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Abstract. In this research-in-progress report, we propose a novel approach to unified cache usage analysis for 
implementing data layout optimizations in the LCC compiler for the Elbrus and SPARC architectures. The 
approach consists of three parts. The first part is generalizing two methods of estimating cache miss amount 
and choosing more applicable one in the compiler. The second part is finding an applicable solution for the 
problem of cache miss amount minimization. The third part is implementing this analysis in the compiler and 
using analysis results for data layout transformations. 
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Аннотация. В данной статье о проводимом исследовании мы предлагаем новый подход к единому 
анализу использования кэш-памяти для разработки оптимизаций расположения данных в составе 
компилятора LCC для архитектур Эльбрус и SPARC. Подход состоит из трёх частей. Первая часть - 
обобщение двух методов оценки количества кэш-промахов и выбор из них более подходящего для 
реализации в компиляторе метода. Вторая часть - поиск применимого в компиляторе решения задачи 
минимизации количества промахов кэша. Третья часть - реализация выбранного метода анализа в 
компиляторе и использование результатов анализа для оптимизаций расположения данных. 
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1. Introduction 
Improving computer resources usage efficiency by a program is one of the main tasks for optimizing 
compilers. Particularly, improving memory usage is especially important because hardware 
developers have introduced multi-level intermediate memory, called cache memory, due to the 
growing performance difference between memory and CPU. Cache memory capabilities must be 
used efficiently. 
Cache memory is structured for using the following program properties effectively temporal locality 
and spatial locality. Temporal locality means that the program often works with the same data in 
memory. Spatial locality means that the program is likely to work with adjacent data. Thus, to make 
compiled program use cache memory efficiently, the compiler must improve these two programs' 
properties. 
Nowadays, compilers optimize the programs' temporal locality well by loop optimizations, but 
optimizing spatial locality is more complicated since it requires choosing the correct data structures 
for the program. Therefore, optimizing spatial locality is often entrusted to the programmer, although 
data location optimizations are implemented for some relatively simple cases. 
In this article, we describe the ongoing research on cache memory usage for the further development 
of a high-quality automatic cache usage analysis in the compiler for applying an optimal set of data 
layout optimizations. 
The article is organized as follows. In section 2, we substantiate the potential effect of optimizing 
data layout. In section 3, we state the problem. In section 4, we analyze papers on this topic and 
related ones. In section~5, we propose further research approach. In section 6, we describe current 
progress. Finally, in section 7, we provide a conclusion. 

2. Motivation 
It is known that part of program execution time is spent waiting for data from memory. This is 
especially evident for processors with in-order execution. They have fewer opportunities to mask 
this wasted time by executing other instructions than processors with out-of-order execution. 
To illustrate this problem and determine the potential effect of optimization, we measured the 
percentage of test execution time from SPEC~CPU benchmark packages that the processor spends 
waiting for data from memory. This data is shown in Table 1. We used a computer with an Elbrus-
4C processor for measurement. It has VLIW ISA, in-order execution and two-level cache memory. 
Benchmarks were compiled with peak options. 
Table 1. Number of benchmark launches from SPEC~CPU packages that use more than 10% of time to wait 
for data 

Set  
 

Part of time Number of 
launches 

Set  
 

Part of time Number of 
launches 

 
 
 
1995 
 
 

10...15%  12  
 
 
2000 

10...15%  6 
15...20% 4 15...20% 6 
20...25% 0 20...25% 6 
25...30% 1 25...30% 1 ≥ 30% 0 ≥ 30% 6 
Total in set 37 Total in set 44 

 
 
 
f2006 

10...15%  4  
 
 
i2006 

10...15%  3 
15...20% 1 15...20% 1 
20...25% 1 20...25% 3 
25...30% 1 25...30% 3 ≥ 30% 2 ≥ 30% 12 
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Total in set 20 Total in set 35 
 
 
 
f2017 

10...15%  1  
 
 
i2017 

10...15%  1 
15...20% 2 15...20% 2 
20...25% 3 20...25% 0 
25...30% 0 25...30% 3 ≥ 30% 1 ≥ 30% 6 
Total in set 16 Total in set 20 

 
 
 
All 

10...15%  27 
15...20% 16 
20...25% 13 
25...30% 9 ≥ 30% 27 
Total in set 172 

The table shows that more than 10% of the execution time is spent waiting for data from memory in 
92 from 172 launches, which is more than a half. 
Some of this spent time is due to inefficient use of cache memory. Mainly, these inefficiencies are: 
1) loading unnecessary for further work data into the cache, which fact is a violation of spatial 

locality; 
2) conflicts between different data chunks due to hitting the same cache set. 
For example, it was found during our previous work that it is possible to reduce the number of cache 
misses with the help of optimization called Structure Splitting [1]. This optimization improves the 
spatial locality of the program in some cases. Such CPU pipeline stalls number decrease and 
consequent execution speeding up are shown in the Table 2. 

Table 2. CPU pipeline stalls number decrease and following program execution speeding up 

Benchmark  
 

SPEC CPU 
package 

CPU pipeline stalls 
number decrease 

Speed-
up 

 

181.mcf    2000 27% 26%  
429.mcf 2006 19% 13%  

From this example, it can be seen that at least some of the losses due to waiting for data can be 
removed by data layout transformations improving spatial locality. These transformations require 
unified analysis for an effective combination. 

3. Problem statement 
Thus, we need to: 
1) Theoretically analyze cache memory usage by programs and develop a method of solving the 

problem of minimizing time losses based on this theoretical analysis. 
2) Based on theoretical results, make applicable automatic analysis in the LCC compiler for the 

Elbrus and SPARC ISA. 
3) Implement in the same compiler a set of data layout transformations, which transform data 

layout of a program based on the analysis results. 
In this case, it is necessary to take into account some restrictions arising from the fact that the 
implementation is planned in the form of compiler optimizations: 
1) Various data structures need to be handled correctly. Particularly, they are: 

a) Arrays, structures and their combinations. 
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b) Various data structures that use pointers to other elements internally and allocate memory 
for new elements via malloc and similar memory allocation functions. For example, lists 
and trees. 

4) We need to handle data structures altogether, as their transformations may conflict with each 
other. Therefore, it is necessary to analytically process not only regular access to memory but 
also random access. 

5) Analysis and transformations must be static (in the compiler) but can be supported with runtime 
libraries and special profiling, but not memory access trace. 

6) Developed analysis and transformations must correctly work in modular build mode. 

4. Related work 
Several works on related topics have already been written, but each of them does not solve assigned 
tasks entirely due to different reasons. 
Chris Lattner proposed automatic Data Structure Analysis to detect data structures whose elements 
are allocated on the heap in his thesis «Macroscopic Data Structure Analysis and Optimization» [2]. 
Using the results of this analysis, he proposed a compiler optimization called Automatic Pool 
Allocation with runtime support, designed to group the elements of such data structures in specific 
regions of the heap, which improves the spatial and, in some cases, temporal locality of the program. 
In addition, he offered several optimizations for code already optimized in this way. 
Unfortunately, there is no explicit cache memory usage analysis in Lattner's work. 
Christopher Haine in his thesis «Kernel optimization by layout restructuring» [3] offered an 
analyzer, which detects accessing memory regularly simple data structures like structures and arrays 
and proposes layout transformations using heuristics data. This analysis is separated from the 
compiler. In addition, this analyzer provides user with information about the complexities of code 
vectorization. For our purposes, this work is not suitable since there is no explicit cache memory 
usage analysis. 
Mostafa Hagog and Caroline Tice in their article «Cache Aware Data Layout Reorganization 
Optimization in GCC» [4] proposed several improving spatial locality optimizations of structures 
and arrays of structures: Structure Peeling, Structure Splitting, and Field Reordering. These 
optimizations were later implemented in the GCC compiler. Although the authors limited 
themselves to working with structures, they implemented an analysis handling every structure 
access, not just regular access. During optimization, particular Field Reference Graphs are built for 
each analyzed structure for each procedure. Field Reference Graph (FRG) is an analogue of a 
control-flow graph, where nodes contain operations accessing fields of the analyzed structure and 
arcs contain information about the amount of data loaded into the cache between nodes. In fact, this 
is an implicit analysis of cache memory usage. Further, after processing, this information is used in 
heuristics to apply the specified optimizations and reduce the computational complexity of further 
algorithms. 
This approach can potentially be used for explicit cache memory usage analysis, provided it is 
generalized for working on all program data in all procedures. 
Ghosh et al. [5] and Fraguela et al. [6] suggested more explicit techniques for cache memory usage 
analysis for regular access cases. 
Ghosh et al. [5] proposed to compose and solve systems of linear Diophantine equations to estimate 
the number of cache misses for each cycle. They implemented this algorithm in the SUIF compiler 
and implemented the choice of padding size in the Array Padding optimization as an example. 
However, they did not implement an automatic solution of systems in parametric form - only a 
particular solution for Array Padding. In addition, this approach was created only for regular 
memory access. 
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An alternative approach was suggested by Fraguela et al. [6] for regular memory access. It was 
improved by Andrade in [7] thesis for some cases of irregular memory access: regular access under 
condition and access to an array, where the indices are read from another array. This approach is 
based on estimating the probability of cache misses in each analyzable cycle using Probabilistic 
Miss Equations (PME) generated from regular access characteristics and cache memory 
characteristics. To do this, for each processed access in the loop, a partial Probabilistic Miss 
Equation is built, and then they are combined into a complete equation for the loop or loop nest. 
This complete equation gives an estimation of cache misses amount. In addition, they did not offer 
any solution to the problem of minimizing cache misses amount and did not handle random memory 
access. Thus, the PME approach can potentially be applied for explicit cache memory usage analysis, 
provided the analysis is generalized for working for all irregular memory access. 
Data layout transformations were described in many papers. Particularly, a small catalogue of such 
transformations was created in the article [8]. Following transformations are listed in this article: 
1) Array Padding – adding padding between arrays to reduce number of conflicts between arrays; 
2) Array Merging – element-wise arrays merging; 
3) Array Transpose – changing dimensions’ order of an array by analogy with transposing a 

matrix. 
In addition to these, in the above-mentioned article [4] and thesis [2] some other transformations 
were described: 
1) Structure Peeling – splitting an array of structures element by element into several arrays; 
2) Structure Splitting – splitting an array of structures element by element into several arrays and 

addition of links between the elements corresponding to the initial element; 
3) Field Reordering – changing order of fields inside the structure; 
4) Automatic Pool Allocation – replacing memory allocation for data structure elements in the 

heap with memory allocation in a specific pool. 

5. Proposal 
Firstly, it is proposed to investigate and compare following methods for cache memory usage 
analysis: 
1) the method described in [4] using FRG graphs, generalized for working with all program data 

in all procedures; 
2) the method described in [6, 7] using the Probabilistic Miss Equations, generalized for the case 

of random access. 
We propose to choose one method for cache memory usage analysis that is more suitable for 
implementation in the compiler. The selection criterion is the accuracy of the estimation of cache 
misses amount. Another selection criterion is analysis time. 
Further, we propose to develop an analytical or another compiler-applicable method for solving the 
problem of minimizing the obtained estimation of the cache misses amount using data layout 
transformations. This problem is a discrete optimization problem, in which the objective function is 
the dependence of the cache misses amount on the applied data layout transformations, and a 
countable set of feasible solutions is the data layout transformations. 
Finally, based on the developed analysis method and the method for solving the problem of 
minimizing the cache misses amount, it is proposed to implement automatic analysis in the compiler 
that controls a set of data layout transformations. Also, we will need to implement missing 
transformations. 

5.1 Generalizing FRG analysis 
This method should be generalized for working on all program data in all procedures and provide 
an estimation of cache misses amount. To do this, based on the FRG graph for structures, we need 
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to make a generalized graph for structures, arrays, their combinations and other data structures. Such 
graphs need to be created for each program object. Let us call such graphs Object Reference Graph 
– ORG. In addition, we need to build a general RGP (Reference Graph in Procedure) graph 
consisting of all memory accesses in the procedure and including profile information. So any ORG 
graph in a procedure contains a subset of RGP nodes; therefore, using RGP, one can estimate the 
probabilities of transitions through various ORG arcs and cache memory usage characteristics 
between ORG nodes. In addition, RGP is required to analyze conflicts between different data 
structures. 
It is required to determine the probability of a particular cache line being evicted from the cache 
memory to estimate the probability of a cache miss in each ORG node. Since the probability of 
preempting a particular cache line depends on the amount of memory loaded into the cache in the 
general case in a complex way, it is better to store on the arcs of ORG graphs, not the amount of 
memory loaded into the cache, but the probability of preempting a particular cache line. 
To estimate the probabilities, one must know in which memory regions the memory addressed by 
each pointer is located and the size of these memory regions. To obtain this information, we need to 
use pointer analysis and a particular version of the profile, which collects data on the size of the 
allocated memory. 

5.2 Generalizing PME analysis 
To use this method, we need to generalize it for processing irregular memory access. 
For this, we need to: 
1) Create a way to calculate cache misses’ probability for random access. 
2) Generalize PME to those cases of near-regular access where it is possible to estimate cache 

misses amount more accurately than using a random access model. 
3) Combine PME for regular access and ones for random access. 
4) Use the developed techniques for estimating cache misses amount for the entire code, not just 

for loops. 
To estimate the probabilities, one must know in which memory regions the memory addressed by 
each pointer is located and the size of these memory regions. To obtain this information, we need to 
use pointer analysis and a particular version of the profile, which collects data on the size of the 
allocated memory. 

6. Current progress 
In the work [1] we described the particular version of data layout transformation called Structure 
Splitting, which we had implemented in the LCC compiler for the Elbrus and SPARC architectures. 
In addition, in this compiler Structure Peeling, Array Transpose, Array Linearization, and Array 
Padding have already been implemented.  

6.1 Cache miss probability for random access 
To generalize the PME-based analysis, a method was created for calculating the cache misses 
probability for random access. It is supposed that the memory region is known for this access, but 
the address of the region beginning is unknown. PME will be merged with this method. 
The method is based on determining cache state transformations for each memory access operation. 
For this, the operations are traversed sequentially in the basic blocks of the procedure, and the 
transformations on the code blocks are combined according to the probabilities in the profiled 
control-flow graph. Any operation of the procedure is traversed once for random access case. For 
any other case number of single operation traversals must be ܱ(1) due to the analysis applicability 
requirement. 
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The cache state notation for the general case of regular and random access has not been determined 
yet, but the following notation has been chosen for the random access model: matrix ۾ composed of ܰ vectors ࢏۾ corresponding to ܰ memory regions. Each vector has ܵ	 + 	1	 size, where ܵ is the 
number of cache lines in the cache. The element of the matrix ࢐࢏۾ is the probability that exactly ݆	lines corresponding to the area ݅ are stored in the cache memory at the moment. 
An example of the chosen cache state notation for three memory regions called a௜, where ݅	 = 	1. .3, 
is shown in Table 3. In the shown state it is implied that region aଵ has no lines in cache with 100% 
probability. Also, probability of aଶ taking all lines of cache is 90% and probability of aଷ taking one 
line and aଶ taking all other lines is 10%. 
Table 3. Chosen cache state notation example ࢐࢏ࡼ		for three memory regions called ܽ௜, ݅	 = 	1. ࡿ 0% 90% 0% ࡿ ૜܉ ૛܉ ૚܉ ࢐ 3. − ૚ 0% 10% 0% 

… … … … 
1 0% 0% 10% 
0 0% 100% 90% 

Let us introduce for each operation or code section c an operator for changing the state Tୡ. If there 
was state P௕ before executing c, then state P௔ after executing c is: P௔ = TୡP௕. We require the 
following properties for the operator: 
1) For a code section c, consisting of ܭ consecutive code sections or operations cଵ, . . . , c௄, the 

operator is a composition of operators for parts of the section: Tୡ = Tୡ಼ …Tୡభ. 
2) For a code section consisting of ܭ alternative code sections or operations ܿଵ, . . . , ܿ௄ with 

probabilities of passing through them ݌ଵ, . . . , ∑ ௄ (for example, if block and else block), with݌ ଵ	ୀ	௝௄௝݌ 		= 	1, the operator is a linear combination of operators for parts of the section: Tୡ 	=	∑ ଵ	ୀ	௝Tୡೕ௄௝݌ . 
3) Similarly, if during the execution of one operation op of the ܭ different state changes Tଵ୭୮ …T௄୭୮ 

may occur with probabilities ݌ଵ, . . . , ∑ ௄, and݌ ଵ	ୀ	௝௄௝݌ 		= 	1, the operator is a linear combination 
of their operators: T௢௣ 	= 	∑ ଵ	ୀ	௝T௝୭୮௄௝݌ . 

For the chosen matrix cache state notation, we also introduce an element-wise product 	⃘	of the 
operator and coefficients. 
Let us consider one memory access operation. It can cause three different outcomes: 
1) Cache hit. In this case, cache state in the selected notation is not changed. 
2) Cache miss with a conflict in the memory region. In this case, cache state in the selected notation 

does not change since it only stores the probabilities of having a certain amount. 
3) Cache miss with a conflict with another memory region. A new line is loaded into the cache for 

the memory region the operation is working with. For one of the other memory regions, the line 
is evicted from the cache. 

Thus, change in cache state for a single operation for a specific memory region can consist only in 
loading a new cache line for memory region, deleting cache line from the cache for memory region, 
or no changes for memory region. For such changes we introduce operators for the movement of 
cache state in selected notation: 
1) Mା – moves the matrix values up by 1: if P௔ = MାP௕, then 

∀݅ ∈ 1…ܰ ↦ ൞P௜௝௔ = P௜(௝ିଵ)௕ , ݆ = 0, ܵ − 1P௜ௌ௔ = P௜ௌ௕ + P௜(ௌିଵ)௕P௜଴௔ = 0  

2) Mି – moves the matrix values down by 1: if P௔ = MିP௕, then  
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∀݅ ∈ 1…ܰ ↦ ቐP௜௝௔ = P௜(௝ାଵ)௕ , ݆ = 0, ܵ − 1P௜଴௔ = P௜଴௕ + P௜ଵ௕P௜ௌ௔ = 0  

3) M଴ – does not move matrix values. 
Writing down cache state change operator	T୭୮ for operation, working with the memory region ݅, we 
get: T୭୮ = ௜ାߩ ∘ Mା + ௜଴ߩ ∘ M଴ + ௜ିߩ ∘ Mି 
where: 
 ௜ା – matrix of coefficients for loading a new line of ݅ into the cache; this matrix consists of aߩ (1

nonzero column for the ݅ -th vector, other coefficients are equal to zero; 
 ;௜଴ – matrix of coefficients for saving cache state as it isߩ (2
 ݅ ௜ି – matrix of coefficients for evicting a line from the cache when loading a new line of theߩ (3

area into the cache; this matrix consists of nonzero columns for all vectors except the ݅ -th. 
An example of applying operator T୭୮ to cache state example above is shown in Table 4. Operation op accesses memory region aଵ	so one line of aଵ is loaded into cache and one line of aଶ or aଷ is evicted 
from the cache. 
Table 3. Result of applying operator	ܶ௢௣ to cache state from Table 3 when ݌݋ works with memory region ܽଵ	(݅ = ࡿ 0% 0% 0% ࡿ ૜܉ ૛܉ ૚܉ ࢐ (1 − ૚ 0% 90%+10%·ଵௌ 0% ࡿ − ૛ 0% 10%·ௌିଵௌ  0% 

… … … … 
1 100% 0% 10%·ௌିଵௌ  

0 0% 0% 90%+10%·ଵௌ 
7. Conclusion 
Publications analysis showed that there is no unified solution to the problem of improving cache 
usage of compiled programs. In this paper, we propose a research approach, which can lead to a 
solution to this problem in compilers. 
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