагируется от числа процессоров. Для этого

над присваиваниями, выражениями и коммуникационными действиями модели

совершается ряд синтаксических преобразований. На третьем шаге полученная

абстрактная модель верифицируется с помощью инструмента SPIN обычным образом.

Помимо описания метода, в статье приводится доказательство его корректности:

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.

Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76.

75

утверждается, что предложенная схема абстракции является консервативной в том

смысле, что любой инвариант (свойство истинное во всех достижимых состояниях)

абстрактной модели является инвариантом исходной модели (свойства-инварианты —

это именно те свойства, которые представляют интерес при верификации протоколов

обеспечения когерентности памяти). Предложенный метод был воплощен в прототипе

инструмента, который разбирает код на языке PROMELA, строит дерево абстрактного

синтаксиса, преобразует его по заданным правилам и отображает обратно в PROMELA

код. Инструмент (и метод в целом) был успешно использован при верификации

протоколов семейства MOSI, разработанных в АО «МЦСТ» и реализованных в
вычислительных комплексах «Эльбрус».

Ключевые слова: многоядерные микропроцессоры, мультипроцессоры с разделяемой
памятью, протоколы когерентности памяти, проверка моделей, SPIN, PROMELA.

DOI: 10.15514/ISPRAS-2016-28(4)-4

Для цитирования: Буренков В.С., Камкин А.С. Проверка параметризованных

PROMELA-моделей протоколов когерентности памяти. Труды ИСП РАН, том 28, вып. 4,

2016 г. стр. 57-76 (на английском). DOI: 10.15514/ISPRAS-2016-28(4)-4

Список литературы
[1]. Patterson D.A., Hennessy J.L. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p.
[2]. Ким A.K., Перекатов В.И., Ермаков С.Г. Микропроцессоры и вычислительные
комплексы семейства «Эльбрус». Спб.: Питер, 2013. 272 с.
[3]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011, 195 p.
[4]. Камкин А.С., Петроченков М.В. Система поддержки верификации реализаций
протоколов когерентности с использованием формальных методов. Вопросы
радиоэлектроники. Серия ЭВТ, 2014, вып. 3, стр. 27-38.
[5]. Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999, 314 p.
[6]. Буренков В.С. Анализ применимости инструмента SPIN к верификации протоколов
когерентности памяти. Вопросы радиоэлектроники. Серия ЭВТ, 2014. вып. 3, стр. 126-
134.
[7]. Emerson E.A., Kahlon V. Exact and Efficient Verification of Parameterized Cache
Coherence Protocols. Correct Hardware Design and Verification Methods, IFIP WG 10.5
Advanced Research Working Conference, 2003, pp. 247-262.
[8]. Holzmann, G.J. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003, 608 p.
[9]. Park S., Dill D.L. Verification of FLASH Cache Coherence Protocol by Aggregation of
Distributed Transactions. Annual ACM Symposium on Parallel Algorithms and Architectures,
1996, pp. 288-296.
[10]. Ip C.N., Dill D.L. Verifying Systems with Replicated Components in Murphi.
International Conference on Computer Aided Verification, 1996, pp. 147-158.
[11]. Pnueli A., Xu J., Zuck L. Liveness with (0, 1, )-Counter Abstraction. International
Conference on Computer Aided Verification, 2002, pp. 107-122.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN

/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.

76

[12]. Clarke E., Talupur M., Veith H. Environment Abstraction for Parameterized Verification.
Verification, Model Checking, and Abstract Interpretation, 2006. LNCS, vol. 3855, pp. 126-
141.
[13]. Clarke E., Talupur M., Veith H. Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008, pp. 33-47.
[14]. McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. Conference on Correct Hardware Design and Verification
Methods, 2001, pp. 179-195.
[15]. Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS,
vol. 3312, pp. 382-398.
[16]. Krstic S. Parameterized System Verification with Guard Strengthening and Parameter
Abstraction. International Workshop on Automated Verification of Infinite-State Systems,
2005.
[17]. Talupur M., Tuttle M.R. Going with the Flow: , pp. 1-8.
[18]. O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial
Experience. Formal Methods in Computer-Aided Design, 2009, pp. 172-179.

