Tpyowt UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-3

An Automated Framework for Testing Source Code
Static Analysis Tools

12 D.M. Gimatdinov, ORCID: 0000-0002-1329-4541 <damir.gimatdinov@huawei.com>
2A4.Y. Gerasimov, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
2P.A. Privalov, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2V.N. Butkevich, ORCID: 0000-0001-9376-9051 <butkevich.veronika.nikolaevna@huawei.com>
2N.A. Chernova, ORCID: 0000-0001-8678-9193 <chernova.natalya@huawei.com>
24.A. Gorelova, ORCID: 0000-0001-7974-7913 <gorelova. anna @huawei.com>

! Higher School of Economics,
11, Pokrovsky boulevard, Moscow, 109028, Russia
2 Huawei Technologies Co., Ltd.,
7b9, Derbenevskaya naberezhnaya, Moscow, 115114, Russia

Abstract. Automated testing frameworks are widely used for assuring quality of modern software in secure
software development lifecycle. Sometimes it is needed to assure quality of specific software and, hence
specific approach should be applied. In this paper, we present an approach and implementation details of
automated testing framework suitable for acceptance testing of static source code analysis tools. The presented
framework is used for continuous testing of static source code analyzers for C, C++ and Python programs.

Keywords: automated testing; quality assurance; source code static analysis

For citation: Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova
A.A. An Automated Framework for Testing Source Code Static Analysis Tools. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 41-50. DOI: 10.15514/ISPRAS-2021-33(3)-3

ABTOMaTVI3VIpOBaHHaFI cunctema TeCTMpoBaHnA MHCTPYMEHTOB
cTaTu4yeckKoro aHanun3sa Kkoga

L2 1. M. Tumamounos, ORCID: 0000-0002-1329-4541 <damir.gimatdinov@huawei.com>
2 A.1O. I'epacumos, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
2[1.A. Ipusanos, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2 B.H. Bymxeeuy, ORCID. 0000-0001-9376-9051 <butkevich.veronika.nikolaevha@huawei.com>
2 H.A. Yepnosa, ORCID: 0000-0001-8678-9193 <chernova.natalya@huawei.com>
2 A.A. Topenosa, ORCID: 0000-0001-7974-7913 <gorelova. anna @huawei.com>

' Hayuonanvnwiii uccnedosamenvckuil yrusepcumem Bolcuias wikona sKonoMux,
109028, Poccus, Mockea, Ilokposckuil bynweap 11
2 Texxomnanus Xyasoii,
115114, Poccus, Mocksa, [{epbenesckas nabepecnas, 7¢9

AnHoTanus. Cpeibsl aBTOMAaTU3MPOBAHHOIO TECTUPOBAHUS IUMPOKO MCIOJIB3YIOTCS JUIs OOECIeueHust
KauecTBa COBPEMEHHOIO IIPOrPaMMHOrO OOECHEYeHHs] B JKU3HEHHOM LHKJIE pPa3paboTKH 0e30I1acHOro
mporpaMMHOro obecnedyenus. VHorma TpeOyeTcss IpoBepKa KauecTBa CIEHH(HIECKOrO IPOrPaMMHOIO
obecrieyeHns] ¥ MOITOMY TpeOyeTcs NpUMEeHeHHe CrenudHIecKoro moaxosa s pelleHus 3Toi 3agaun. B
9TOH cTaThe Mbl NPEACTABISEM IIOJAXOA M ACTAIN PEATH3alUU CPEe/bl aBTOMATHYECKOIO TECTHUPOBAHMS,

41

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

[pE/HA3HAYCHHOI JUIs1 IPUEMOYHOIO TECTHPOBAHUS HHCTPYMEHTOB CTaTHYECKOr0 aHaJlM3a MCXOLHOTO KoJa
nporpamm. IIpeacraBieHHas cpefa HCIONB3YeTCS JUISL HENMPEPBIBHOTO TECTHPOBAHHS HHCTPYMEHTOB
CTaTHYECKOr0 aHaJIM3a UCXOJHOTO KoJa porpamm Ha sizbikax C, C++ u Python.

KawueBbie cjoBa: ABTOMATU3UPOBAHHOE TECTHPOBAHUE, obecrieueHne Ka4yeCcTBa, CTaTHYECKUI aHaIu3
HUCXOIHOI'O KoJa.

Jast uurupoBanus: I'nmaruaos JI.M., lepacumos A O, [Tpusainos I1.A., Byrkesuu B.H., Yeprosa H.A.,
T'openoBa A.A. ABTOMaTU3MpOBaHHAs CHCTEMa TECTHPOBAHHMS MHCTPYMEHTOB CTaTHYECKOTO aHAIHM3a KOJa.
Tpyast UCIT PAH, tom 33, Bbi. 3, 2021 r., ctp. 41-50 (Ha anrnmiickom s3eike). DOI: 10.15514/ISPRAS—
2021-33(3)-3.

1. Introduction

Acceptance testing is a very common approach to make sure required software functionality is
satisfying needs of end user in an automatic way. Wide usage of continuous integration systems with
automatic tests run allows to automate testing process to make sure the functionality is not broken
by separate change in a program code. That is why it is important to build suitable testing framework
to satisfy needs in continuous testing of specific software.

A source code static analysis tools are become an industrial standard for software quality assurance
at early stages in secure software development lifecycle. They are commonly used for detection of
program issues and logical errors. Being quality assurance tools by nature they need to satisfy
specific requirements such as an analysis precision, completeness and performance. A possibility to
introduce bug warnings of a safe code, also known as false positive warnings, set a target for a
testing framework to control as true positive warning, as false positive warnings. An acceptance
testing of such tools controls behavior of a tool on specific code snippets, which represent as buggy
code, as code which has no bugs and issues.

At the same time, such tools are very complex in implementation details, because consist of general
analysis framework, frequently called engine, which propose general analysis techniques such as
reaching definitions, live variables, taint analysis and others, and a number of specific wrong
program behavior checkers build on top of an engine. Any small change to the engine can broke
checkers behavior. That’s why it is important to have testing framework which can check and state
sanity of the tool during development lifecycle.

In our previous talk!, we have described a generalized approach for testing static source code
analysis tools, which includes Acceptance Testing Framework and Regression Testing System
called Report History Server.

In this paper, we introduce requirements, implementation details, evaluation and limitations of
Acceptance Testing Framework for static source code analysis tools based on our experience of
development and daily usage of such a framework in industrial development of static source code
analysis tools. This paper is organized as follows. Section 2 describes in detail requirements to such
kind of framework, Section 3 provides overview of existing approaches, Section 4 provides an
overview of proposed approach. Section 5 describes in detail implementation of proposed approach,
Section 6 contains evaluation results of proposed approach, Section 7 concludes proposed approach
and future directions of development.

2. Requirements to acceptance testing framework

Source code static analysis tools have to check conditions of source code of programs from the point
of view of very different rules, which can be applied as industrial or companywide coding standard.
Despite of focus for modern static source code analyzers on code security, lack of logical errors and

! Alexander Gerasimov, Petr Privalov, Sergey Vladimirov, Veronica Butkevich, Natalya Chernova, Anna
Gorelova. An approach to assuring quality of automatic program analysis tools. Ivannikov Ispras Open
Conference (ISPRAS), 2020

42

T'umaraunos JIM., T'epacumos A 1O., Tpusanos IT.A., Byrkesuu B.H., Ueprnosa H.A., I'openoBa A.A. ABTOMAaTH3UPOBaHHAs CHCTEMA
TECTHPOBAHNS MHCTPYMEHTOB CTaTHUCCKOro aHanu3a koza. Tpyowt UCI1 PAH, Tom 33, Beim. 3, 2021 1., c1p. 41-50

performance, some kind of coding rules applied in companies or industry can contain such
requirements to the code as style of indentation, naming conventions, etc. For example, if we take a
look to Python programs then source code can contain commentaries of the specific look, such as
Shebang [1], encoding of the file [2], company code ownership statement and version or license
notes. That’s why trying to satisfy needs of testing industrial static source code analyzers such a
framework cannot rely on specific comments and code formatting, such as used in most known test
cases database Juliet of National Institute for Standardization and Technology of USA [3].

Instead of that we have to have a database of error code snippet describers. Such kind of describers
provide all necessary information on test case in a file or set of files with directories structure,
separated and independent of language for a source code of target analyzer and target language of
analyzed programs. We use specific JSON [4] formatted descriptions of test cases which describe
every test case as for erroneous examples, as for clean code examples.

On the other hand, we have set a goal to compare tested static source code analyzer with competing
ones. That’s why we put as a requirement ability to run competing static source code analyzers in
one bundle to compare precision, completeness and performance of such tools. That is second
requirement.

Next, we need to have solution for different environments such as operating systems and hardware
platforms. That’s why we set it as one of requirements to the framework.

And, last, but not least, we want to make out Acceptance Testing Framework independent of target
language of analyzed programs. It should be suitable for testing analyzers for programming
languages C, C++, Java, C#, Python and other languages.

To summarize:

e Independence of target environment, such as hardware and operating system.
e Independence of analyzed programming languages.

e Possibility to check source code snippets without modification of original code even in
comments part.

e Possibility to check as erroneous, as clean code examples (true positive and false positive
warnings checks).

e Support pretty unlimited number of checkers for coding rules, including, but not limited to
formatting and comment styles.

e Possibility to compare different static source code analysis tools.

e Possibility to represent results of analysis in different formats: machine readable (JSON, XML
and others), output formatted to represent result on the screen, HTML format, etc. with
possibility to extend list of reporting formats on demand.

3. Existing approaches

There are a lot of research papers dedicated to evaluation of static code analysis tools [5, 6, 7]. These
works observe behavior of static code analysis tools on selected subset of NIST SAMATE test cases
for selected OWASP [8] Top 10 vulnerabilities. But these papers a dedicated to manual evaluation
of static code analysis tools and does not solve the problem of automated frameworks
implementation.

The work [9] attempts to solve the problem of creating automated test suite to evaluate static analysis
tools by designing test cases as small code snippets, which automatically in-lined into template
program to specific placeholder.

The work [10] describes an approach of detecting minimal original test cases from real-world found
errors and tries to add code to the original test code snippet to check sensitivity of analysis to paths
and call context. The difference of our approach is in common automation of acceptance testing and

43

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

evaluation system for static source code analysis tools. In this paper, we describe technical details
and evaluation of proposed approach.

4. Overview

Acceptance Testing Framework solves problem of evaluating the quality of automatic program
analysis tools. The quality is measured by parameters such as: performance, scalability, precision,
completeness.

Performance — how fast an analysis tool can provide an analysis result and how much resources it
consumes.

Scalability — how analysis time reduces if we providing additional computational resources.
Precision —how precise an analysis result is (small number of false positive warnings or noise).
Completeness — how many true positive warnings issued by a tool in comparison to errors exist in
the test suite (number of false negatives — errors has been missed).

To compute such parameters Acceptance Testing Framework allows to run program analysis tool
against a limited, manually crafted set of test cases combined in one test suite. Test suite represents
behavior of defective and similar to defective programs. The defective one gives rate of true positive
warnings should be found and similar to defective gives rate of false positive warnings, which
absence is expected. So far the resulting precision and completeness are calculated and evaluated.
As far as precision and completeness are evaluated by Acceptance Testing Framework for program
analysis tool, decision about quality could be made. In theory perfect tool has 100% completeness
of test suite (all defects detected) and 100% precision (no noise and no defect detected on similar to
defective code snippets), but such values cannot be achieved at current stage of engineering and
have the theoretical limitation of Rice’s theorem [11].

There are no strict generally accepted values for performance and scalability as far as these
parameters depend on depth, complexity and target of analysis and vary greatly among analysis
tools. Moreover, the exact conclusion about the quality of analysis tools directly depends on the test
suite. Acceptance Testing Framework doesn't contain built-in features to get performance and
scalability on its own for now. Despite this Acceptance Testing Framework could be used in the
computation process of these parameters by running program analysis tool against set of different
complexity (from low to high) test suites and observe how performance dynamic depends on
complexity of test suite or scalability dynamic in the case of additional computational resources
involved in computation process.

Test suite could follow company or industrial standards, contain code snippets with security
vulnerabilities, code style or leading to crash errors. In our case test suite follows company standard
and together with Acceptance Testing Framework has deployed in continuous integration processes
of static analysis tool development in Huawei Russian Research Institute.

5. Design and implementation

In this section, we describe the design and implementation of our framework. We describe it from
requirements perspective.

5.1 Independence of target environment

To satisfy requirement of an independence of target environment such as hardware and operating
system we managed to implement our framework in Python programming language as far as it has
Python source code interpreters for most of industrial operating systems and for most popular
hardware platforms.

44

T'umaraunos JIM., T'epacumos A 1O., Tpusanos IT.A., Byrkesuu B.H., Ueprnosa H.A., I'openoBa A.A. ABTOMAaTH3UPOBaHHAs CHCTEMA
TECTHPOBAHNS MHCTPYMEHTOB CTaTHUCCKOro aHanu3a koza. Tpyowt UCI1 PAH, Tom 33, Beim. 3, 2021 1., c1p. 41-50

5.2 Independence of analyzed programming language

The framework does not rely somehow on code snippets content by using JSON formatted test case
annotations.

5.3 Possibility to check code snippets without modification of original code,
even in comments. Possibility to check as erroneous, as clean code snippets
without modification

We use test case annotation files in JSON format. Test case for Acceptance Testing Framework is a
tuple of annotation file and source code snippet. JSON annotation file contains following
information:

e Kind of a snippet: does it contains a defect (True Positive) or it is not expected in this code
snippet (True Negative).

e Kind of a defect expected to be reported or not reported.
e Description of a test case.

e Skip flag for marking test cases which are not supported, but planned to be supported in
future.

e Defect location: filename, line and offset in the line for expected defect.

e Additional service information. For example, if test case designed for specific version of
language, to configure analyzer appropriately, or additional field describing the goal of test
case to QA engineer or developer.

Such decision allows to keep all this information independent of test cases and needed by

Acceptance Testing Framework to configure analysis tools appropriately, and do not rely somehow

on number of test cases, because it is enough to just point the location of file system directory with

test suite formatted to be used with Acceptance Testing Framework while running framework and
all work related to running analysis tools on the test suite handled by framework itself via traversing
directories structure.

5.4 Possibility to compare different analysis tools

Acceptance Testing Framework satisfy this requirement by introducing abstract interface Tool to
run external analysis tool as executable program and get results of analysis in Acceptance Testing
Framework internal representation. Having such kind of interface to support of new analysis tool
ones need to implement interface Tool to convert test case settings from test case annotations to
expected arguments of analysis tool and run this tool as external process. We have developed a
number of interface implementations for tools, such as PyLint [12], JetBrains PyCharm [13] and
eight more tools, which have different paradigm of analysis. For example, PyLint accepts analysis
of single file and can be run on every test case separately. PyCharm expects a file system directory
and treats it as one project to analyze.

On the other hand, analysis results representation of different tools can vary significantly. An
implementation of Too/ interface also responsible for interpretation of external analysis tool results
and converting it to Acceptance Testing Framework internal representation. This representation is a
kind of map for every test case to analysis result in term of Passed or Failed state.

Thus all logic of working with analysis tool is encapsulated inside of Tool interface implementation.

5.5 Possibility to represent results of analysis in different formats

Acceptance Testing Framework provides universal interface Reporter which provides one public
method report accepting internal representation of analysis tool run results. A responsibility of

45

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

implementation of interface is to issue report in specific format. We have implemented three
reporters supported out of the box:

e Output reporter. Represents test suite run results in human readable text format.

e JUnit reporter. Represents test suite run results in JUnit format.

e HTML reporter. Represents test suite run results in format of static web-site with possibility to
represent result in different view up to source code snippet of test case.

Architecture diagram of Acceptance Testing Framework is shown on fig. 1. It consists of following

blocks (classes):

e Driver. It is entry point of framework. It allows to configure test suite, reporter and tools
accordingly to parameters passed to framework on the run.

e TestSuite is a collection of TestCases which constructed using provided path to test suite
directory, where every test case has its annotation in JSON format and test case source code
files directory structure.

=
(c) Driver »
Contains E—— | Contains (© TestSuite
B> [8 topo 4 T
" Extends i Extends S {©) TestCase
Ja) ":’ descripbon
: Extends i Contains | © k3K
@HPATWra - @ @ M| opes
© pper| |(©)PylintWrapper| |(€)Flake8Wrapper| |(€)Reporter, pasitive
) skip
& rever) Ao enca
.] A oo,) entire_file
Extends Extends Extends : © parse_file{fie_path)
F=) o (e .
(e)OutReporter| |(©@HtmIReporter| |(€)JunitXMLReporter

Fig. 1. Acceptance Testing Framework architecture diagram
e Tool. It is an interface representing a tool runner. Instantiations of this interface depends on
settings of the framework passed as command line arguments.

e Reporter. It is an interface allowing to represent analysis results using unified internal test suite
run results representation.

In general, Acceptance Testing Framework is a Driver, which responsible for:

e Instantiation of supported analysis tool wrappers, which are implementations of 7oo!/ interface,
accordingly to parameters passed to the Driver by user.

e Instantiation of the Reporter which will be used to output result of analysis by every tool.

e Running the analysis process to collect analysis result in internal representation form and pass
received result to Reporter.

6. Results & evaluation

This section aims to obtain a classification of tools according to the metrics applied to the results
obtained from the execution of the tools against our test suite.
Tested static analysis tools:

e Huawei Python Analysis Tool (HPAT) is a PyCharm plugin with the set of inspections
requested by Huawei Python Code Style Guide and Huawei Secure Coding Style Guide.

e Flake8 [14] is an open source tool that glues together pep8 [15], pyflakes [16], mccabe [17],
46

T'umaraunos JIM., T'epacumos A 1O., Tpusanos IT.A., Byrkesuu B.H., Ueprnosa H.A., I'openoBa A.A. ABTOMAaTH3UPOBaHHAs CHCTEMA
TECTHPOBAHNS MHCTPYMEHTOB CTaTHUCCKOro aHanu3a koza. Tpyowt UCI1 PAH, Tom 33, Beim. 3, 2021 1., c1p. 41-50

and third-party plugins to check the style and quality of some python code.

e PyLint is an open source tool that checks for errors in Python code, tries to enforce a coding
standard and looks for code smells.

The summary of metrics used is:

e True positives rate — TP (correct detections).

e False positive — FP (reporting false error warning).

e Number of vulnerability categories for which the tool was tested.

e Precision (1). Proportion of the total TP detections:
TP /(TP + FP) (@)

e Recall (2). Ratio of detected vulnerabilities to the number that really exists in the code. Recall
is also referred to as the True Positive Rate:

TP /(TP + FN) 2
Table 1. Number of vulnerability categories
Tool Metric HPAT Pylint Flake8
NVC 68 32 15

NUMBER OF VULNERABILITY CATEGORIES

100

) I
. H -

HPAT Pylint Flake8

Fig. 2. Number of checked defect types
Table 2. Vulnerabilities detection. Numbers of true/false positive, true/false negative test case detection

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

Table 1 and fig. 2 show a number of vulnerability categories (NVC) for which the tool is tested.
HPAT has the biggest value because test suite is developed exactly for satisfying needs of Huawei
coding standards.

Table 2 and fig. 3 show a result of running tools on test suite in terms of true/false positive, true/false
negative.

Tab. 3 and Fig. 4 show metrics results of all tools included in this analysis.

Table 3. Assessment results computing and ranking the selected metrics by TP ratio

Tool Metric HPAT Pylint Flake8
TP 695 91 102
FN 0 324 368
FP 0 0 0
TN 591 121 184
Total 1286 536 654

Tools test cases ratio

1500
1000

500 I I
0
TP FN FP TN Total

B HPAT mPylint Flake8

Fig 3. Test cases ratio obtained by the tools comparison

47

Metric Tool | TP ratio FPratio Precision | Recall
HPAT 1 0 1 1
Pylint 0.219 0 1 0.219
Flake8 0.217 0 1 0.217
Tools metrics comparison
1,5
1
Ll
0
TP ratio FP ratio Precision Recall
B HPAT ® Flake8 Pylint

Fig 4. Metrics obtained by the tools comparison

Implemented framework allows to assess tools on the same testing code base and present relative
results

7. Conclusion

In this paper, we focused on checking quality of static source code analysis tools with help of an
automated framework for running such tools against a number of test cases combined in one suite.
This approach allows us to control quality of the tool in terms of created erroneous and error free
test cases as code snippets on target for analysis programming language. The framework allows to
use any kind of test suites if configured well within a profile or manifest in expected format.

This approach to testing static source code analysis tools has applied in development process of
static source code analysis tools for Python and C/C++ in Huawei Russian Research institute. In
future we plan to extend functionality of Acceptance Testing Framework to check non-functional
requirements for tools such as time of running, memory consumption and CPU utilization.

References

[1] M. Cooper. Advanced Bash Scripting Guide — Volume 1: An in-depth exploration of the art of shell
scripting. (Revision 10). Independently published, 2019, 589 p.

[2] M.-A. Lemburg, M. von Lowis. PEP-263 — Defining Python Source Code Encodings. 2001. URL:
https://www.python.org/dev/peps/pep-0263/.

[3] NIST SAMATE Juliet Test Suite. URL: https://samate.nist.gov/SRD/testsuite.php.

[4] RFC-8259. The JavaScript Object Notation (JSON) Data Interchange Format, 2017. URL:
https://datatracker.ietf.org/doc/html/rfc8259.

[5] H.H. AlBreiki, Q.H. Mahmoud. Evaluation of static analysis tools for software security. In Proc. of the
IEEE 2014 10th International Conference on Innovations in Information Technology, 2014, pp. 93-98,

48

T'umaraunos JIM., T'epacumos A 1O., Tpusanos IT.A., Byrkesuu B.H., Ueprnosa H.A., I'openoBa A.A. ABTOMAaTH3UPOBaHHAs CHCTEMA
TECTHPOBAHNS MHCTPYMEHTOB CTaTHUCCKOro aHanu3a koza. Tpyowt UCI1 PAH, Tom 33, Beim. 3, 2021 1., c1p. 41-50

[6] R. Mamood, Q.H. Mahmoud. Evaluation of static analysis tools for finding vulnerabilitites in Java and
C/C++ source code. arXiv:1805.09040, 2018, 7 p.

[7] T. Hofer. Evaluating static source code analysis tools. Master’s thesis. Ecole Polytechnique Fédérale de
Lausanne, 2010, pp. 1-74.

[8] OWASP — Open web application security project. URL: https://owasp.org

[9] M. Johns, M. Jodeit. Scanstud: a methodology for systematic, fine-grained, evaluation of static analysis
tools. 4th International conference on software testing, verification and validation workshops. In Proc. of
the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 523-530.

[10] G. Hao, F. Li et al. Constructing benchmarks for supporting explainable evaluations of static application
security testing tools. In Proc. of the 2019 International symposium on Theoretical Aspects of Software
Engineering, 2019, pp. 66-72.

[11] H.G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. Transactions of the
American Mathematical Society, vol. 74, no. 2, 1953, pp. 358-366.

[12] Pylint. URL: https://pypi.org/project/pylint/.

[13] JetBrains PyCharm. URL: https://www.jetbrains.com/pycharm/.

[14] Flake8. URL: https://pypi.org/project/flake8/.

[15] Pep8 — Python style guide checker. URL: https://pypi.org/project/pep8/.

[16] Pyflakes. URL: https://github.com/PyCQA/pyflakes.

[17] McCabe complexity checker. URL: https://github.com/PyCQA/mccabe.

UHdopmaumsa 06 aBTopax / Information about authors

Hamup Maparouu TMMATIAMHOB, Beimyckuuk BIID, maructp, Mmaqmuii UHXEHEp B
Texxomnanun Xyasdi. HayuHble HHTEpeChl: CTATHYECKUH aHAIN3 UCXOHOTO KO/ia IPOTpaMM.

Damir Maratovich GIMATDINOV, HSE graduate, master, Junior engineer in Huawei
Technologies. Research interests: Source code static analysis.

Anexcannp IOpsesna TEPACUMOB, kananaat Gu3nKo-MaTeMaTHIeCKUX HayK, CTAPIINI KCIEePT
B O0JacTH aBTOMATHYECKOTO M AaBTOMATH3MPOBAHHOIO AaHAIM3a IIPOTPaMM 3JIEKTPOHHBIX
BBIYMCIIUTENBHBIX MalMH. Hay4yHble MHTEpechl: CTaTUYECKUi aHaIu3 IPOrpaMM, JUHAMUYECKUI
aHa/nu3 porpaMM, o0ecIedeHre KauecTa IporpaMm, 0OHapyKeHUe OIUOO0K B IPOrpaMMax.

Alexander Yurievich GERASIMOV, Doctor of Philosophy in Computer Sciences, Senior Expert in
the field of automatic and automated analysis of electronic computer programs in Huawei
Technologies. Research interests: static program analysis, dynamic program analysis, quality
assurance, program defects detection.

[Térp Anexceesuu [IPUBAJIOB, maructp, Beaymuii nHXeHep-iporpaMmMuct. Haydansie nHTEpECH:
CTaTHYECKUI M TUHAMWYECKHIT aHaIN3 IporpaMM, (as33uHT.

Petr Alekseevich PRIVALOV, master, Senior software engineer. Research interests: static and
dynamic program analysis, fuzzing.
Beponuxa Huxomaesma BYTKEBUY, wmaructp, crapmuii wumkeHep. Hayunele uHTepecsl:

CTaTHYECKHU aHaJIHM3 MCXOJHOTO KOJa MporpaMM, OOHapy)KEHHE ysS3BUMOCTEH B MPOrPaMMHOM
KOJIE.

Veronika Nikolaevna BUTKEVICH, master, developer. Research interests: static analysis, security
vulnerabilities in software

Haransst Annpeesaa YEPHOBA, maructp, miuaammii nixeHep. Haydnsle HHTepecsl: cTaTHdecKuit
aHaJI3 IPOrpaMM, aHAJIU3 MOTOKA JaHHbIX.

Natalya Andreevnha CHERNOVA, master, junior developer. Research interests: static analysis of
programs, data-flow analysis.

49

Gimatdinov D.M., Gerasimov A.Y., Privalov P.A., Butkevich V.N., Chernova N.A., Gorelova A.A. An automated framework for testing
source code static analysis tools. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 41-50

Anna AnrtoHoBHa ['OPEJIOBA, wmmammmii wHXeHep. HaydHbIE WHTEPECH: HCKYCCTBEHHBII
HHTEIUICKT, MAIIMHHOE 00yUYeHHE.

Anna Antonovna GORELOVA, Junior Developer. Research interests: artificial intelligence,
machine learning.

50

