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Abstract. This paper introduces a method for scalable verification of cache coherence 

protocols described in the PROMELA language. Scalability means that resources spent on 

verification (first of all, machine time and memory) do not depend on the number of processors 

in the system under verification. The method is comprised of three main steps. First, a PROMELA 

model written for a certain configuration of the system is generalized to the model being 

parameterized with the number of processors. To do it, some assumptions on the protocol are 

used as well as simple induction rules. Second, the parameterized model is abstracted from the 

number of processors. It is done by syntactical transformations of the model assignments, 

expressions, and communication actions. Finally, the abstract model is verified with the SPIN 

model checker in a usual way. The method description is accompanied by the proof of its 

correctness. It is stated that the suggested abstraction is conservative in a sense that every 

invariant (a property that is true in all reachable states) of the abstract model is an invariant of 

the original model (invariant properties are the properties of interest during verification of 

cache coherence protocols). The method has been automated by a tool prototype that, given a 

PROMELA model, parses the code, builds the abstract syntax tree, transforms it according to the 

rules, and maps it back to PROMELA. The tool (and the method in general) has been successfully 

applied to verification of the MOSI protocols implemented in the Elbrus computer systems. 
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1. Introduction 

Shared memory multiprocessors (SMP) constitute one of the most common classes of 

high-performance computer systems. In particular, it includes multicore 
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microprocessors, which combine several processors (cores) on a single chip [1]. 

Nowadays, 8- and 16-core microprocessors are in mass production; hardware vendors 

have announced forthcoming 48-, 80-, and even 100-core designs. Multicore 

microprocessors and SMP systems are also designed by Russian companies such as 

MCST and INEUM, e.g., Elbrus-4C (4 cores, 2014) and Elbrus-8C (8 cores, 2015) 

[2]. 

The main problem arising in the development of SMP systems is ensuring memory 

coherency. As each processor contains a local cache, multiple copies of the same data 

may exist in the system: one copy is in the main memory, and several copies are in 

the processors’ caches. Modification of a copy should cause either the invalidation of 

the other copies or their consistent modification. This is supported by so-called cache 

controllers, i.e. memory devices connected into a network and cooperating in 

accordance with a special protocol, so-called cache coherence protocol (CCP) [3]. 

Development of cache coherence mechanisms includes two stages: first, design of a 

CCP; second, its implementation in hardware. The both stages are error-prone; 

accordingly, methods for protocol verification and methods for hardware verification 

are in use [4]. Protocol bugs are especially critical and should be revealed before 

implementing the hardware. The widely recognized method for protocol verification 

is model checking [5]. It is fully automated, but suffers from a principal drawback – 

it is not scalable due to the state space explosion problem. Using the traditional 

methods for verifying a CCP of a system with four and more processors is impossible 

(at least, highly problematic) [6]. 

To overcome the issue and develop scalable verification technologies, researchers 

utilize parameterized model checking [7]. The idea is to construct abstract models 

that are independent of the number of processors and may be verified with the existing 

tools. Correctness of the abstract model guarantees correctness of the original one 

(checking, however, may produce wrong error messages, so-called false positives). 

The proposed approach is also of that type. In contrast to the existing ones, it supports 

the PROMELA language used in the SPIN model checker [8] and the message passing 

primitives. The method was successfully used for verifying the CCPs implemented in 

the Elbrus computer systems [2]. 

The paper is structured as follows. In Section 2, we analyze the existing approaches 

to CCP verification. In Section 3, we propose a method for constructing an abstract 

model out of a PROMELA protocol model. In Section 4, we describe theoretical 

foundations of the suggested method. In Section 5, we provide a case study on using 

the method for verifying a MOSI protocol. In Section 6, we summarize our work and 

outline directions of further research. 

2. Related work 

As it has been said, classical model checking is inapplicable to CCPs with an arbitrary 

number of processors. There exists an alternative approach, called deductive 

verification; however, it is hardly automated due to the need of so-called inductive 

invariants [9] and does not provide any diagnostic information if there are errors. 
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Parameterized model checking seems to be a more promising approach. It is worth 

mentioning two directions. 

First, verification of a parameterized model (in essence, a family of models) can be 

reduced to the verification of a single model of the family. Corresponding methods 

are aimed at finding such number 𝑁 that verification of the model for 𝑁 components 

(processors, cache controllers, etc.) is sufficient for proving correctness in general. In 

[7], such kind of method is presented, and it is reported that 𝑁 = 7 is enough for the 

protocols having been examined. However, that value is too big to make the method 

applicable to industrial SMP systems [6]. 

Second, a model (parameterized model) can be abstracted so as to reduce the state 

space size (make it independent of the number of components). In [10], a method for 

abstracting a model from the exact number of replicated identical components (e.g., 

caches in which the cache line is in a given state) is introduced. The technique 

significantly reduces the state space size; however, the use of a modified version of 

the Mur tool complicates its real-life application. A similar idea, called (0,1, ∞)-

counter abstraction, is employed in [11]-[13]. Though the technique seems to be 

powerful, it often leads to overly detailed abstract models, which makes the approach 

inapplicable to complex protocols. 

In [14], a general method for compositional verification is proposed. The idea is to 

replace a subset of identical components with an abstract one, called environment. 

Such replacement usually leads to false positives, and considerable efforts are 

required to eliminate them. In [15]-[18], the approach has been adapted to CCPs. The 

suggested method is based on syntactical transformations of Mur models and 

counterexample-guided abstraction refinement (CEGAR). The main drawbacks are 

as follows: 

 Mur does not support the message passing primitives, which complicates 

CCP description; 

 restrictions on Mur models of CCPs are not clearly defined; 

 the tools are not in open access. 

3. Suggested method 

The problem to be solved is as follows. Given a PROMELA model of a CCP for some 

configuration of an SMP system (i.e. a model with a fixed number 𝑛 > 2 of 

processors), it is required to check the CCP correctness for an arbitrary configuration 

of the system (i.e. for any 𝑁 ≥ 𝑛). 

Models considered in this paper satisfy the following conditions (obtained from the 

verification practice and shown to be sufficient for specifying CCPs). The allowed 

statements are 𝐢𝐟, 𝐝𝐨, 𝐠𝐨𝐭𝐨, = (assignment), ! (send), and ? (receive). Each guarded 

action is placed in an 𝐚𝐭𝐨𝐦𝐢𝐜 block and therefore is executed with no interruption; 

else alternatives are absent. Assignments’ right-hand sides contain only primary 

expressions, i.e. variables and constants; left-hand sides are variables and array 

elements (an array index is a primary expression). Atomic logic formulaе are of the 
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form 𝑥 == 𝑐 or 𝐵(𝑐ℎ), where 𝑥 is a variable (or an array element), 𝑐 is a constant, 

𝑐ℎ is a channel, and 𝐵 is a predicate: 𝐞𝐦𝐩𝐭𝐲, 𝐟𝐮𝐥𝐥, etc. 

3.1 Model parameterization 

From the conceptual point of view, a CCP model consists of an unbounded number 

of replicated identical processes, so-called basic processes, and a fixed number of 

auxiliary processes. Without loss of generality we will assume that there is only one 

auxiliary process. All processes are enumerated from 0 to 𝑁, where 𝑁 is a parameter: 

0 is the identifier of the auxiliary process, while 1, … , 𝑁 are the identifiers of the basic 

processes. All arrays used in the model (arrays of variables and arrays of channels) 

are of length 𝑁 and indexed with the identifiers of the basic processes. 

To generalize the original model to a parameterized one, the following induction rules 

are used: 

 each condition containing an array is either a conjunction or a disjunction of 

similar conditions on all array elements: 

o 𝜑{𝑖/1} ∧ … ∧ 𝜑{𝑖/𝑛} is interpreted as ∀𝑖 ∈ {1, … , 𝑁}: 𝜑; 

o 𝜑{𝑖/1} ∨ … ∨ 𝜑{𝑖/𝑛} is interpreted as ∃𝑖 ∈ {1, … , 𝑁}: 𝜑; 

 each sequence of statements 𝛼{𝑖/1}; … ; 𝛼{𝑖/𝑛} is interpreted as a loop 

𝐟𝐨𝐫 (𝑖: 1 . . 𝑁) {𝛼}. 

Here, 𝜑 (α) is a formula (statement) containing an index 𝑖 as a free variable, and 

𝜑{𝑖/𝑡} (𝛼{𝑖/𝑡}) denotes the result of substitution of 𝑡 for all occurrences of 𝑖 in 𝜑 (α). 

3.2 Assumptions 

Let us consider a CCP where request processing is coordinated by a system 

commutator of the home processor (the processor that owns the requested data). 

Accordingly, the PROMELA model contains two process types: 𝑝𝑟𝑜𝑐 is a cache 

controller (a basic process), and ℎ𝑜𝑚𝑒 is a home processor’s commutator (an 

auxiliary process). As usual, the CCP model deals with a single cache line. 

Broadly speaking, the CCP works as follows. Each 𝑝𝑟𝑜𝑐 instance may initiate an 

operation on the cache line by sending a primary request to the ℎ𝑜𝑚𝑒 process. Upon 

its reception and analysis, ℎ𝑜𝑚𝑒 sends snoop requests to all processes except for the 

sender. After snoop reception, a 𝑝𝑟𝑜𝑐 sends a response to the sender (data or an 

acknowledgement that it has completed an action on the cache line). Having collected 

all of the answers, the sender informs ℎ𝑜𝑚𝑒 on the completion of the operation. As 

soon as the completion message is received, ℎ𝑜𝑚𝑒 can accept the next primary 

request (see Fig. 1). 
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Fig. 1. Generalized scheme of a CCP 

It is worth emphasizing that at most one primary request is being processed at each 

moment of time. It is assumed that values of global variables (e.g., a current sender 

identifier) are set by ℎ𝑜𝑚𝑒 upon reception of a primary request and do not change 

during its processing. 

Each channel can be read by a single process; however, multiple processes are 

allowed to write into it. A channel is called simple if there is only one sender; 

otherwise, it is called multiplexed. Let 𝐶𝑆→𝑟 be the set of channels with the reader 𝑟 

and senders from the set 𝑆. Channels are divided into three groups (hereinafter, 

singletons are written without brackets, e.g., 0 → 𝑗 stands for {0} → 𝑗): 

 𝐶∗ = ⋃ 𝐶{1,…,𝑁}→𝑗
𝑁
𝑗=0  is the set of multiplexed channels of capacity 𝑁 used by 

ℎ𝑜𝑚𝑒 and 𝑝𝑟𝑜𝑐 to receive messages from the basic processes (e.g., a channel 

over which ℎ𝑜𝑚𝑒 receives primary requests, and channels over which 

processes receive responses); 

 𝐶ℎ→𝑝 = ⋃ 𝐶0→𝑗
𝑁
𝑗=1  is the set of simple channels of positive capacity (which 

is defined by the CCP, but independent of 𝑁) used by the basic processes to 

receive messages from ℎ𝑜𝑚𝑒 (e.g., channels over which ℎ𝑜𝑚𝑒 transmits 

snoop requests); 

 𝐶𝑝→ℎ = ⋃ 𝐶𝑖→0
𝑁
𝑖=1  is the set of simple channels of capacity 1 used by ℎ𝑜𝑚𝑒 

to receive messages from the basic processes (e.g., channels over which a 

sender informs ℎ𝑜𝑚𝑒 on operation completion). 

Messages transmitted via channels are ordered pairs of the form (𝑜𝑝𝑐, 𝑖), where 𝑜𝑝𝑐 

is an operation code, and 𝑖 is an identifier of the message sender. 

A verified CCP property looks as follows: 

𝐆{∀𝑘, 𝑙 ∈ {1, … 𝑁}: (𝑘 ≠ 𝑙) → 𝜑{𝑖/𝑘, 𝑗/𝑙}}, 
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where 𝐆 is an operator that requires its argument to be true in all reachable states of 

the model [5]; 𝜑 is a formula with two free indices (𝑖 and 𝑗) that characterizes cache 

coherency in the corresponding caches. For MOSI protocols [3], 𝜑 is as follows: 

{
¬(𝑐𝑎𝑐ℎ𝑒[𝑖] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[𝑗] ≠ 𝐼);

¬(𝑐𝑎𝑐ℎ𝑒[𝑖] = 𝑂 ∧ 𝑐𝑎𝑐ℎ𝑒[𝑗] = 𝑂);
 

where 𝑐𝑎𝑐ℎ𝑒 is an array that stores the cache line states. 

3.3 Informal description 

The core of the proposed method is syntactical transformation of PROMELA code. The 

transformations change the process types and retain four processes of 𝑁 + 1: a 

modified ℎ𝑜𝑚𝑒 process (ℎ𝑜𝑚𝑒𝑎𝑏𝑠), two modified 𝑝𝑟𝑜𝑐 processes (𝑝𝑟𝑜𝑐𝑎𝑏𝑠), and an 

environment process representing the rest of the processes (𝑝𝑟𝑜𝑐𝑒𝑛𝑣). Accordingly, 

the initialization process of the abstract model is as follows (𝐴𝐵𝑆 is a constant distinct 

from 0, 1, and 2): 

init { 

  atomic { 

    run homeabs(0); 

    run procabs(1); 

    run procabs(2); 

    run procenv(ABS); 

  } 

} 

The length of all arrays is changed from 𝑁 to 2 (recall that arrays are indexed with 

the identifiers of the 𝑝𝑟𝑜𝑐 processes). Each array access is supplied with the guard 

𝑖 ≤ 2, where 𝑖 is the index of the element being accessed. 

 On read (in a condition), the atomic formula containing the array access, is 

replaced with 𝑢𝑛𝑑𝑒𝑓 (an undefined value) if the index is rejected by the 

guard: 

𝐵(𝑥[𝑖], … ) ⟹ (𝑖 ≤ 2 → 𝐵(𝑥[𝑖], … ) ∶ 𝑢𝑛𝑑𝑒𝑓). 

In PROMELA, a formula of the kind (𝐵 → 𝑡1 ∶ 𝑡2) corresponds to the 

conditional construct 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝑡1 𝐞𝐥𝐬𝐞 𝑡2 𝐟𝐢. 

 On write (in an assignment), the assignment to the array is placed inside the 

selection statement: 

𝑥[𝑖] = 𝑡 ⟹ 𝐢𝐟 ∷ 𝐚𝐭𝐨𝐦𝒊𝐜 {𝑖 ≤ 2  𝑥[𝑖] = 𝑡} ∷ 𝐞𝐥𝐬𝐞 𝐟𝐢. 

Assignments to the global variables as well as conditions on the global 

variables remain unchanged. 

Channels of the set 𝐶ℎ→𝑝 are represented as an array (let us denote it as 𝑐ℎ). Similarly 

to other arrays, it is truncated to length 2. Each atomic formula over 𝑐ℎ[𝑖], where 𝑖 >
2, is replaced with 𝑢𝑛𝑑𝑒𝑓, while each operation on such a channel is removed. 

Channels of the sets 𝐶∗ and 𝐶𝑝→ℎ are represented by individual variables, not arrays. 
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Send statements are either unchanged or removed. A statement 𝑐ℎ! 𝑚 in a process 

type 𝑃 is removed only in the following cases: 

 𝑐ℎ ∈ 𝐶ℎ→𝑒 and 𝑃 = ℎ𝑜𝑚𝑒𝑎𝑏𝑠, where 𝐶ℎ→𝑒 = ⋃ 𝐶0→𝑗
𝑁
𝑗=3 ; 

e.g., ℎ𝑜𝑚𝑒𝑎𝑏𝑠 does not send snoop requests to 𝑝𝑟𝑜𝑐𝑒𝑛𝑣; 

 𝑐ℎ ∈ 𝐶∗ и 𝑃 = 𝑝𝑟𝑜𝑐𝑒𝑛𝑣; 

e.g., 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 does not send primary requests / snoop responses. 

Receive statements may be left unchanged, modified, or removed. A statement 𝑐ℎ? 𝑚 

in a process type 𝑃 is removed only in the following case: 

 𝑐ℎ ∈ 𝐶ℎ→𝑒 and 𝑃 = 𝑝𝑟𝑜𝑐𝑒𝑛𝑣; 

e.g., 𝑝𝑟𝑜𝑐𝑒𝑛𝑣  does not receive snoop requests. 

Modification of 𝑐ℎ? 𝑚 takes place solely in the following case: 

 𝑐ℎ ∈ 𝐶∗ and 𝑃 ∈ {ℎ𝑜𝑚𝑒𝑎𝑏𝑠, 𝑝𝑟𝑜𝑐𝑎𝑏𝑠}. 

The corresponding transformation replaces a guarded action of the kind 

𝐚𝐭𝐨𝐦𝐢𝐜 {𝐵 → 𝑐ℎ? 𝑚} with the following selection statement: 

if 

:: atomic {B  ch?m} 

:: atomic {m.opc = opc1; m.i = ABS} 

... 

:: atomic {m.opc = opck; m.i = ABS} 

fi 

where 𝐵′ is the result of 𝐵 transformation, and 𝑜𝑝𝑐1, … , 𝑜𝑝𝑐𝑘 are all possible 

operation codes that may be sent along the channel 𝑐ℎ. 

 

Fig. 2. Abstraction of a CCP model 

Fig. 2 provides a simplified view on CCP model abstraction. All processes except for 

ℎ𝑜𝑚𝑒(0), 𝑝𝑟𝑜𝑐(1), and 𝑝𝑟𝑜𝑐(2) are merged into the environment process 
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𝑝𝑟𝑜𝑐𝑒𝑛𝑣(𝐴𝐵𝑆). Solid arrows represent the unmodified send / receive statements. 

Dashed arrows correspond to the removed sends / modified receives. 

Having performed the above transformations, all logical formulae containing 𝑢𝑛𝑑𝑒𝑓 

(in essence, formulae of Kleene’s strong three-valued logic) are transformed into 

classic logic formulae such that 𝑢𝑛𝑑𝑒𝑓 in the outer scope is interpreted as 𝑡𝑟𝑢𝑒. This 

is achieved by the obvious transformation 𝐹: 

 𝐹(𝜑) ⟹ 𝐺(𝜑, 𝑡𝑟𝑢𝑒); 

 𝐺(𝑢𝑛𝑑𝑒𝑓, 𝑇) ⟹ 𝑇; 

 𝐺(𝐵, 𝑇) ⟹ 𝐵, where 𝐵 is an atom distinct from 𝑢𝑛𝑑𝑒𝑓; 

 𝐺(¬𝜑, 𝑇) ⟹ ¬𝐺(𝜑, ¬𝑇); 

 𝐺(𝜑 ∘ 𝜓, 𝑇) ⟹ 𝐺(𝜑, 𝑇) ∘ 𝐺(𝜓, 𝑇), where ∘ ∈ {∧,∨}. 

When transforming the PROMELA model, the following optimizations are applied: 

 constant propagation and folding; 

 dead code elimination. 

Here are some simple examples: 

 (𝑖 ≤ 2) ⟹ 𝑡𝑟𝑢𝑒 in ℎ𝑜𝑚𝑒𝑎𝑏𝑠 and 𝑝𝑟𝑜𝑐𝑎𝑏𝑠; 

 (𝑡𝑟𝑢𝑒 ∧ 𝐵) ⟹ 𝐵 and (𝑓𝑎𝑙𝑠𝑒 ∧ 𝐵) ⟹ 𝑓𝑎𝑙𝑠𝑒; 

 𝐚𝐭𝐨𝐦𝐢𝐜 {𝑡𝑟𝑢𝑒 → 𝛼} ⟹ 𝛼. 

It should be said that in general case the abstraction procedure transforms 𝑁 + 1 

processes to the 𝑘 + 2 ones, where 𝑘 ∈ {2, … 𝑁 − 1}: 𝑝𝑟𝑜𝑐𝑎𝑏𝑠 (in the number 𝑘), 

ℎ𝑜𝑚𝑒𝑎𝑏𝑠, and 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 . 

4. Theoretical foundations 

4.1 Basic definitions 

Let 𝑉𝑎𝑟 be a set of variables and 𝐶ℎ𝑎𝑛 be a set of channels. 𝐷𝑎𝑡𝑎 = 𝑉𝑎𝑟 ∪ 𝐶ℎ𝑎𝑛 is 

referred to as the set of data. For each 𝑐 ∈ 𝐶ℎ𝑎𝑛, a value |𝑐| > 0, called capacity, is 

defined. A data state (or state for short) is a valuation of data, i.e. a mapping 𝑠 that 

maps each variable 𝑣 to the value 𝑠(𝑣) ∈ ℕ and each channel 𝑐 to the sequence of 

messages 𝑠(𝑐) ∈ 𝕄∗ such that |𝑠(𝑐)| ≤ |𝑐|. The set of all states is denoted by 𝑆. A 

designated state 𝑠0 ∈ 𝑆 is called initial. 

Let us assume that there is a language over the data that includes logic formulae and 

statements, such as 𝑥 = 𝑡 (assignment), 𝑐 ! 𝑚 (send), and 𝑐 ? 𝑚 (read). 

A guard is a formula; an action is a sequence of statements; a guarded action is a pair 

𝛾 → 𝛼, where 𝛾 is a guard, and 𝛼 is an action. The guarded action 𝑡𝑟𝑢𝑒 → 𝜖, where 

𝜖 is the empty sequence of statements, is called empty and designated as 𝜀. The set of 

all guarded actions is denoted by 𝐴𝑐𝑡. A guarded action 𝛾 → 𝛼 is called executable 

in 𝑠 ∈ 𝑆 iff (if and only if) 𝑠 ⊨ 𝛾. 

A process graph (or process for short) is a triple 〈𝑉, 𝑣0, 𝐸〉, where 𝑉 is a set of vertices, 

𝑣0 ∈ 𝑉 is an initial vertex, and 𝐸 ⊆ 𝑉 × 𝐴𝑐𝑡 × 𝑉 is a set of edges. 
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Process structure is defined by the control statements: 𝐢𝐟 (selection), 𝐝𝐨 (repetition), 

and 𝐠𝐨𝐭𝐨 (jump). Correspondence between code and processes is straightforward and 

not described here. 

A system is a set of processes, i.e. {〈𝑉𝑖 , 𝑣0𝑖
, 𝐸𝑖〉}

𝑖=0

𝑁
. Hereinafter, 𝑃𝑖  is considered to be 

a shortcut for 〈𝑉𝑖 , 𝑣0𝑖
, 𝐸𝑖〉. A configuration of {𝑃𝑖}𝑖=0

𝑁  is a pair 〈𝑙, 𝑠〉, where 

𝑙: {0, … , 𝑁} → ⋃ 𝑉𝑖
𝑁
𝑖=0  such that 𝑙(𝑖) ∈ 𝑉𝑖 for all 𝑖 ∈ {0, … , 𝑁}, so-called the control 

state, and 𝑠 ∈ 𝑆. The configuration 〈𝑙0, 𝑠0〉, where 𝑙0(𝑖) = 𝑣0𝑖
 for all 𝑖 ∈ {0, … , 𝑁}, is 

called initial. 

The state space of a system {𝑃𝑖}𝑖=0
𝑁  is a triple 〈𝐶, 𝑐0, 𝑇〉, where 𝐶 is the set of all 

configurations of the system, 𝑐0 is the initial configuration, and 𝑇 ⊆ 𝐶 ×

({0, … , 𝑁} × (⋃ 𝐸𝑖
𝑁
𝑖=0 )) × 𝐶 is a transition relation such that the following property 

holds: (〈𝑙, 𝑠〉, (𝑖, (𝑣, 𝛾 → 𝛼, 𝑣′)), 〈𝑙′, 𝑠′〉) ∈ 𝑇 iff: 

 𝑙(𝑖) = 𝑣; 

 (𝑣, 𝛾 → 𝛼, 𝑣′) ∈ 𝐸𝑖; 

 𝑠 ⊨ 𝛾; 

 𝑙′ = (𝑙 ∖ {𝑖 ↦ 𝑣}) ∪ {𝑖 ↦ 𝑣′}; 

 𝑠′ = ⟦𝛼⟧(𝑠), where ⟦𝛼⟧: 𝑆 → 𝑆 is the semantics of 𝛼 (actions are assumed 

to be deterministic). 

It is worth mentioning that the restrictions on the transition relation conform to the 

notion of asynchronous parallelism. 

A configuration 𝑐 is called reachable in a state space 〈𝐶, 𝑇, 𝑐0〉 iff there is a path in 𝑇 

from 𝑐0 to 𝑐. A state 𝑠 is called reachable iff a configuration 〈𝑙, 𝑠〉, for some 𝑙, is 
reachable. 

4.2 System abstraction 

A process transformation (or transformation for short) is a function that maps one 

process to another. 

Let 𝐷𝑎𝑡𝑎𝑆 = (𝑉𝑎𝑟𝑆 ∪ 𝐶ℎ𝑎𝑛𝑆) ⊆ 𝐷𝑎𝑡𝑎 be a set of significant data. States 𝑠 and 𝑠′ are 

called equivalent (it is designated as 𝑠 ~ 𝑠′) iff 𝑠|𝐷𝑎𝑡𝑎𝑆
= 𝑠′|𝐷𝑎𝑡𝑎𝑆

. 

A guarded action 𝛾′ → 𝛼′ is referred to as an abstraction of a guarded action 𝛾 → 𝛼 

in 𝑠 ∈ 𝑆 iff: 

 the truth of 𝛾′ is determined only by the significant data: for all 𝑠′ ∈ 𝑆 such 

that 𝑠′ ~ 𝑠, 𝑠′ ⊨ 𝛾′ iff 𝑠 ⊨ 𝛾′; 

 the effect of 𝛼′ is determined only by the significant data: for all 𝑠′ ∈ 𝑆 such 

that 𝑠′ ~ 𝑠, there holds ⟦𝛼′⟧(𝑠′) ~ ⟦𝛼′⟧(𝑠); 

 𝛾′ is weaker than 𝛾: 𝑠 ⊨ 𝛾 → 𝛾′; 

 𝛼′ acts similar to 𝛼: ⟦𝛼′⟧(𝑠) ~ ⟦𝛼⟧(𝑠). 
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A set of guarded actions {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚  is referred to as an abstraction of a guarded 

action 𝛾 → 𝛼 in 𝑠 ∈ 𝑆 iff there exists 𝑖 ∈ {1, … , 𝑚} such that 𝛾𝑖
′ → 𝛼𝑖

′ is an abstraction 

of 𝛾 → 𝛼 in 𝑠. 

A guarded action 𝛾′ → 𝛼′ (a set {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 ) is referred to as an abstraction of 𝛾 →

𝛼 iff 𝛾′ → 𝛼′ ({𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 ) is an abstraction of 𝛾 → 𝛼 in all states. 

An abstraction function is a mapping 𝑓: 𝐴𝑐𝑡 → 2𝐴𝑐𝑡 such that for all 𝛾 → 𝛼 ∈ 𝐴𝑐𝑡, 

𝑓(𝛾 → 𝛼) is an abstraction of 𝛾 → 𝛼. The abstraction function 𝐼(𝛾 → 𝛼) ≡ {𝛾 → 𝛼} 

is called trivial. 

It should be emphasized that this view to abstraction is a bit simplified. An abstraction 

function should take into account context of a guarded action (the process edge, the 

process, and the model). Thus, it is assumed that each guarded action contains the 

context information. 

Let 𝑃 = 〈𝑉, 𝑣0, 𝐸〉 be a process, 𝑓 be an abstraction function, 𝑉′ be some set, and 

𝑅: 𝑉 → 𝑉′ be a mapping. An abstraction of 𝑃 induced by 𝑓 and 𝑅 is the process 

𝑓(𝑃, 𝑅) = 〈𝑉′, 𝑅(𝑣0), 𝐸′〉, where 𝐸′ is defined as follows: 

 if (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸 and 𝑓(𝛾 → 𝛼) = {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 , then {(𝑅(𝑣), 𝛾𝑖

′ →
𝛼𝑖

′, 𝑅(𝑢))}𝑖=1
𝑚 ⊆ 𝐸′; 

 no other edges belong to 𝐸′. 

An abstraction 𝑓(𝑃, 𝑅), where 𝑅 is a bijection, is referred to as a bijective abstraction. 

Besides transforming individual processes, there are of interest transformations that 

merges several processes into one. Let us consider a particular kind of such 

transformations, where processes to be merged are identical. 

Given a system {𝑃𝑖}𝑖=0
𝑁 , the following denotations can be introduced (𝑖 ∈ {0, … , 𝑁}): 

 𝑈𝑠𝑒𝑖 is the set of variables read by 𝑃𝑖; 

 𝐷𝑒𝑓𝑖 is the set of variables assigned by 𝑃𝑖; 

 𝑉𝑎𝑟𝑖 = 𝑈𝑠𝑒𝑖 ∪ 𝐷𝑒𝑓𝑖 is the set of variables of 𝑃𝑖; 

 𝑉𝑎𝑟𝐿𝑖
 is the set of local variables of 𝑃𝑖  (we do not define the set 𝑉𝑎𝑟𝐿𝑖

 

assuming that it is provided); 

 𝑉𝑎𝑟𝐺 = 𝑉𝑎𝑟 ∖ (⋃ 𝑉𝑎𝑟𝐿𝑖

𝑁
𝑖=0 ) is the set of global variables. 

Similarly, the following sets of channels (including the sets of local channels and the 

set of global channels) can be defined: 𝐼𝑛𝑖, 𝑂𝑢𝑡𝑖, 𝐶ℎ𝑎𝑛𝑖, 𝐶ℎ𝑎𝑛𝐿𝑖
, and 𝐶ℎ𝑎𝑛𝐺. In 

addition, 

 𝐷𝑎𝑡𝑎𝑖 = 𝑉𝑎𝑟𝑖 ∪ 𝐶ℎ𝑎𝑛𝑖 is the set of data of 𝑃𝑖; 

 𝐷𝑎𝑡𝑎𝐿𝑖
= 𝑉𝑎𝑟𝐿𝑖

∪ 𝐶ℎ𝑎𝑛𝐿𝑖
 is the set of local data of 𝑃𝑖; 

 𝐷𝑎𝑡𝑎𝐺 = 𝑉𝑎𝑟𝐺 ∪ 𝐶ℎ𝑎𝑛𝐺 is the set of global data. 

Processes are called identical if they can be transformed one another by renaming 

their local data. More formally, processes 𝑃𝑖  and 𝑃𝑗 are called identical if there are a 

bijection 𝑅: 𝑉𝑖 → 𝑉𝑗 and a bijection 𝑟: 𝐷𝑎𝑡𝑎𝐿𝑖
→ 𝐷𝑎𝑡𝑎𝐿𝑗

 such that 𝑅(𝑣0𝑖
) = 𝑣0𝑗

 and 
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(𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝑖   iff (𝑅(𝑣), 𝑟(𝛾 → 𝛼), 𝑅(𝑢)) ∈ 𝐸𝑗, where 𝑟(𝛾 → 𝛼) is the result of 

renaming the local data in 𝛾 → 𝛼 in accordance with 𝑟. 

Let {𝑃𝑖}
𝑖=𝑘1

𝑘2  be a system of identical processes, 𝐷𝑎𝑡𝑎𝑆 ∩ (⋃ 𝐷𝑎𝑡𝑎𝐿𝑖

𝑘2
𝑖=𝑘1

) = ∅ (the 

processes’ local data are insignificant), 𝑔 be an abstraction function, 𝑉′ be some set, 

and 𝑅: 𝑉𝑘1
→ 𝑉′ be a mapping. The process 𝑔(𝑃𝑘1

, … , 𝑃𝑘2
; 𝑅) = 𝑔(𝑃𝑘1

, 𝑅) is called 

a unifying abstraction of {𝑃𝑖}𝑖=1
𝑘  induced by 𝑔 and 𝑅. 

The definition needs to be clarified. Provided that the processes {𝑃𝑖}𝑖=𝑘1

𝑘2  operate 

simultaneously, there are control states that cannot be represented by a single vertex 

of the abstraction 𝑔(𝑃𝑘1
, … , 𝑃𝑘2

; 𝑅). Thus, a unifying abstraction may appear to be 

inadequate. Let us assume that each process can be either active or passive, and it is 

prohibited two or more processes to be active simultaneously. Besides, the passive 

mode is organized as the following loop: 

 a request is received; 

 the local data are updated; 

 a response is sent; 

 the control is returned to the initial vertex. 

Let 𝑉(𝐸′) be the set of all vertices of the edges from 𝐸′. 

A process 𝑃 = 〈𝑉, 𝑣0, 𝐸𝐴 ∪ 𝐸𝑃〉 is referred to as a bimodal process with the set of 

active edges 𝐸𝐴 and the set of passive edges 𝐸𝑃 iff 𝐸𝐴 ∩ 𝐸𝑃 = ∅ and the graph 

〈𝑉(𝐸𝑃), 𝐸𝑃〉 is strongly connected. 

Given a bimodal process 𝑃 = 〈𝑉, 𝑣0, 𝐸𝐴 ∪ 𝐸𝑃〉, the following denotation can be 

introduced: 𝑉𝐴 = 𝑉(𝐸𝐴) and 𝑉𝑃 = 𝑉(𝐸𝑃) (generally speaking, 𝑉𝐴 ∩ 𝑉𝑃 ≠ ∅ ). 

The process 𝑔(𝑃, 𝑅) = 〈𝑉′, 𝑣0
′ , 𝐸′〉, where 𝑔 is an abstraction function, and 𝑅: 𝑉 → 𝑉′ 

is a mapping, is called a serializing abstraction of 𝑃 iff 𝑅 satisfies the following 

properties: 

 𝑅(𝑣) = 𝑣0
′  for all 𝑣 ∈ 𝑉𝑃 ∖ 𝑉𝐴; 

 𝑅: 𝑉𝐴 → 𝑉′ is a bijection; 

and 𝐸′ is defined as follows: 

 if (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝐴 and 𝑔(𝛾 → 𝛼) = {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 , then {(𝑅(𝑣), 𝛾𝑖

′ →
𝛼𝑖

′, 𝑅(𝑢))}𝑖=1
𝑚 ⊆ 𝐸′; 

 (𝑣0
′ , 𝜀, 𝑣0

′ ) ∈ 𝐸′ (so-called 𝜀-self loop); 

 no other edges belong to 𝐸′; 

and for every (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝑃 , the empty guarded action 𝜀 is an abstraction of 𝛾 →
𝛼, i.e. 𝛼 depends on and affects solely insignificant data. 

The nature of serializing abstraction is removing all passive edges and replacing them 

with the 𝜀-self loop (𝑣0
′ , 𝜀, 𝑣0

′ ). Being applied to identical bimodal processes, such 

abstraction makes them unimodal and serializable (at most one process is operating, 

i.e. being in a non-initial state, at each moment of time) and allows constructing an 

adequate unifying abstraction. 
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Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁  be a system where all processes, except maybe {𝑃𝑖}𝑖=0

𝑘 , for some 𝑘 ∈
{0, … , 𝑁}, are identical and bimodal; 𝐷𝑎𝑡𝑎𝑆 be significant data; 𝑉𝑖

′, where 𝑖 ∈
{0, … , 𝑘 + 1}, be some sets; 𝑅𝑖: 𝑉𝑖 → 𝑉𝑖

′ be some mappings; 𝑓𝑖, where 𝑖 ∈ {0, … , 𝑘}, 

and 𝑔 be abstraction functions; at that, 𝑓𝑖(𝑃𝑖 , 𝑅𝑖) are bijective abstractions, while 

𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is a serializing abstraction. Then, the system 

𝑀′ = {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 ∪ {𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1)} 

is called an abstraction of 𝑀. A process 𝑓𝑖(𝑃𝑖 ; 𝑅𝑖), where 𝑖 ∈ {0, … , 𝑘}, is called an 

abstraction of the process 𝑃𝑖 . The process 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is called an 

abstraction of the environment. 

Statement. Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁  and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a system and its 

abstraction. Given an arbitrary state 𝑠, if 𝑠 is reachable in the state space of 𝑀, then 

there is a state 𝑠′ reachable in the state space of 𝑀′ such that 𝑠′ ~ 𝑠. 

Proof. Let 𝐴𝐵𝑆 = 𝑘 + 1. This denotation is introduced to emphasize that the 

abstraction of the environment, the process 𝑃𝐴𝐵𝑆
′ = 𝑃𝑘+1

′ , generalizes not only the 

process 𝑃𝑘+1, but also the processes 𝑃𝑘+2, … , 𝑃𝑁 . 

A configuration 〈𝑙′, 𝑠′〉 of 𝑀′ is said to conform to a configuration 〈𝑙, 𝑠〉 of 𝑀 iff the 

following conditions are satisfied: 

 𝑙′(𝑖) = 𝑅𝑖(𝑙(𝑖)) for all 𝑖 ∈ {0, … , 𝑘}; 

 if 𝑙′(𝐴𝐵𝑆) = 𝑅𝐴𝐵𝑆(𝑣0𝐴𝐵𝑆
), then 𝑙(𝑖) = 𝑣0𝑖

 for all 𝑖 ∈ {𝑘 + 1, … , 𝑁}; 

 if 𝑙′(𝐴𝐵𝑆) ≠ 𝑅𝐴𝐵𝑆(𝑣0𝐴𝐵𝑆
), then there is only one index 𝑖 ∈ {𝑘 + 1, … , 𝑁} 

such that 𝑙′(𝐴𝐵𝑆) = 𝑅𝑖(𝑙(𝑖)); 

 𝑠′ ~ 𝑠. 

Let us consider a path in the state space of 𝑀 starting with 〈𝑙0, 𝑠0〉: 

𝜋 = {(〈𝑙𝑗 , 𝑠𝑗〉, (𝑖𝑗 , (𝑣𝑗 , 𝛾𝑗 → 𝛼𝑗 , 𝑣𝑗+1)) , 〈𝑙𝑗+1, 𝑠𝑗+1〉)}
𝑗=0

𝑚−1

.  

Here, 𝑖𝑗 ∈ {0, … , 𝑁} is a process index; 𝑣𝑗 = 𝑙𝑗(𝑖𝑗) ∈ 𝑉𝑖𝑗
 and 𝑣𝑗+1 = 𝑙𝑗+1(𝑖𝑗) ∈ 𝑉𝑖𝑗

 are 

the process’s vertices connected with the edge labelled by 𝛾𝑗 → 𝛼𝑗; 𝑠𝑗 ⊨ 𝛾𝑗 and 𝑠𝑗+1 =

⟦𝛼𝑗⟧(𝑠𝑗) for all 𝑗 ∈ {0, … , 𝑚 − 1}. 

Our goal is to show that, in the state space of 𝑀′, there is a path 𝜋′ of the same length 

as 𝜋 such that each configuration of 𝜋′ conforms to the corresponding configuration 

of 𝜋: 

𝜋′ = {(〈𝑙𝑗
′, 𝑠𝑗

′〉, (𝑖𝑗
′, (𝑣𝑗

′, 𝛾𝑗
′ → 𝛼𝑗

′, 𝑣𝑗+1
′ )), 〈𝑙𝑗+1

′ , 𝑠𝑗+1
′ 〉)}

𝑗=0

𝑚−1
. 

Obviously, existence of such a path implies that there is a state 𝑠𝑚
′  reachable in the 

state space of 𝑀′ such that 𝑠𝑚
′  ~ 𝑠𝑚. Let us consider how to construct 𝜋′. 

Induction basis. The initial configuration 〈𝑙0
′ , 𝑠0

′ 〉 certainly conforms to 〈𝑙0, 𝑠0〉: 𝑣0𝑖

′ =

𝑙′(𝑖) = 𝑅𝑖(𝑙(𝑖)) = 𝑅𝑖(𝑣0𝑖
) for all 𝑖 ∈ {0, … , 𝑁}. 
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Inductive step. Given an arbitrary index 𝑞 ∈ {0, … , 𝑚 − 1}, we will show that if the 

configuration 〈𝑙𝑞
′ , 𝑠𝑞

′ 〉 conforms to 〈𝑙𝑞 , 𝑠𝑞〉, then there are a process of 𝑀′ (let us denote 

its index as 𝑖𝑞
′ ) and an edge (𝑣𝑞

′ , 𝛾𝑞
′ → 𝛼𝑞

′ , 𝑣𝑞+1
′ ) of that process such that 

〈𝑙𝑞+1
′ , 𝑠𝑞+1

′ 〉 = 〈(𝑙𝑞
′ ∖ {𝑖𝑞

′ ↦ 𝑣𝑞
′ }) ∪ {𝑖𝑞

′ ↦ 𝑣𝑞+1
′ }, ⟦𝛼′⟧(𝑠𝑞

′ )〉 (see the definition of the 

state space) conforms to 〈𝑙𝑞+1, 𝑠𝑞+1〉. There are two cases: 

 𝑖𝑞 ∈ {0, … , 𝑘}; 

 𝑖𝑞 ∈ {𝑘 + 1, . . . , 𝑁}. 

Case 1. If 𝑖𝑞 ∈ {0, . . . , 𝑘}, let 𝑖𝑞
′ = 𝑖𝑞: the transition is executed by the process 𝑃𝑖𝑞

′ =

𝑓𝑖𝑞
(𝑃𝑖𝑞

, 𝑅𝑖𝑞
). 

The edge (𝑣𝑞 , 𝛾𝑞 → 𝛼𝑞 , 𝑣𝑞+1) of the process 𝑃𝑖𝑞
 is abstracted to the set of edges 

{(𝑅𝑖𝑞
(𝑣𝑞), 𝛾𝑞

(𝑖)
→ 𝛼𝑞

(𝑖)
, 𝑅𝑖𝑞

(𝑣𝑞+1))}
𝑖=1

𝑡

, where 𝑓𝑖𝑞
(𝛾𝑞 → 𝛼𝑞) = {𝛾𝑞

(𝑖)
→ 𝛼𝑞

(𝑖)
}

𝑖=1

𝑡

. 

Among them, there is selected an edge whose label, 𝛾𝑞
′ → 𝛼𝑞

′ , is an abstraction of 

𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞. Such an edge always exists (see the definition of the process 

abstraction). We need to proof that the chosen edge belongs to the state space of 𝑀′ 
and the configuration 〈𝑙𝑞+1

′ , 𝑠𝑞+1
′ 〉 conforms to 〈𝑙𝑞+1, 𝑠𝑞+1〉. It is sufficient to proof 

the following statements: 

 𝑠𝑞
′ ⊨ 𝛾𝑞

′; 

 ⟦𝛼′⟧(𝑠𝑞
′ ) ~ ⟦𝛼⟧(𝑠𝑞). 

The first of them can be deduced from the facts that 𝑠𝑞 ⊨ 𝛾𝑞 (otherwise, the state 

space of 𝑀 would not include the transition under consideration), 𝛾𝑞
′ → 𝛼𝑞

′  is an 

abstraction of 𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞 , and 𝑠𝑞
′  ~ 𝑠𝑞  (the induction assumption). Obviously, 𝑠𝑞 ⊨

𝛾𝑞 and 𝑠𝑞 ⊨ 𝛾𝑞 → 𝛾𝑞
′  lead to 𝑠𝑞 ⊨ 𝛾𝑞

′ , which, in couple with 𝑠𝑞
′  ~ 𝑠𝑞 , leads to 𝑠𝑞

′ ⊨ 𝛾𝑞
′ . 

The second statement is an implication of the facts that 𝛾𝑞
′ → 𝛼𝑞

′  is an abstraction of 

𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞  and 𝑠𝑞
′  ~ 𝑠𝑞 . 

Case 2. If 𝑖𝑞 ∈ {𝑘 + 1, . . . , 𝑁}, let 𝑖𝑞
′ = 𝐴𝐵𝑆: the transition is executed by the process 

𝑃𝐴𝐵𝑆
′ = 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝐴𝐵𝑆). There are two subcases: 

 the edge (𝑣𝑞 , 𝛾𝑞 → 𝛼𝑞 , 𝑣𝑞+1) is active; 

 the edge (𝑣𝑞 , 𝛾𝑞 → 𝛼𝑞 , 𝑣𝑞+1) is passive. 

Subcase 2.1. If the edge is active, then, by definition of configuration conformance, 

𝑙′(𝐴𝐵𝑆) = 𝑅𝑖𝑞
(𝑣𝑞). In 𝑃𝐴𝐵𝑆

′ , there is selected an edge between 𝑅𝑖𝑞
(𝑣𝑞) and 𝑅𝑖𝑞

(𝑣𝑞+1) 

whose label is an abstraction of 𝛾𝑞 → 𝛼𝑞 in 𝑠𝑞 . Such an edge always exists (active 

edges are abstracted in a usual way). The further proof is similar to that in Case 1. 

Subcase 2.2. If the edge is passive, then 𝑅𝑖𝑞
(𝑣𝑞) = 𝑅𝑖𝑞

(𝑣𝑞+1) = 𝑅𝑖𝑞
(𝑣0𝑖𝑞

) = 𝑣0𝐴𝐵𝑆
′ . 

In 𝑃𝐴𝐵𝑆
′ , there is selected an edge (𝑣0𝐴𝐵𝑆

′ , 𝜀, 𝑣0𝐴𝐵𝑆
′ ). Conformance of the configuration 

follows from the facts that passive edges do not depend on sufficient data and do not 

affect them. 
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Conclusion. Given an arbitrary path 𝜋 in the state space of 𝑀, there is a path 𝜋′ in the 

state space of 𝑀′ such that the ending state of 𝜋′ is equivalent to the ending state of 

𝜋. 

Q.E.D. 

Corollary. Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁  and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a system and its 

abstraction. Given an arbitrary formula 𝜑 over significant data, if 𝜑 is true (false) in 

all states reachable in the state space of 𝑀′, then 𝜑 is true (false) in all states reachable 

in the state space of 𝑀. 

4.3 Model transformation 

This section defines abstraction functions used for protocol model transformation. 

The description is not quite formal: rigorous definition requires, first, formalization 

of the PROMELA semantics and, seconds, usage of formalisms for describing code 

transformations. Nevertheless, we believe that the explanations below are sufficient 

for formalizing and automating the abstraction procedure. 

Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁  and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a system (referred to as an 

original model) and its abstraction (referred to as an abstract model). 

Let us recall that each message circulating in the model includes the sender’s 

identifier. A state of a channel being written by {𝑃𝑖}𝑖=𝑘+1
𝑁 , as well as messages being 

read from the channel may contain identifiers from the set {𝑘 + 1, … , 𝑁}. In the 

abstract model, there are no such identifiers: they are mapped to 𝐴𝐵𝑆 (usually, 𝐴𝐵𝑆 =
𝑘 + 1). The definition of state equivalence should be modified so as not to distinguish 

between 𝑖 and 𝐴𝐵𝑆 if 𝑖 ∈ {𝑘 + 1, … , 𝑁}. 

Another issue is as follows. State of a channel’s buffer is not of importance until a 

message is read. The idea is to ignore some messages (in particular, messages written 

by {𝑃𝑖}𝑖=𝑘+1
𝑁 ). In this case, a send statement can be replaced with 𝜀. To preserve the 

abstraction properties, each read from the channel should be supplied (as alternative 

behavior) with the assignments of all possible values that could be sent via the 

channel by the removed statement to the message variable. 

To be more precise, the definition of state equivalence should take into account the 

following considerations: 

 given a channel 𝑐 ∈ 𝐶∗, an abstract state 𝑠′ is (quasi) equivalent to a state 𝑠 

(state is a sequence of messages) iff 𝑠′ is produced from 𝑠 by removing all 

messages with identifiers from {𝑘 + 1, … , 𝑁}; 

 the channels from 𝐶ℎ→𝑒 = ⋃ 𝐶0→𝑗
𝑁
𝑗=𝑘+1  are insignificant (every two states of 

a channel are equivalent); 

 an abstract state 𝑠′ of the channels 𝐶𝑒→ℎ = ⋃ 𝐶𝑖→0
𝑁
𝑖=𝑘+1  (as a whole) is 

equivalent to a state 𝑠 iff there is 𝑖 ∈ {𝑘 + 1, … , 𝑁} such that for each 𝑐 ∈
𝐶𝑖→0, the state 𝑠′(𝑐′), where 𝑐′ is a channel that corresponds to 𝑐 in 𝑃𝐴𝐵𝑆, is 

produced from 𝑠(𝑐) by replacing 𝑖 with 𝐴𝐵𝑆 while the remaining channels 
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are empty in both states. 

The suggested approach implies the following restrictions on the input model: 

 𝐷𝑎𝑡𝑎𝑆 = 𝐷𝑎𝑡𝑎 ∖ (⋃ 𝐷𝑎𝑡𝑎𝐿𝑖

𝑁
𝑖=𝑘+1 ); 

 for each 𝑖 ∈ {1, … , 𝑁}, there holds 𝐶ℎ𝑎𝑛𝑖 = 𝐶ℎ𝑎𝑛𝐴𝑖
∪ 𝐶ℎ𝑎𝑛𝑃𝑖

, where 

𝐶ℎ𝑎𝑛𝐴𝑖
 and 𝐶ℎ𝑎𝑛𝑃𝑖

 are the sets of channels used, respectively, in the active 

and passive modes, and: 

o 𝐶ℎ𝑎𝑛𝐴𝑖
∩ 𝐶ℎ𝑎𝑛𝑃𝑖

= ∅; 

o 𝐶ℎ𝑎𝑛𝐴𝑖
⊆ 𝐶ℎ𝑎𝑛𝐺 (𝐶ℎ𝑎𝑛𝐴𝑖

= 𝐶{1,…,𝑁}→0 ∪ 𝐶𝑖→0); 

o 𝐶ℎ𝑎𝑛𝑃𝑖
⊆ 𝐶ℎ𝑎𝑛𝐿𝑖

 (𝐶ℎ𝑎𝑛𝑃𝑖
= 𝐶0→𝑖 ∪ (⋃ 𝐶{1,…,𝑁}→𝑗

𝑁
𝑗=1 )); 

 the only channel predicate in use is 𝐞𝐦𝐩𝐭𝐲 (behavior does not depend on 

the number of messages in the channels’ buffers); 

 there are no dependencies via variables between the processes {𝑃𝑖}𝑖=1
𝑁  (all 

dependencies are via messages); 

 each guarded action is closed under data dependencies via variables; 

 there are no data dependencies from the local data (control dependencies 

from the local data are allowed). 

𝑀′ = {𝑃𝑖
′}𝑖=0

𝑘+1 = {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 ∪ {𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1)}, the abstract model, is 

constructed as follows (the description below can be viewed as a definition of the 

mappings 𝑅𝑖 and the abstraction functions 𝑓𝑖 and 𝑔). Initially, each process 𝑃𝑖
′, where 

𝑖 ∈ {0, … , 𝑘 + 1}, is isomorphic to 𝑃𝑖: 𝑃𝑖
′ = 𝐼(𝑃𝑖 , 𝑅0𝑖

), where 𝐼 is the trivial 

abstraction function, while 𝑅0𝑖
: 𝑉𝑖 → 𝑉𝑖

′ is a bijection. Then, the following 

transformations are applied to 𝑃𝐴𝐵𝑆
′ = 𝑃𝑘+1

′  and the rest of the processes: 

 all passive edges of 𝑃𝐴𝐵𝑆
′  are removed and replaced with the 𝜀-self loops; 

 when removing a passive edge whose action contains a read from some 

channel 𝑐 (a write to some channel 𝑐): 

o in {𝑃𝑖
′}𝑖=0

𝑘 , for all 𝑗 ∈ {𝑘 + 1, … , 𝑁}, all writes to 𝑐𝑗 (all reads from 

𝑐𝑗), where 𝑐𝑗 is a channel of 𝑃𝑗 that corresponds to 𝑐 (the processes 

are identical), are removed; 

o when removing a read of a message 𝑚: 

 in the guards dependent on 𝑚, the minimal subformulae 

dependent on 𝑚 are replaced with 𝑢𝑛𝑑𝑒𝑓; 

 the active edges of 𝑃𝐴𝐵𝑆
′  are processed as follows: 

o all assignments to the local variables are removed; 

o when removing an assignment to a local variable 𝑥: 

 in the guards dependent on 𝑥, the minimal subformulae 

dependent on 𝑥 are replaced with 𝑢𝑛𝑑𝑒𝑓; 

o each read from a global channel 𝑐 is not modified: 

 in {𝑃𝑖
′}𝑖=0

𝑘 , writes to 𝑐 are not modified; 
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o each write to a global channel 𝑐 is removed: 

 in {𝑃𝑖
′}𝑖=0

𝑘 , each read 𝑐 ? 𝑚 is supplemented with the 

alternatives {𝑚 = 𝑣𝑗}
𝑗=1

𝑡
, where {𝑣𝑗}

𝑗=1

𝑡
 contains all 

possible values that 𝑃𝐴𝐵𝑆
′  can send via 𝑐. 

Statement. The processes {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘  (constructed as it is described above) are 

bijective abstractions, while the process 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is a serializing 

abstraction. Thus, 𝑀′ is an abstraction of 𝑀. 

As the description is informal, the statement is given without a proof. It should be 

noticed that the abovementioned method has been implemented in a tool prototype. 

Given a PROMELA model, the tool parses the code, builds the abstract syntax tree, 

transforms it according to the rules, and maps it back to PROMELA. 

5. Case study 

The tool and the underlying method were used to verify the MOSI family CCPs 

implemented in the Elbrus computer systems. The developed PROMELA model 

supports memory accesses of the types Write Back, Write Through, and Write 

Combined. The experiments were performed on Intel Core i7-4771 with a clock rate 

of 3.5 GHz. The verified properties are as follows: 

 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑀)}; 

 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑂 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑂)}; 

 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] ∈ {𝑂, 𝑆})}. 

Table 1 and Table 2 show time and memory resources consumed for checking the 

property (1), respectively, on the original model (𝑛 = 3) and on the abstract one. Note 

that in the case 𝑛 = 3 abstraction preserves the number of processes: ℎ𝑜𝑚𝑒(0), 

𝑝𝑟𝑜𝑐(1), and 𝑝𝑟𝑜𝑐(2) are replaced with their abstract counterparts, while proc(3) is 

replaced with 𝑝𝑟𝑜𝑐𝑒𝑛𝑣(𝐴𝐵𝑆). 

Table 1. Resources required for checking the original model 

SPIN 

optimization 

State space 

size 

Memory 

consumption 

Verification 

time 

𝐴𝑏𝑠𝑒𝑛𝑡 5.1  106 682 Mb 9 s 

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 5.1  106 328 Mb 15 s 

Table 2. Resources required for checking the abstract model 

SPIN 

optimization 

State space 

size 

Memory 

consumption 

Verification 

time 

𝐴𝑏𝑠𝑒𝑛𝑡 2.2  106 256 Mb 3.7 s 

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 2.2  106 108 Mb 6.2 s 

The tables show that even for 𝑛 = 3 there is a gain in state space size and memory 

consumption. Meanwhile, correctness of the abstract model implies correctness of the 
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original one for any 𝑛 ≥ 3. It is shown that the suggested approach reduces 

verification of the parameterized CCP model to visiting and testing ~106 states, 

which requires ~100 Mb of memory. 

6. Conclusion 

SMP computer systems utilize complicated caching mechanisms. To ensure that 

multiple copies of the same data are kept up-to-date, CCPs are employed. Errors in 

the CCPs and their implementations may cause data corruption and system hanging. 

This explains why CCP verification methods are of high value and importance. 

The main problem arising in CCP verification is state explosion. In this paper, we 

have proposed an approach to overcome the issue and make verification scalable. The 

method having been described is aimed at transforming a CCP PROMELA model so as 

the result is independent of the number of processors and can be verified by the SPIN 

model checker on a regular basis. The approach was successfully applied to the MOSI 

family CCPs implemented in the Elbrus computer systems. 

In the future, we are planning to extend the method with CEGAR, to develop an open-

source tool for syntactical transformations of PROMELA models (a prototype is already 

available), and to create a unified model-based technology for checking CCPs and 

verifying memory management units. 
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Аннотация. В статье представлен метод масштабируемой верификации PROMELA-

моделей протоколов обеспечения когерентности памяти. Под масштабируемостью 

понимается независимость затрат на верификацию (прежде всего, машинного времени 

и памяти) от числа процессоров в системе. Метод состоит из трех основных шагов. На 

первом шаге в модель протокола, созданную для определенной конфигурации системы 

(для конкретного числа процессоров), вводится параметр, представляющий число 

процессоров в системе. Для этого используются простые индуктивные правила, что 

возможно только при определенных допущениях на вид протокола. На втором шаге 

построенная параметризованная модель абстрагируется от числа процессоров. Для этого 

над присваиваниями, выражениями и коммуникационными действиями модели 

совершается ряд синтаксических преобразований. На третьем шаге полученная 

абстрактная модель верифицируется с помощью инструмента SPIN обычным образом. 

Помимо описания метода, в статье приводится доказательство его корректности: 
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утверждается, что предложенная схема абстракции является консервативной в том 

смысле, что любой инвариант (свойство истинное во всех достижимых состояниях) 

абстрактной модели является инвариантом исходной модели (свойства-инварианты — 

это именно те свойства, которые представляют интерес при верификации протоколов 

обеспечения когерентности памяти). Предложенный метод был воплощен в прототипе 

инструмента, который разбирает код на языке PROMELA, строит дерево абстрактного 

синтаксиса, преобразует его по заданным правилам и отображает обратно в PROMELA 

код. Инструмент (и метод в целом) был успешно использован при верификации 

протоколов семейства MOSI, разработанных в АО «МЦСТ» и реализованных в 
вычислительных комплексах «Эльбрус». 

Ключевые слова: многоядерные микропроцессоры, мультипроцессоры с разделяемой 
памятью, протоколы когерентности памяти, проверка моделей, SPIN, PROMELA. 
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