
Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

77

Language for Describing Templates for Test
Program Generation for Microprocessors

A.D. Tatarnikov <andrewt@ispras.ru>

Institute for System Programming of the Russian Academy of Sciences,

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. Test program generation and simulation is the most widely used approach to

functional verification of microprocessors. High complexity of modern hardware designs

creates a demand for automated tools that are able to generate test programs covering non-

trivial situations in microprocessor functioning. The majority of such tools use test program

templates that describe scenarios to be covered in an abstract way. This provides verification

engineers with a flexible way to describe a wide range of test generation tasks with minimum

effort. Test program templates are developed in special domain-specific languages. These

languages must fulfill the following requirements: (1) be simple enough to be used by

verification engineers with no sufficient programming skills; (2) be applicable to various

microprocessor architectures and (3) be easy to extend with facilities for describing new types

of test generation tasks. The present work discusses the test program template description

language used in the reconfigurable and extensible test program generation framework

MicroTESK being developed at ISP RAS. It is a flexible Ruby-based domain-specific language

that allows describing a wide range of test generation tasks in terms of hardware abstractions.

The tool and the language have been applied in industrial projects dedicated to verification of
MIPS and ARM microprocessors.

Keywords: microprocessors; functional verification; test program generation; test templates;

domain-specific languages.

DOI: 10.15514/ISPRAS-2016-28(4)-5

For citation: Tatarnikov A.D. Language for Describing Templates for Test Program

Generation for Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 4, 2016. pp. 77-

98. DOI: 10.15514/ISPRAS-2016-28(4)-5

1. Introduction

Functional verification is acknowledged to be the bottleneck in microprocessor

design cycle. According to various estimates, it accounts for more than 70% of overall

project time and resources. In the current industrial practice, function verification

mainly relies on test program generation (TPG) which is done by special automation

tools [1]. Generated test programs (TP) are instruction sequences aimed to trigger

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

78

certain events in the microprocessor design under verification. TPG tools are aimed

to provide a high level of test coverage by applying a rich set of generation methods.

As modern microprocessors are getting more and more complex, new more advanced

methods emerge. A common problem for TPG tool developers is how to overcome

the complexity and make it easy to apply the growing set of methods to a wide range

of microprocessor designs.

One of possible ways to increase the flexibility of a TPG tool is to separate generation

logic from descriptions of test cases. This method is known as template-based

generation. The key idea of the method is that test programs are generated on the basis

of abstract descriptions called test program templates or test templates (TTs). The

method helps generate high-quality tests directed towards specific situations or

classes of situations. TTs specify methods to be used for constructing instruction

sequences and constraints on instruction operand values which must be satisfied to

make certain events to fire. Test data are generated by finding random solutions to the

given constraint systems. Such approach is usually referred to as constraint-based

random generation [2]).

The template-based approach is implemented in a number of TPG tools including

MicroTESK [3], a reconfigurable [4] and extensible [5] TPG framework being

developed at ISP RAS. The framework uses formal specifications to construct TPG

tools for specific microprocessor designs. A constructed TPG tool is separated into

two main components: (1) an architecture-independent test generation core and (2) an

architecture specification, or a model. The approach called model-based [1] helps

significantly reduce the efforts to support a new microprocessor architecture by

reusing the core. The core is designed as a set of generation engines which can be

easily extended with plugins implementing new TPG methods. Test programs are

generated by processing TTs that describe verification tasks in terms of the model and

the generation methods implemented by the core.

This paper describes the test template description language (TTDL) used in

MicroTESK. This is a domain-specific language implemented as a set of Ruby [6]

libraries, which is easy adaptable to changing configurations. Facilities for describing

instruction calls for a specific ISA are dynamically added and are based on

information provided by the model. Also, the MicroTESK TTDL provides a rich set

of facilities for describing verification tasks which are common for all microprocessor

configurations. When MicroTESK is extended with new TPG methods, support for

these features is added in the TTDL by providing new Ruby libraries.

The rest of the paper is divided into five sections. Section 2 contains a brief survey of

the existing TPG tools that follow the template-based approach. Section 3 formulates

the requirements for a TTDL imposed by MicroTESK that led to creating the

described TTDL. Section 4 provides a detailed description of the architecture and

facilities of the MicroTESK TTDL. Section 5 contains a case study of applying the

TTDL for describing test cases in industrial projects. Section 6 discusses the results

and outlines directions of future research and development.

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

79

2. Related work

Functional verification has always been a major issue for the research community.

Over the last decades, a lot of TPG methods and tools have emerged. The template-

based approach described in this paper has been applied in a number of tools

developed by different teams. This section gives an overview of the most significant

of existing TPG tools and discusses strong and weak points of their TTDLs.

IBM Research has been one of the major contributors in the field of TPG for

microprocessors during the last decades. Genesys-Pro [1], one of their most recent

tools, uses TTs to describe TPG tasks as constraint satisfaction problems (CSP) [2]

and generates test data by solving these CSPs. Constraints can be used to specify such

aspects of functionality as boundary conditions, exceptions, cache hits/misses, etc.

The TTDL used by Genesys-Pro is a completely impendent domain-specific language

which provides a rich set of features. The language features it offers can be divided

into four groups: (1) basic instruction statements, (2) sequencing-control statements,

(3) standard programming constructs, and (4) constraint statements. By combining

these constructs, users can compose complex TTs with a degree of randomness varied

from completely random to completely directed. The main advantage of the language

is that it is designed for describing test scenarios and it does not confuse verification

engineers with any unnecessary programming constructs. At the same time, being not

based on existing languages, it does not take advantage of well-tried constructs that

can help organize TTs into reusable libraries. This can be important as industrial

testbenches usually contain thousands lines of code. Also, it is unclear how easy the

language can be extended with new constructs for describing new types of TPG tasks.

Another company that has made a significant contribution in development of TPG

tools is Obsidian Software (now acquired by ARM) [7]. Their tool RAVEN (Random

Architecture Verification Engine) [8] generates random and directed tests based on

TTs. Test templates are focused on coverage grids and use constraints to formulate

specific coverage goals. There is no detailed information available on this technology.

It is known that TTs can be either generated by the tool’s GUI or created as text. The

language must suit well for the TPG tasks that can be accomplished with RAVEN.

However, the question whether it is suitable for more general tasks stays open.

Also, Samsung Electronics created a TPG framework called RDG (Random

Diagnostics Generator) [9] for testing reconfigurable processors. It uses TTs created

in the C++ language to specify instructions that will be used in a TP and constraints

on their input values that should be satisfied in order to meet testing goals. This

approach takes advantage of power and performance of C++, but requires solid

programming skills which are not common for verification engineers.

Finally, MicroTESK [3] version 1.0 used TTs written using Java libraries [10]. This

is not convenient as verification engineers are forced to deal with Java abstractions

such as classes and interfaces, which are not related to verification tasks. Moreover,

details of language implementation must be hidden from users in order to be able to

change it without breaking existing TTs. This motivated to create a new domain-

specific language for the new version of MicroTESK.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

80

3. Requirements for TTDL

Requirements for a TTDL can be divided in two groups: (1) general requirements for

a TTDL; (2) requirements related to integration into the MicroTESK framework. Let

us first consider the general requirements that are common for all TTDLs. A TTDL

used to describe scenarios for random and directed tests must provide facilities:

1) to describe instructions calls and data definitions using syntax similar to the

one used in assembly code;

2) to manage memory allocations in the same way as in the assembly language;

3) to fill memory with data generated according to specific rules;

4) to compose instruction sequences using a wide range of methods (random,

combinatorial, etc.) and to merge these sequences;

5) to specify random values and the degree of their randomness described by

distributions;

6) to select instructions at random with the specified degree of randomness;

7) to specify constraints on instruction arguments;

8) to describe initialization code that places generated test data to proper

registers or memory addresses;

9) to specify code of self-checks that check validity of the resulting state of the

microprocessor;

10) to describe exception handlers;

11) to specify conditions for generating different code depending on the context;

12) to insert comments and custom text into generated TPs;

13) to reuse existing TTs and their parts;

14) to split generated TPs into multiple files.

This list is not complete, but it is enough to conclude that the TTDL must be a domain-

specific language that provides constructs for the listed facilities.

Another important consideration is that it must be integrated into MicroTESK. First

of all, MicroTESK is written in Java and its generation engines operate with Java

objects. Therefore, the result of TT processing must be a hierarchy of Java objects

that then will be passed to TPG engines. The front-end of a TTDL processor can be

implemented using two approaches: (1) creating a Java-based parser for the new

language or (2) reusing an existing Java-based parser for one of the popular

programming languages. A crucial requirement for the second approach is that the

language must be easy to extend with new domain-specific constructs.

Now let us consider the requirements imposed by reconfigurability and extensibility

of MicroTESK:

1) Reconfigurability means that it can be applied to microprocessors with

different ISAs. Consequently, facilities used to describe instruction calls

must be changeable. Ideally, they must be added dynamically depending on

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

81

the information provided in the model that describes the configuration of the

design under verification.

2) Extensibility means that the set of supported TPG methods can be extended

by adding plugins implementing new methods. Often it will require adding

new constructs in the TTDL. Thus, it must be possible to dynamically add

language constructs depending on the installed plugins.

In other words, a crucial requirement for the MicroTESK TTDL is the ability to

dynamically change the set of supported language constructs. Obviously, changes in

the tool configuration must not involve modification of the TTDL processor. Creating

a flexible language processor from scratch is a challenging task. A simpler solution

would be to reuse a parser of an existing language.

Having considered several possible alternatives, it was decided to use JRuby [11], a

Java-based implementation of the Ruby language, as a front-end of the TTDL

processor. Ruby was selected because of its support for metaprogramming [12],

which allows adding new language features at runtime. Thus, the created TTDL

combines basic programming constructs provided by the Ruby core with constructs

for describing TTs provided by MicroTESK. The TTDL front-end is implemented as

a set of Ruby libraries that define language facilities for the above mentioned

requirements. Facilities that depend on the current configuration are dynamically

added using metaprogramming.

It is also worth mentioning that scripting languages like Ruby are quite popular among

verification engineers, who often use them to create in-house test generators. So,

another advantage of using Ruby is that it can make the TTDL easier to learn.

4. TTDL Description

4.1 Language Processor Architecture

The job of the TTDL processor is to build a hierarchy of Java objects describing a TT

and to pass it to the MicroTESK generation engines for further processing. The TTDL

processor is divided into a Ruby-based front-end and Java-based back-end. The back-

end is implemented as set of factories for creating Java objects that correspond to

specific entities of a TT. The front-end is represented by Ruby libraries that provide

language constructs for describing these entities and perform interaction with the

back-end to build corresponding Java objects. In other words, a language feature is

defined by a Ruby module that specifies its syntax and a Java module that describes

corresponding entities and provides means of constructing them. New language

features can be supported by providing corresponding modules.

The TTDL contains features that are configuration dependent. This includes facilities

for describing instruction calls, which are determined by the model built by

MicroTESK from ISA specifications. These language features are managed by a

special Ruby module that uses metaprogramming to define corresponding constructs

at runtime based on the information provided by the model.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

82

4.2 Test Template Structure

A TT is a program in Ruby executed by MicroTESK with the help of JRuby to build

Java objects that formulate tasks for the TPG engines implemented by the tool core.

More technically, it is a subclass of the Template base class provided by the

MicroTESK library. All domain-specific language constructs are implemented as

methods of this class. The Template class is not monolithic, it unites a set of Ruby

modules responsible for various features into a single class. Language extensions are

also implemented as modules to be included in the base class. Configuration-specific

methods are dynamically defined when the class is loaded.

The listing below shows the structure of a TT class:

require ENV[’TEMPLATE’]

class MyTemplate < Template

 def initialize

 super

 # Initialize settings here

 end

 def pre

 # Place your initialization code here

 end

 def post

 # Place your finalization code here

 end

 def run

 # Place your testing task description here

 end

end

The first line imports the Template base class from the location specified by the

TEMPLATE environment variable. The exact location depends on the configuration

and is determined automatically.

Classes describing TTs define four methods:

 initialize - configures TT settings if there is a need to override the default;

 pre - defines ISA-specific constructs and specifies initialization code to be

inserted in the beginning of TPs;

 post - specifies finalization code to be inserted in the end of TPs;

 run - contains descriptions of test cases to be generated.

The methods will be filled with constructs described further.

4.3 Managing Memory Allocation

It may be required to place code and data sections of generated TPs at specific

memory locations. The assembly language provides special directives to accomplish

this task. The TTDL offers similar constructs. An important note is that MicroTESK

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

83

simulates TPs in the process of their generation. Consequently, these constructs not

only specify directives to be placed into TPs, but also manage memory allocation in

the simulator.

The TTDL provides the following methods for managing addresses, which are

applicable to both code and data sections:

 align - aligns the allocation address by the amount n passed as an argument,

which by default means 2n bytes.

 org - sets the allocation origin, which is required to increase the allocation

address. It is possible to set an absolute or relative origin. The former can be

specified as org n and means an offset by n bytes from the base virtual

address. The latter can be specified as org :delta=>n and means an offset by

n bytes from the most recent allocation address.

 label - associates the specified label with the current address.

The listed methods rely on the following TT settings:

 align_format - specifies textual format for the align directive;

 org_format - specifies textual format for the org directive;

 base_virtual_address - specifies the base virtual address for memory

allocation;

 base_physical_address - specifies the base physical address for memory

allocation;

 alignment_in_bytes - specifies how the alignment amount should be

interpreted.

The first four settings are initialized with default values in the initialize method of the

Template base class as shown below and can be changed in the current TT class:

@org_format = ".org 0x%x"

@align_format = ".align %d"

@base_virtual_address = 0x0

@base_physical_address = 0x0

The last setting is implemented as a method that can be overridden to change its

behavior:

def alignment_in_bytes(n) 2 ** n end

4.4 Defining Random Distributions

Many TPG tasks involve selection based on random distribution. The TTDL provides

the following methods to define random distributions:

 range - creates an object describing a range of values and its weight, which

are specified by the value and bias attributes. Values can be one of the

following types:

- single value;

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

84

- range of values;

- array of values;

- distribution of values.

The bias attribute can be skipped which means default weight. Default

weights are used to specify an even distribution based on ranges with equal

weights.

 dist - creates an object describing a random distribution from a collection of

ranges.

The code below illustrates how to create weighted distributions for integer numbers:

simple_dist = dist(

 range(:value => 0, :bias => 25), # Value

 range(:value => 1..2, :bias => 25), # Range

 range(:value => [3, 5, 7], :bias => 50) # Array

)

composite_dist = dist(

 range(:value=> simple_dist, :bias => 80), # Distribution

 range(:value=> [4, 6, 8], :bias => 20) # Array

)

4.5 Describing Data Definitions

Data definitions are based on assembler-specific directives, which are not described

by the microprocessor model and, therefore, must be configured in TTs. The

configuration information includes textual format of the directives and mappings

between data types used by the assembler and the microprocessor model. Data

directives are configured using the data_config construct, which must be placed in

the pre method. Here is an example:

data_config(:text=>".data", :target=>"MEM") {

 define_type :id=>:byte, :text=>".byte", :type=>card(8)

 define_type :id=>:half, :text=>".half", :type=>card(16)

 define_type :id=>:word, :text=>".word", :type=>card(32)

 define_space :id=>:space, :text=>".space", :fillWith=>0

 define_ascii :id=>:ascii, :text=>".ascii", :zero=>false

 define_ascii :id=>:asciiz, :text=>".asciiz", :zero=>true

}

The data_config method has the following parameters:

 text - specifies the textual format of a directive that marks the beginning of

a data section;

 target - specifies the memory array defined in the model to which data will

be placed during simulation;

 base_virtual_address (optional, 0 by default) - specifies the base virtual

address for data sections.

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

85

Distinct data directives are configured using special methods that must be called

inside the data_config block. All of these methods share two common parameters: id

and text. The first specifies the keyword to be used in a TT to address the directive

and the second specifies how it will be printed into the TP. Here is the list of methods:

 define_type - defines a directive to allocate memory for a data element of the

data type specified by the type parameter;

 define_space - defines a directive to allocate memory filled with a default

value specified by the fillWith parameter;

 define_ascii_string - defines a directive to allocate memory for an ASCII

string terminated or not terminated with zero depending on the zero

parameter.

The above example defines directives byte, half, word, ascii (non-zero terminated

string) and asciiz (zero terminated string) that place data in the memory array MEM

defined in the microprocessor model.

Once data directives have been configured, data sections can be defined using the

data construct. Data definitions can be of two kinds depending on the context:

1) Global data that are available to all test cases generated from the given TT.

They are defined in the root of the pre or run methods. Global data are placed

into the simulator’s memory during initial processing of a TT.

2) Test case level data that are defined and used by specific test cases. Such

data are placed into the simulator’s memory when the test case is being

generated.

The data method has two optional parameters:

 global - a flag that states that the data definition should be treated as global

regardless of the context.

 separate_file - a flag that specifies whether the generated data definitions

should be placed into a separate source code file.

Here is an example of a data definition:

data(:global => true, :separate_file => false) {

 org 0x00001000

 label :byte_values

 byte 1, 2, 3, 4

 label :word_values

 word 0xDEADBEEF, 0xBAADF00D

}

The above code defines global data: four byte values and two word values. Memory

is allocated at offset 0x00001000. Data values are aligned by their size (1 and 4 bytes).

Labels byte_values and word_values point at the beginning of the byte and the word

arrays correspondingly.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

86

4.6 Describing Instruction Calls

To describe instruction calls, the TTDL provides runtime methods that are defined

using the metaprogramming facilities of Ruby on the basis of information provided

by the model. Methods have the same names and parameters as operations describing

corresponding instructions, which are defined in ISA specifications. Operations use

parameters of three kinds:

1) Immediate values that represent constants.

2) Addressing modes that encapsulate logic of reading and writing data to

memory resources. Usually they provide access to registers or memory.

3) Operations that specify operations to be performed as a part of execution of

the current operation. They are used to describe complex instructions

composed of several operations (e.g. VLIW instructions).

For example, a call to the add instruction from the MIPS ISA [13], which adds two

general-purpose registers t0 ($8), t1 ($9) and t2 ($10) described by the reg addressing

mode, can be specified in the following way:

add reg(8), reg(9), reg(10)

The TTDL supports creating aliases for addressing modes and operations invoked

with certain arguments. Aliases help make TTs more human-readable. They are

created by defining Ruby functions with corresponding names. The code below shows

how to create aliases for the registers from the previous example:

def t0 reg(8) end

def t1 reg(9) end

def t2 reg(10) end

Now the arguments of the add instruction can be specified using alises:

add t0, t1, t2

Also, the TTDL provides the pseudo function that can be used to specify calls to

pseudo instructions that do not have corresponding operations in ISA specifications.

They print user-specified text, but are not simulated by the generator. Here is an

example:

pseudo ’syscall’

4.7 Defining Groups

Addressing modes and operations can be organized into groups. Groups are used

when it is required to randomly select an addressing mode or operation from the

specified set. Groups can be defined in ISA specifications or in TTs. To do this in

TTs, the define_mode_group and define_op_group functions are used. Both functions

take the name and distribution arguments that specify the group name and the

distribution used to select its items.

For example, the code below defines an instruction group called alu that contains

instructions add, sub, and, or, nor, and xor selected randomly according to the

specified distribution:

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

87

alu_dist = dist(

 range(:value => ’add’, :bias => 40),

 range(:value => ’sub’, :bias => 30),

 range(:value => [’and’, ’or’, ’nor’, ’xor’], :bias => 30)

)

define_op_group(’alu’, alu_dist)

The following code specifies three calls that use instructions randomly selected from

the alu group:

alu t0, t1, t2

alu t3, t4, t5

alu t6, t7, t8

4.8 Describing Instruction Call Sequences

Instruction call sequences are described using block-like structures. Each block

specifies a sequence or a collection of sequences. Blocks can be nested to construct

complex sequences. The algorithm used for sequence construction depends on the

type and the attributes of a block.

An individual instruction call is considered a primitive block describing a single

sequence that consists of a single instruction call. A single sequence that consists of

multiple calls can be described using the sequence or the atomic construct. The

difference between the two is that an atomic sequence is never mixed with other

instruction calls when sequences are merged. The code below demonstrates how to

specify a sequence of three instruction calls:

sequence {

 add t0, t1, t2

 sub t3, t4, t5

 or t6, t7, t8

}

A collection of sequences that are processed one by one can be specified using the

iterate construct. For example, the code below describes three sequences consisting

of one instruction call:

iterate {

 add t0, t1, t2

 sub t3, t4, t5

 or t6, t7, t8

}

Sequences can be combined using the block construct. The resulting sequences are

constructed by sequentially applying the following engines to sequences returned by

nested blocks:

 combinator - builds combinations of sequences returned by nested blocks.

Each combination is a tuple of length equal to the number of nested blocks.

 permutator - modifies combinations returned by combinator by rearranging

some sequences.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

88

 compositor - merges (multiplexes) sequences in a combination into a single

sequence preserving the initial order of instructions calls in each sequence.

 rearranger - rearranges sequences constructed by compositor.

 obfuscator - modifies sequences returned by rearranger by permuting some

instruction calls.

Each engine has several implementations based on different methods. It is possible to

extend the list of supported methods with new implementations. Specific methods are

selected by specifying corresponding block attributes. When they are not specified,

default methods are applied. The format of a block structure for combining sequences

looks as follows:

block(

 :combinator => ’combinator-name’,

 :permutator => ’permutator-name’,

 :compositor => ’compositor-name’,

 :rearranger => ’rearranger-name’,

 :obfuscator => ’obfuscator-name’) {

 # Block A. 3 sequences of length 1: {A11}, {A21}, {A31}

 iterate { A11; A21; A31 }

 # Block B. 2 sequences of length 2: {B11, B12}, {B21, B22}

 iterate { sequence { B11, B12 }; sequence { B21, B22 } }

 # Block C. 1 sequence of length 3: {C11, C12, C13}

 iterate { sequence { C11; C12; C13 } }

}

The default method names are: diagonal for combinator, catenation for compositor,

and trivial for permutator, rearranger and obfuscator. Such a combination of engines

describes a collection of sequences constructed as a concatenation of sequences

returned by nested blocks. For example, sequences constructed for the block in the

above example will be as follows: {A11, B11, B12, C11, C12, C13}, {A21, B21, B22,

C11, C12, C13} and {A31, B11, B12, C11, C12, C13}.

4.9 Specifying Test Situations

Test situations are associated with specific instruction calls and specify methods used

to generate their input data. There is a wide range of data generation methods

implemented by various data generation engines. Test situations are specified using

the situation construct. It takes the situation name and a map of optional attributes

that specify situation-specific parameters. For example, the following line of code

causes input registers of the add instruction to be filled with zeros:

add t1, t2, t3 do situation(’zero’) end

When no situation is specified, a default situation is used. This situation places

random values into input registers. It is possible to assign a custom default situation

for individual instructions and instruction groups with the set_default_situation

function. For example:

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

89

set_default_situation ’add’ do situation(’zero’) end

Situations can be selected at random. The selection is based on a distribution. This

can be done by using the random_situation construct. For example:

sit_dist = dist(

 range(:value => situation(’add.overflow’)),

 range(:value => situation(’add.normal’)),

 range(:value => situation(’zero’)),

 range(:value => situation(’random’, :dist => int_dist))

)

add t1, t2, t3 do random_situation(sit_dist) end

Unknown immediate arguments that should have their values generated are specified

using the ”_” symbol. For example, the code below states that a random value should

be added to a value stored in a random register and the result should be placed to

another random register:

addi reg(_), reg(_), _ do situation(’random’) end

4.10 Selecting Registers

Unknown immediate arguments of addressing modes are a special case and their

values are generated in a slightly different way. Typically, they specify register

indexes and are bounded by the lenght of register arrays. Often such indexes must be

selected from a specific range taking into account previous selections. For example,

registers are allocated at random and they must not overlap. To be able to solve such

tasks, all values passed to addressing modes are tracked. The allowed value range and

the method of value selection are specified in configuration files. Values are selected

using the specified method before the instruction call is processed by the engine that

generates data for the test situation. The selection method can be customized by using

the mode_allocator function. It takes the allocation method name and a map of

method-specific parameters. For example, the following code states that the output

register of the add instruction must be a random register which is not used in the

current test case:

add reg(_ mode_allocator(’free’)), t0, t1

Also, the TTDL allows customizing the allowed range for selected values. It is

possible to exclude some elements from the range by using the exclude attribute or to

provide a new range by using the retain attribute. For example:

add reg(_ :exclude=>[1, 5, 7]), t0, t1

add reg(_ :retain=>8..15), t0, t1

Addressing modes with specific argument values can be marked as free using the

free_allocated_mode function. To free all allocated addressing modes, the

free_all_allocated_modes function can be used.

4.11 Describing Preparators

Preparators describe instruction sequences that place data into registers or memory

accessed via the specified addressing mode. They are inserted into TPs to set up the

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

90

initial state of the microprocessor required by test situations. It is possible to overload

preparators for specific cases (value masks, register numbers, etc). Preparators are

defined in the pre method using the preparator construct, which uses the following

parameters describing conditions under which it is applied:

 target - the name of the target addressing mode;

 mask (optional) - the mask that should be matched by the value in order for

the preparator to be selected;

 arguments (optional) - values of the target addressing mode arguments that

should be matched in order for the preparator to be selected;

 name (optional) - the name that identifies the current preparator to resolve

ambiguity when there are several different preparators that have the same

target, mask and arguments.

It is possible to define several variants of a preparator which are selected at random

according to the specified distribution. They are described using the variant construct.

It has two optional parameters:

 name (optional) - identifies the variant to make it possible to explicitly select

a specific variant;

 bias - specifies the weight of the variant, can be skipped to set up an even

distribution.

Here is an example of a preparator what places a value into a 32-bit register described

by the REG addressing mode and two its special cases for values equal to 0x00000000

and 0xFFFFFFFF:

preparator(:target => ’REG’) {

 variant(:bias => 25) {

 data {

 label :preparator_data

 word value

 }

 la at, :preparator_data

 lw target, 0, at

 }

 variant(:bias => 75) {

 lui target, value(16, 31)

 ori target, target, value(0, 15)

 }

}

preparator(:target => ’REG’, :mask => ’00000000’) {

 xor target, zero, zero

}

preparator(:target => ’REG’, :mask => ’FFFFFFFF’) {

 nor target, zero, zero

}

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

91

Code inside the preparator block uses the target and value functions to access the

target addressing mode and the value passed to the preparator.

The TTDL provides the prepare function to explicitly insert preparators into TPs. It

can be used to create composite preparators. The function has the following

arguments:

 target - specifies the target addressing mode;

 value - specifies the value to be written;

 attrs (optional) - specifies the preparator name and the variant name to select

a specific preparator.

For example, the following line of code places value 0xDEADBEEF into the t0

register:

prepare t0, 0xDEADBEEF

4.12 Describing Self-Checks

TPs can include self-checks that check validity of the microprocessor state after a test

case has been executed. These checks are instruction sequences inserted in the end of

test cases which compare values stored in registers with expected values. If the values

do not match control is transferred to a handler that reports an error. Expected values

are produced by the MicroTESK simulator. Self-check are described using the

comparator construct which has the same features as the preparator construct, but

serves a different purpose. Here is an example of a comparator for 32-bit registers and

its special case for value equal to 0x00000000:

comparator(:target => ’REG’) {

 prepare target, value

 bne at, target, :check_failed

 nop

}

comparator(:target => ’REG’, :mask => "00000000") {

 bne zero, target, :check_failed

 nop

}

4.13 Describing Test Cases

A TP can be described by the following formula:

 = start  {start, xi, stop}i=1,n  stop, where:

 start is a TP prologue that consists of instructions aimed for microprocessor

initialization;

 start, xi, stop is a test case that specifies an individual stimulus and consists

of:

- start is a test case prologue that performs all necessary preparations

for the test case;

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

92

- xi is a test case action that contains the main code of the test case;

- stop is a test case epilogue that performs finalization actions for the

test case such as self-checks.

 stop is a TP epilogue that consists of instructions aimed for microprocessor

finalization;

 n is the number of test cases in a TP.

The TTDL provides means of describing each part of a TP. start and stop are

described in the pre and post methods of a TT class correspondingly. Test cases are

specified in the run method.

Test cases are described by block constructs specifying one or more sequences of

instruction calls. Each sequence is a separate test case. It is possible to process a block

multiple times. This makes sense when sequences use randomization. In this case, it

results different test cases based on the same description. For example, the code below

describes five test cases based on the same sequence of three calls. Input data for the

calls are generated at random and will be different for all test cases.

def run

 sequence {

 add t0, t1, t2

 sub t3, t4, t5

 or t6, t7, t8

 }.run 5

end

start that contains preparators for input registers and stop that contains self-checks

will be generated by the tool automatically. Also, it is possible to specify additional

prologue and epilogue for test cases. They will be inserted between automatically

generated prologue and epilogue and main code of the test cases. They are specified

using the prologue and epilogue blocks nested into the sequence block. The syntax

looks like this:

sequence {

 prologue { ... }

 ...

 epilogue { ... }

}.run n

When instruction sequences are merged by nesting blocks, prologue and epilogue of

nested blocks wrap sequences returned by these blocks.

Test cases can be processed by different TPG engines. A specific engine can be

selected by passing the engine parameter to the block construct that describes the test

cases.

4.14 Describing Exception Handlers

TPs must contain handlers of exceptions that may occur during their execution.

Exception handlers are described using the exception_handler construct. This

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

93

description is also used by the MicroTESK simulator to handle exceptions. Separate

exception handlers are described using the section construct nested into the

exception_handler block. The section function has two arguments: org that specifies

the handler’s location in memory and exception that specifies names of associated

exceptions. For example, the code below describes a handler for the IntegerOverflow,

SystemCall and Breakpoint exceptions, which resumes execution from the next

instruction:

exception_handler {

 section(:org =>0x380, :exception => [’IntegerOverflow’, ’SystemCall’, ’Breakpoint’]) {

 mfc0 ra, cop0(14)

 addi ra, ra, 4

 jr ra

 nop

 }

}

4.15 Printing Text

TPs are printed in textual form to source code files. The printed text includes various

supplementary messages such as comments and separators. They are generated by

MicroTESK engines or specified by users in TTs. The format of printed text is set up

using the following settings:

 sl_comment_starts_with - starting characters for single-line comments.

Default value is ”//”.

 ml_comment_starts_with - starting characters for multi-line comments.

Default value is ”/*”.

 ml_comment_ends_with - terminating characters for multi-line comments.

Default value is ”*/”.

 indent_token - indentation token. Default value is ”\t”.

 separator_token - token used in separator lines. Default value is ”=”.

The settings are initialized with default values in the initialize method of the Template

class can be redefined in the initialize method of a TT.

The TTDL provides functions for printing custom text messages. Text messages are

printed either into the generated source code or into the simulator log. Here is the list

of supported functions:

 newline - adds the new line character into the TP;

 text - adds text into the TP;

 trace - prints text into the simulator execution log;

 comment - adds a comment into the TP;

 start_comment - starts a multi-line comment;

 end_comment - ends a multi-line comment.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

94

The text, trace and comment functions print formatted text. They take a format string

and an array of objects to be printed, which can be constants or memory locations. To

specify locations to be printed (registers, memory), the location function should be

used. It takes the name of the memory array and the index of the selected element.

For example, the code below prints a constant value and a value stored in a register

in the hexadecimal format:

text ’Constant: 0x%X’, 0xDEADBEEF

text ’Register: 0x%X’, location(’GPR’, 8)

5. Case Study

MicroTESK and its TTDL have been applied in industrial projects to generate TPs

for MIPS64 [13] and ARMv8 [14] microprocessors. Table 1 provides characteristics

of the MIPS64 and ARMv8 specifications used to configure MicroTESK for

generating TPs for these designs.

Table 1. Industrial application of the proposed TTDL and supporting tool

Project MIPS64 ARMv8

Number of instructions 102 207

ISA specification size (lines of code) 70 143

MMU specification size (lines of code) 134 637

Efforts (person-months) 101 809

Created tests include:

 tests for arithmetical instructions;

 tests for floating-point instructions;

 tests for branch instructions;

 tests for memory access instructions.

To describe tests for branch and memory instruction, the TTDL was extended with

additional constructs based on existing ones. The language was evolving in the

process of working on the projects. Some features were changed and some were

added. A number of language features came as requirements from customers. The

approach based on using dynamic languages such as Ruby to create TTDLs has

proved its flexibility. The TTDL allowed describing test cases in a format which is

maximally close to assembly language for corresponding microprocessors. This

allows verification engineers to concentrate on verification problems instead of issues

related to the use of a specific programming language.

5. Conclusion

A concept of a TTDL for a reconfigurable and extensible TPG framework has been

considered. The proposed solution was implemented in the MicroTESK [3]

framework. The developed TTDL is based on the Ruby [6] language and uses its

metaprogramming facilities to dynamically add configuration-dependent language

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

95

constructs. The language is integrated into MicroTESK, which is a Java-based tool,

with the help of JRuby [11]. Facilities of the TTDL can be extended by adding new

Ruby libraries.

Directions for further research and development are to apply the described principles

to create TTDLs based on other programming languages. First of all, it is Python and

its Java-based implementation called Jython. It provides facilities similar to those of

Ruby and is also popular among verification engineers. For this reason, it would be

advantageous to provide a Python-based version of the TTDL for those who are more

comfortable with this language.

Another task is development of a TTDL based on C++. It will be a part of a large

research project dedicated to on-line generation. An on-line TPG tool is represented

by a binary image with basic functions of an operating system, which is loaded

directly to a microprocessor chip where it generates and executes test stimuli. The

tool will be created by MicroTESK from C++ libraries based on formal specifications.

For further unification of TPG tools, it is important that TTs for on-line generation

are developed using the same principles.

References

[1]. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:

Innovations in Test Program Generation for Functional Processor Verification. Design &

Test of Computers, 2004. pp. 84–93.

[2]. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and G. Shurek. Constraint-

Based Random Stimuli Generation for Hardware Verification. AI Magazine, Volume 28,

Number 3, 2007, pp. 13–30.

[3]. MicroTESK page. http://forge.ispras.ru/projects/microtesk

[4]. A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based Test Program

Generator for Microprocessors. International Conference on Software Testing,

Verification and Validation Workshops, 2011. pp. 47–54.

[5]. A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov, M.M. Chupilko. Extensible

Environment for Test Program Generation for Microprocessors. Programming and

Computer Software, 40(1), 2014. pp. 1-9.

[6]. Ruby site: http://www.ruby-lang.org

[7]. E.A. Poe. Introduction to Random Test Generation for Processor Verification. Obsidian

Software, 7 pp, 2002.

[8]. RAVEN test program generator. Available at:

http://www.slideshare.net/DVClub/introducing-obsidian-software-and-ravengcs-for-

powerpc

[9]. Seonghun Jeong, Youngchul Cho, Daeyong Shin, Changyeon Jo, Yenjo Han, Soojung

Ryu, Jeongwook Kim, and Bernhard Egger. Random Test Program Generation for

Reconfigurable Architectures. 13th International Workshop on Microprocessor Test and

Verification (MTV), 2012, 6 p.

[10]. A. Kamkin. Test Program Generation for Microprocessors. Trudy ISP RAN / Proc. ISP

RAS], vol. 14, part 2, 2008, pp. 23-64 (in Russian).

[11]. JRuby site: http://www.jruby.org

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

96

[12]. Flanagan D., Matsumoto Y. The Ruby Programming Language. OReilly Media,

Sebastopol, 2008.

[13]. MIPS64TM Architecture For Programmers. Volume II: The MIPS64TM Instruction Set,

Document Number: MD00087, Revision 2.00, June 9, 2003.

[14]. ARM Architecture Reference Manual. ARM DDI 0487A.f, ARM Corporation, 2015.

5886 p.

Язык описания шаблонов для генерации
тестовых программ для

микропроцессоров

А.Д. Татарников <andrewt@ispras.ru>

Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25

Аннотация. Генерация тестовых программ на языке ассемблера и проверка

корректности результатов их выполнения является наиболее широко применяемым

подходом к функциональной верификации микропроцессоров. Данная задача решается

при помощи специальных автоматизированных средств, называемых генераторами

тестовых программ. Высокая сложность современных электронных устройств создает

потребность в автоматизированных средствах, способных генерировать тестовые

программы, покрывающие нетривиальные ситуации в их работе. Большинство таких

средств используют в качестве входных данных шаблоны тестовых программ, которые

позволяют описывать тестовые сценарии в абстрактном виде. Такой подход

предоставляет инженерам-верификаторам возможность описывать широкий спектр

задач генерации, затрачивая минимальные усилия. Шаблоны тестовых программ

разрабатываются на специальных предметно-ориентированных языках. Такие языки

должны удовлетворять следующим требованиям: (1) они должны быть достаточно

простыми для использования инженерами-верификаторами, не обладающими

серьезными навыками программирования; (2) они должны быть применимы для

широкого спектра микропроцессорных архитектур и (3) они должны быть легко

расширяемы для поддержки описания новых типов задач генерации. В данной работе

рассматривается язык описания шаблонов тестовых программ, который был создан для

расширяемой среды генерации тестовых программ MicroTESK, разрабатываемой в

ИСП РАН. Это гибкий предметно-ориентированный язык, основанный на языке Ruby,

который позволяет описывать широкий набор задач генерации в терминах абстракций

цифровой аппаратуры. Среда генерации MicroTESK и язык описания тестовых

шаблонов успешно применяются в промышленных проектах по верификации
микропроцессоров на базе архитектур MIPS и ARM.

Ключевые слова: микропроцессоры; функциональная верификация; генерация
тестовых программ; тестовые шаблоны; предметно-ориентированные языки.

DOI: 10.15514/ISPRAS-2016-28(4)-5

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды

ИСП РАН, том 28, вып. 4, 2016, стр. 77-98.

97

Для цитирования: Татарников А.Д. Язык описания шаблонов для генерации тестовых

программ для микропроцессоров. Труды ИСП РАН, том 28, вып. 4, 2016, стр. 77-98. DOI:

10.15514/ISPRAS-2016-28(4)-5

Список литературы
[1]. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:

Innovations in Test Program Generation for Functional Processor Verification. Design &

Test of Computers, 2004. pp. 84–93.

[2]. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and G. Shurek. Constraint-

Based Random Stimuli Generation for Hardware Verification. AI Magazine, Volume 28,

Number 3, 2007, pp. 13–30.

[3]. Инструмента MicroTESK. http://forge.ispras.ru/projects/microtesk

[4]. A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based Test Program

Generator for Microprocessors. International Conference on Software Testing,

Verification and Validation Workshops, 2011. pp. 47–54.

[5]. Камкин А.С., Сергеева Т.И., Смолов С.А., Татарников А.Д., Чупилко М.М.

Расширяемая среда генерации тестовых программ для микропроцессоров.

Программирование, № 1, 2014, стр. 3-14.

[6]. Язык Ruby: http://www.ruby-lang.org.

[7]. E.A. Poe. Introduction to Random Test Generation for Processor Verification. Obsidian

Software, 7 pp, 2002.

[8]. Инструмент RAVEN: http://www.slideshare.net/DVClub/introducing-obsidian-

software-and-ravengcs-for-powerpc.

[9]. Seonghun Jeong, Youngchul Cho, Daeyong Shin, Changyeon Jo, Yenjo Han, Soojung

Ryu, Jeongwook Kim, and Bernhard Egger. Random Test Program Generation for

Reconfigurable Architectures. 13th International Workshop on Microprocessor Test and

Verification (MTV), 2012, 6 p.

[10]. А.С. Камкин. Генерация тестовых программ для микропроцессоров. Труды ИСП

РАН, 14(2), 2008. C. 23-63.

[11]. Интерпретатор JRuby: http://www.jruby.org.

[12]. Flanagan D., Matsumoto Y. The Ruby Programming Language. OReilly Media,

Sebastopol, 2008.

[13]. MIPS64TM Architecture For Programmers. Volume II: The MIPS64TM Instruction Set,

Document Number: MD00087, Revision 2.00, June 9, 2003.

[14]. ARM Architecture Reference Manual. ARM DDI 0487A.f, ARM Corporation, 2015.

5886 p.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

98

