Tpyowr UCIT PAH, mom 33, evin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-6

HTTP-Request Classification in Automatic Web
Application Crawling

A.V. Lapkina, ORCID: 0000-0002-7249-7672 <amiriya@seclab.cs.msu.ru>
A.A. Petukhov, ORCID: 0000-0002-1427-2440 <petand@seclab.cs.msu.su>
Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. The problem of automatic requests classification, as well as the problem of determining the routing
rules for the requests on the server side, is directly connected with analysis of the user interface of dynamic
web pages. This problem can be solved at the browser level, since it contains complete information about
possible requests arising from interaction interaction between the user and the web application. In this paper,
in order to extract the classification features, using data from the request execution context in the web client is
suggested. A request context or a request trace is a collection of additional identification data that can be
obtained by observing the web page JavaScript code execution or the user interface elements changes as a result
of the interface elements activation. Such data, for example, include the position and the style of the element
that caused the client request, the JavaScript function call stack, and the changes in the page's DOM tree after
the request was initialized. In this study the implementation of the Chrome Developer Tools Protocol is used
to solve the problem at the browser level and to automate the request trace selection.

Keywords: request classification; application crawling; dynamic web application; Chrome DevTools

For citation: Lapkina A.V., Petukhov A.A. HTTP-Request Classification in Automatic Web Application
Crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 77-86. DOI: 10.15514/ISPRAS-2021-
33(3)-6.

Knaccudmkauua HTTP-3anpocoB Kk cepBepy B 3agaye
aBTOMaTU4YeCcKoro o6xona coBpeMeHHbIX Be6-NpunoxeHnun

A.B. Jlankuna, ORCID: 0000-0002-7249-7672 <amiriya@seclab.cs.msu.ru>
A.A. Ilemyxos, ORCID: 0000-0002-1427-2440 <petand@seclab.cs.msu.su>
Mockosckuii 2ocyoapcmeennulii ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mockea, Jlenunckue 2opbi, 0. 1

AnHoTanus. 3aga4a aBTOMaTHYECKON KIIACCH(UKAIMH 3aIIPOCOB IIPUIOKEHHUS, a TaKXKe 3a/1ada ONpe/IeNeHIs
HpaBWI MapIIPyTH3Aal[MH 3allPOCOB HA CEpBEpEe HANpSMYI0 CBS3aHA C aHAIM30M II0JIB30BATEIBCKOTO
uHTepdeiica TUHAMUYECKUX BEO-CTPaHUII M MOXET OBITh pElleHa Ha ypoBHE Opay3epa, MOCKOJIBKY OH
COACPIKUT ITOJIHY IO qu)opmaumo 0 BO3MOXHBIX 3alIpOCax, BO3SHUKAIOUINX IIPU B3aPlMO)1€ﬁCTBPlM I10JIb30BaTECJIA
C Ka&X/10i M3 CTPaHMUI[BEO-NIPHIIOKEHNUs. B aHHOM paboTe JUlst pelieH s IOCTaBIICHHOM 3a/[a4y IPe/IaraeTcs
HCIIONB30BATh [JAHHBIC M3 KOHTEKCTA BBIIOJHEHHS 3ampoca B BEO-KIMEHTE C LEJIbIO BBIACICHHS
JIOTIOJHUTEITBHBIX IPU3HAKOB 151 Ki1accuukalpu 3ampocos. IIpy 3ToM B kKadecTBe KOHTEKCTa BOSHUKHOBEHHS
WIH TPacChl 3alpoca PacCMaTPUBACTCS COBOKYIHOCTBH [ONOJHHUTEIBHBIX HICHTH(UKALMOHHBIX JAaHHbIX,
KOTOPBIE MOXHO ITOJTy4UTh, HaOII0/1ast 32 BRIIONHEHHEM JavaScript-Ko/Jja Ha BeO-CTpaHHUIIe HIIU 32 H3MEHEHHEM
3JIEMEHTOB T0/Ib30BATEIBCKOTO HHTEp(eiica B pe3ybTaTe aKTHBALNK HHTEP(EHCHBIX d1eMeHTOB. K Takum
JIaHHBIM, HAIPUMEP, MOXKHO OTHECTH ITOTIOKECHHE U CTHJIb 3JIEMEHTA, BBI3BABIIECTO KIHEHTCKUI 3aIpoc, CTEK

77

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

BBI30BOB (pyHKIuil JavaScript u m3menenue B DOM-zmepeBe cTpaHuIB! Hocie 3anpoca. B pamkax paHHOU
PaboTHI 411 aBTOMATH3ALMH BBLIEICHUS TPACC 3alIPOCOB U MX IOCIeAyIomel KiIacCu()UKaNK HCIIOIb3YeTCs
peanu3zanus nporokosa Chrome DevTools.

KioueBsle ci1oBa: Kkiaccu(UKAIMs 3aPOCOB; JUHAMUUYECKHE BEO-IPUIOKEHHUS; aBTOMATHYSCKHH 00X0[
npunoxenuit; nporokon Chrome DevTools.

Jost uutupoBanms: Jlankuna A.B., TleryxoB A.A. Kiaccudukauus HTTP-3anpocoB k cepsepy B 3amaue
aBTOMATHUYECKOro 00X0/1a coBpeMeHHBIX BeO-nprtoxenuid. Tpynst UCII PAH, tom 33, Bbim. 3, 2021 1., cTp.
77-86 (na anrmmiickoM s3bike). DOL: 10.15514/ISPRAS-2021-33(3)-6.

1. Introduction

The problem of classifying the requests from a web application client to a server and correlating
them with application functions most often arises while analyzing applications using the black box
method [1]. In the case of automated web application testing, the first step is collecting information
about it. The structure of the application, its functions, input parameters, and types of requests are
investigated. To collect this information, it is required to solve the problem of navigating the web
application interface [2] — to find control elements automatically and activate them in order to cause
client-server interaction.

To make sensible decisions in the navigation process, it is necessary to determine the results of
triggering an action in the web interface: what HTTP request will be sent to the server, which
function of the application will be executed, and how the state of the web application will change.
Since modern web interfaces are built with HTML and JavaScript technologies, the problem of
navigating the application is reduced to analyzing the web interface (DOM and its visual
presentation) and Javascript code. The latter implements the logic for the user and the server
interaction: it processes user actions in the web interface, sends requests to the server and displays
the results of their execution.

A particular problem in the process of navigating a web application is connected with correlating
outgoing requests with the server-side actions of the web application. In traditional web applications,
functions were uniquely addressed by URLSs, so the problem of matching a request to an action on
the server-side was trivial. In modern web applications, especially in single-page applications that
implement the RPC concept (JSON RPC, XML RPC), URL can be the same for all server-side
actions and the name of the function can be passed in the request parameters (see fig. 1). In order to
correlate outgoing requests with the functions of the web application, it is necessary to extract a set
of features from outgoing requests that uniquely identify functions of the web application.

{
"action": "create",
"entity": "post",

"params":

"field": "blogpost",
"title": ""web Crawling”",
"author": ""userl2345"",
""created”": "©l-12-2@20"

]
}
Fig.1 Example of a POST-request with JSON in the body.
The called function is passed in the action field of the JSON structure.
Modern web applications use the concept of incoming requests routing [3]. To associate an incoming
HTTP-request with a specific function or class in the application code, the developer defines the
request routing rules: a table with predicates for HTTP-requests and function names. To process the
next incoming request, the predicate for functions are calculated and the one that returns true will be
called (the table is looked up from the top to the bottom until the first routing rule is triggered). The

78

Jlankuna A.B., ITeryxoB A.A. Knaccuduxauns HTTP-3anpocos k cepBepy B 3aade aBTOMaTHUECKOro 00X0/1a COBPEMEHHBIX BeO-
npunokeruit. Tpyow: UCIT PAH, Tom 33, Bbim. 3, 2021 1., ctp. 77-86.

minimum set of request parameters, which values make the predicate true, will be called the
discriminant for this request.

The set of specific values of the discriminant's parameters, that allow us to classify the request
explicitly, is considered as the request key. In example presented on fig. 3 “action”: “create” pair is
the request key.

For requests with body-parameters in the JSON format, we will consider the ones with Content-
Type: application/x-www-form-urlencoded and take into account not only the name of the
significant parameters, but also the nesting objects degree.

In the paper, sites that use ReactJS library and implement a web interface in accordance with the
framework rules specified in the documentation [4, 5] are investigated. This decision was made as
React]S is one of the most popular framework among sites written with JavaScript.

2. Related work

The problem of classifying web application requests consists of two main subproblems. The first
one is connected with a strategy for obtaining a set of outgoing requests of the web application. The
second one is connected with determining a strategy for the inductive extraction of classification
features.

The strategy of building a set of outgoing requests determines the order the application interfaces
would be processed, and the order controls (links, buttons, tabs, scrolling, etc.) implemented in the
graphical interface will be activated. The problem of automatic construction of the outgoing requests
set can be solved with web crawlers using such methods as depth-first crawling, breadth-first
crawling, or random crawling [6]. However, these strategies are ineffective for modern dynamic web
applications [7, 8].

In modern surveys, the use of dynamic analysis of the web applications [8, 9], as well as additional
properties of the web pages is used to solve this problem and to improve the quality of crawling. For
example, they consider using the analysis of the structure of the web page elements and their relative
position, as well as the history of elements crawling [10] or the user interface segmentation [11].
Traditionally, such request data elements as a method, target URL, path and GET- or POST-
parameters are used as features for classifying outgoing requests. However, in order to facilitate the
requests classification, some studies consider additional indicators related to the state of the web
application at the moment the request was initialized. For example, the state of a hierarchical finite
state machine built in the process of navigating the application [12] or the state of the DOM model
of the page [13] is used as such additional features.

3. General design

In this research, the problem of constructing a classifier of outgoing HTTP requests from a web
client to a web application, that allows us to restore the routing model on the server-side of the
application as part of automatic website crawling is solved by developing the algorithm of
classification. The classifier receives a site to crawl as an input. The result of the tool's operation is
a set of discriminants. Their combined values are the key to identify the action on the server-side for
each request.

Automatic forms filling [14] and navigating the internal zone of a web application are not considered
in this paper. The lattest means that if the access to the internal zone of the web application requires
authentication [15] is not considered in this paper.

It was assumed that the context of outgoing requests may contain parameters that can be used as
identification keys of the actions on the server side. If such parameters are found, it is suggested to
use them as additional features for identifying the requests. It was also assumed that it is possible to
build an iterative algorithm for classifying outgoing requests based on the found key parameters
from the context. Since the URL is provided as an input, elements are activated gradually and the

79

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

set of requests is formed iteratively. That is the reason it was decided to select the request features
gradually.
In the next sections a description of the approach, implementation and results of experiments
evaluating the validity of the assumption and the applicability of the approach are situated.
The task of selecting additional features requires a preliminary analytical study of the relations
between user actions and the parameters of the request context. The research is performed for
applications built on the basis of the ReactJS library [16]. The unified concept of programs that use
this framework allows extrapolating the results obtained on the experimental set of sites to other
sites based on this technology.
To establish the dependency between the context and the outgoing requests parameters, it is
necessary to mark up some data manually and analyze the frequency of occurrence of significant
context parameters types. If it turns out that there are such sets of parameters in the context that will
have the same set of values (key), when two identical actions from the web interface are triggered,
and which values would be different, when different actions are triggered, then we assume that there
is a dependency between context parameters and classes of outgoing application requests.
In this paper, such context elements as the DOM state before the request was sent, the DOM state
after the request was sent, the identifier of the DOM element node to which the called event handler
belongs, the style of this element and the call frames array (the stack trace or the list of called
functions with script identifiers and function positions) are examined.
The preliminary experimental reseach consists of several steps. As a first step the same action 4 is
triggered via two different interface elements on the selected site performing interactions 4; and 4.
Their traces 77 and 7, with the sets of parameters DOM before,, DOM _afteri, node_id,, cssi,
callframes, and DOM_before,, DOM_after, node_ids, css», callframes, are obtained. Then action
B with trace T3, different from actions 4 is triggered. After that, the values of the traces 7', T, and
T3 are compared. The next step is to determine which parameters from the traces 71 and 7> have
coinciding values and which parameters in pairs 71, 73 and 7>, T3 have different values. After that
the same comparison is made for other actions on the selected site and on other sites from the sites
list. If results of the experiment show that there is a set of context parameters where with a high
probability the same values are used for the same actions and where different actions result in
different values, then they will be used as additional classification features.
Site list for experimental research was obtained from the Built With list [17] and the top sites of
Coder Academy [18]. To select significant parameters,sites with different user interface complexity
were used: from very complex (airbnb.com, facebook.com) to simpler ones (bbc.com,
bleacherreport.com). The list also included sites with different routing schemes, such as routing by
URL, routing based on query-parameters or routing based on body-parameters of the POST-
requests. These requirements were intended to provide better coverage of various site types used on
the Internet.
The experiment of analyzing dependency between significant context parameters and user actions
was carried out on 20 target sites. The results are presented in Table 1 and Table 2.
Table 1. Percentage of coincidence between actions and context parameters for identical actions
DOM before action | DOM after action | nodeid | css | callframes
58% 54% 80% 65% | 96%
Table2. Percentage of difference between actions and context parameters for different actions
DOM before action | DOM after action | nodeid | css | callframes
81% 92% 99% 73% | 100%

The experiment results show that the strongest dependency corresponds to the callframes parameter.
In this regard, it was decided to use the callframes array from the request context to classify requests
to the server in addition to such request's attributes as its method, URL, path, query-parameters and
body-parameters for POST-requests.

80

Jlankuna A.B., ITeryxoB A.A. Knaccuduxauns HTTP-3anpocos k cepBepy B 3aade aBTOMaTHUECKOro 00X0/1a COBPEMEHHBIX BeO-
npunokeruit. Tpyow: UCIT PAH, Tom 33, Bbim. 3, 2021 1., ctp. 77-86.

To validate the suggested approach, a classification algorithm was composed and tested. It receives
a site for processing as an input, and produces a set of request’s discriminants as an output.

4. Classification Algorithm

The request classification algorithm implements the idea of inductive constructing a set of significant
features. An example of the basic algorithm processing two user events A and B is presented below.
Data structures used:

VP (valuable parameters): a set of significant request parameters. Consists of elements in the
form (param_name: [vall,val2,val3,...]. Initially VP = @.

HP (hint parameters): a set of possibly significant parameters. HP = Q.

NVP (not valuable parameters): a set of non-significant query parameters. Initially NVP = @.
AP (all parameters): set of all request parameters. Consists of elements in the form
(param_name: (val_1: counter_1,val_2: counter_2), where param_name is the name of the
parameter, val_i is the i-th value of this parameter, counter_i is the number of times that the value
of the param_name parameter has been encountered with the value val_i }. Initially AP = @.

RS (request schemes): A set of application request schemes. Each request scheme is a structure
with fields containing the method, hostname, path, callframes, and the names of the get and post
parameters. RS = @.

trace, trace2: the trace of the request. Consists of hostname, path, callframes, query-parameters (if
any) and body-parameters (if any).

P, P2 (parameters): variable to store the parameters of the current request.

counter: requests counter. Initially counter = 0.

Used procedures:

CheckScheme (S): Checks the presence of Scheme S in the RS set. Returns true if schema S is
present in RS, false otherwise (see Algorithm 1).
Data: scheme S, set of all schemes RS

Result: boolean value that indicates if S is present in RS
1 for scheme in RS do

2 if ((hostname in S = hostname in scheme) and
(path in S = path in scheme) and (method in S = method in scheme)
then

3 return true;

4 end

5 if (callframes in S = callframes in scheme)
then

6 return true;

7 end

8 if ((query-params in S = query-params in scheme)
and (body-params in S = body-params in scheme)
then

9 return true;

10 end

11 return false;

12 end

Algorithm 1: CheckScheme

Technical aspects such as extracting custom events from the web pages for crawling, navigating
between application pages, and triggering custom event handlers, are discussed in the section
Implementation.

The basic logic of the algorithm is presented in Algorithm 2.
81

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

Data: two custom event handlers A, B received from a given site
for crawling

Result: a set of discriminants for custom events A, B

1 trigger event listener A;

intercept trace;

counter+ = 1;

VP « hostname, path (where hostname, path € trace);

P < query-params; body-params (where query-params,

body-params € trace);

for param in P do

7 if ((param in AP) and (param.value = AP.param name.val 1))
then

8 counter i+ =1

9 else

10 AP « {param:value : 1}

11 end

12 if param in NVP
then

13 remove param from P;

14 end

15 end

16 AP « P;

17 S « hostname, path, callframes, query-params, body-params

18 (where hostname, path, callframes, query-params, body-params € trace) ;

19 if checkScheme (S) = true

Ul W N

(&)}

then
20 trigger event listener B;
21 counter+ = 1;

22 repeat steps 4-41;

23 HP < P;

24 trigger event listener A;

25 intercept trace2;

26 else

27 end

28 P2 « query-params; body-params
(where query-params, body-params € trace2);

29 VP « PP2;

30 NVP « (PP2)/(PP2);

31 for param in NVP do

32 remove param from VP;

33 remove param from S;

34 for scheme in RS do

35 remove param from scheme;
36 end

37 end

38 RS « S;

39 trigger event listener B;

40 counter+ = 1;

41 repeat steps 4 -41;
Algorithm 2. Basic classification algorithm

In a general case, the algorithm sequentially processes all activated user events for a given site.
When the work is complete, the number of parameters and their values are recalculated from the set
of all application parameters. In this case, the parameters that had the same value for all processed
requests are moved from the list of significant parameters (if they were there) to the list of
insignificant ones, and are also removed from the request schemes (see Algorithm 3).

82

Jlankuna A.B., ITetyxoe A.A. Knaccudukarms HTTP-3arpocoB k cepBepy B 3a1a4e aBTOMAaTHYECKOT0 00X0/1a COBPEMEHHBIX BeO-
npunokernit. Tpyow: UCIT PAH, Tom 33, Bbin. 3, 2021 1., ctp. 77-86.

Data: sets AP, VP, NVP, SR and counter variable
Result: a set VP for application requests
1 for param in AP do

2 if (length(param) = 1) and (counter = param.counter)
then

3 remove param from VP

4 remove param from SR

5 NVP « param

6 end

7 end

Algorithm 3: Algorithm for recalculating the significance of parameters

The output of the algorithm is a set of significant request parameters. In this case, the key from the
values of these discriminants allows the outgoing application request to be uniquely identified.

To validate that the constructed algorithm is applicable, a tool was developed that implements the
suggested classifier. It iteratively constructs the set of outgoing requests for the application and
extracts the classification features.

5. Implementation

The constructed tool automatically performs the following actions in the process of building a set of

outgoing requests in automatic mode:

e collects custom event handlers used on the page;

e activates the handlers obtained in step 1, thus initiating the HTTP request from the client to the
server;

e determines the content of emerging HTTP requests;

e defines the context of emerging requests;

e monitors dynamic changes in the DOM of a web page;

e extracts the discriminants of request taking into account the requests’ context according to the
basic algorithm.

From an architectural point of view, the classifier can be divided into the following logical

components (see fig. 2).

Core

Uses Chrome DevTools
Activates user events
Tracks DOM state

T
Request Initialzation

v .
Debugger Interceptor
Gets request context I pis HTTP: ts and resp

Get identification data
¥

Solver
traces
Gets discriminants
Gets insignificant parameters

Fig. 2. Tool components
The core of the classifier is responsible for interacting with the browser and using the Chrome
DevTools protocol. This protocol is a programmable version of the developer's toolkit for Chromium
83

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

browsers. In the study it is used to navigate a web application by automatically activating user events
on a web page, as well as to track the state of the browser context at the time when HTTP-requests
are performed.

Debugger is used to get the context of the HTTP request and extract the callframes for further
processing.

An interceptor is used to intercept requests from the client side of the application, as well as to
obtain request elements such as URL, path, and parameters.

Solver represents the classifier itself. It compares the request traces received from the debugger
and the interceptor. This part is also responsible for making decisions about the significance of the
received features for the classification. It selects discriminants of requests and forms a list of
parameters that are not significant for subsequent classification.

Possible complexity of the parameters' structure must be considered while examining request
elements and their contexts.

For a more convenient representation of data transmitted in JSON format in the current study the
DeepDiff library was used. It allows users to represent data as a set of fields and values, taking
into account nested elements (see fig. 3 and fig. 4).

json_example = {
"name" : "my_username”,
"first-name” : "My",
“last-name” : "Username”,
"display-name” : "My Username”,
"email" : "user@example.test”,
"password"” : {

"value" : "my_password"

}

}

Fig. 3. Data in JSON format
"root['display-name']": "My Username’
"root['active’]": True
"root['last-name’]": ‘Username’
"root['first-name’": "My’
"root['password'['value'l" : 'my_password'
"root['email’]": 'user@example.test'
"root['name’]": 'my_username’

Fig. 4. Same JSON data after DeepDiff processing

)
ctive" : True,

6. Experiments

The implemented classifier was firstly tested manually on 10 sites built with React]S. For this
experiment the activation of user events was performed manually through interaction with the web
interface of the application. The requests interception, their contexts selection and subsequent
classification were performed automatically. The analysis of the discriminants extracted during the
classification showed their 100\% completeness. In other words, there were no parameters that have
been mistakenly marked as insignificant based on the classification results. The results of this
experiment support the suggested method of solving the problem and allow proceeding to an
automatic experiment.

To test the classifier in automatic mode, from the constructed set of 100 sites built with ReactJS,
sites using Captcha were excluded. As a result, the final set consisted of 96 sites. The subsequent
analysis of the received discriminants of requests also showed their completeness and confirmed the
possibility of classifying the requests of the web application using their context. Moreover, usage of
callframes helped to classify requests for 73\% of the sites crawled. Therefore, the experiment was

84

Jlankuna A.B., ITetyxoe A.A. Knaccudukarms HTTP-3anpocoB k cepBepy B 3a1a4e aBTOMAaTHYECKOT0 00X0/1a COBPEMEHHBIX BeO-
npunokeruit. Tpyow: UCIT PAH, Tom 33, Bbim. 3, 2021 1., ctp. 77-86.

considered as successful and the suggested approach was verified and showed its applicability in
case of sites, written with React. Nevertheless, to expand the research results to the sites built with
other frameworks, additional experiments are required.

In addition, due to the approach of activating custom events twice, using their context and removing
insignificant request elements, it was possible to reduce the number of distinguished request
discriminants for 52% in comparison with the total number of parameters received. This means that
the number of parameters for fuzzing decreased and therefore the process of the subsequent black
box testing may become more efficient.

This notwithstanding, in the left 48% of parameters that were marked as valuable, there may be
some that were falsely recognized as significant. Nevertheless, the task of identifying was not
considered in this study.

Based on the results of the experiments, the influence of request parts on routing was also calculated.
Their frequency of occurrence is presented on fig. 5.

50
40
30
20
) I
hostname query- params
query-params body-params
|:|ath body- params

Fig. 5. Influence of request elements on routing in percents

7. Conclusion

The paper suggests a method for classifying requests of web applications with a dynamic interface.
The experiments show that the suggested method, based on the usage of request context as a source
for additional classification features solves the problem of classifying requests with the same level
of completeness as the naive method that takes into account only the request content. The
constructed classifier helps to reduce the number of insignificant parameters among the
discriminants of the request, which is a positive achievement in the case of using a tool for
determining the parameters of application requests for subsequent black box testing.

Cnucok nutepartypsbl / References

[1] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated black-box web application
vulnerability testing. In Proc. of IEEE Symposium on Security and Privacy, 2010, pp. 332-345.

[2] A.M. Reina-Quintero. Surveying navigation modelling approaches. International Journal of Computer
Applications in Technology, vol. 33, no. 4, 2008, pp. 327-336.

[3] P. Himschoot. Single Page Applications and Routing. In Blazor Revealed. Building Web Applications in
NET. Apress, 2019, pp. 187-212.

[4] React]S official web page. Available at http://www.ReactJs.org, accessed 10.03.2021.

[5] A.Fedosejev. React.js Essentials. A fast-paced guide to designing and building scalable and
maintainable web apps with React.js. Packt Publishing, 2015, 208 p.

85

Lapkina A.V., Petukhov A.A. HTTP-request classification in automatic web application crawling. Trudy ISP RAN/Proc. ISP RAS, vol. 33,
issue 3, 2021, pp. 77-86.

[6] C. Olston and M. Najork. Web crawling. Foundations and Trends in Information Retrieval, vol. 4, no. 3,
2010, pp. 175-246.

[7] S.Khalid, S. Khusro, and I. Ullah. Crawling ajax-based web applications: Evolution and state-of-the-art.
Malaysian Journal of Computer-Science, vol. 31, no. 1, 2018, pp. 35-47.

[8] .M. HoceeBuu, A.A. IleryxoB. IloMck BXOAHBIX TOYEK JUIS BeO-NPUIONKEHHH C JUHAMHYECKHM
OJIL30BATENLCKUM HHTEp(eiicoM. be3onacHocTh HHPOPMAIMOHHBIX TEXHOJIOTHM, ToM 6, no.1, 2013 r.,
crp. 13-20 / G.M. Noseevich, A.A. Petuhov. Determining Data Entry Points for Javascript-rich Web
applications. IT Security (Russia), vol. 6, no. 1, 2013, pp. 13-20 (in Russian).

[9] T. Pandikumar, Tseday Eshetu. Detecting Web Application Vulnerability using Dynamic Analysis with
Penetration Testing. International Research Journal of Engineering and Technology, vol. 03, no. 10, 2016,
pp. 430-433.

[10] A.A. TleryxoB, H.B. MartoHus. ABroMartiyeckuii 00X0J BEO-NPHIOKCHUNM C JHHAMHYECKUM
nosp30BaTebCkuM uHTepdeiicom. IIpobiaemsr uHbOpMarmonHoit GesomacHoct. KoMmbroTepHbIe
cuctemsl, no. 3, 2014 r., crp. 43-49 / A.A. Petuhov, N.B. Matjunin. Automatic crawling of web
applications with dynamic user interface. Information Security Problems. Computer Systems, no. 3, 2014,
pp 43-49 (in Russian).

[11]W.C. ToBopkoB. OnTumm3auusi 00Xoaa CTpaHUI] AMHAMHYECKHX BEO-TIPUIIOKEHHUH, MOCTPOSHHBIX C
ucnonezoBanueM Oubnmorexu React]S. Tesucsl kondepenuu «JIomonocos-2018», 2018 r., crp. 1-3 /
I.S. Govorkov. Optimization of crawling pages of dynamic web applications built using the React]S
library. Abstracts of the conference «Lomonosov-2018», 2018, pp. 1-3 (in Russian).

[12] C. H. Liu, C. J. Wu, and H. M. Chen. Testing of AJAX-based Web applications using hierarchical state
model. In Proc. of the IEEE 13th International Conference on e-Business Engineering (ICEBE), 2016, pp.
250-256.

[13] X. Zhang and H. Wang. AJAX Crawling Scheme Based on Document Object Model. In Proc. of the Fourth
International Conference on Computational and Information Sciences (ICCIS), 2012, pp. 1198-1201.

[14] W.-K. Chen, C.-H. Liu, and K.-M. Chen. A web crawler supporting interactive and incremental user
directives. Lecture Notes in Electrical Engineering, vol. 464, 2017, pp. 64-73

[15] H.Z.U. Khan. Comparative Study of Authentication Techniques. International Journal of Video Image
Processing and Network Security, vol. 10, no. 04, 2010, pp. 9-13.

[16] S. Aggarwal. Modern Web-Development Using React]S. International Journal of Recent Research
Aspects, vol. 5, no. 1, 2018, pp.133-137

[17] Websites using React. Available at https://trends.builtwith.com/websitelist/React, accessed 10.03.2021.

[18] Top 32 Sites Built with ReactJS. Available at https://medium.com/@coderacademy/32-sites-built-with-
reactjs-172e3a4bed81, accessed 10.03.2021.

[19] Thends in JavaScript frameworks. Available at
https://trends.google.com/trends/explore?q=vue.js,react,angular, accessed 10.03.2021

UHdopmaumna 06 aBTopax / Information about authors

Anna Banmmosna JIATIKMHA, maructp BMK MI'Y, Bemyck 2021. Hayunble wuHTEpecshl:
0e30MacHOCTE BeO-TIPHIIOKEHIH, OOHApYKEHHE YSI3BUMOCTEH, aBTOMaTHYECKasi HABUTAIMS 11O BEO-
MPUIIOKEHHSAM.

Anna Vadimovna LAPKINA, master's graduate in 2021, CS department, MSU. Research interests:
application security, vulnerability analysis, automatic application navigaton.

Anppeit AnekcannpoBud IIETYXOB. Mnagmmii Hay4sblid coctpynHuk B JlaGopartopuu
UHTEIUIEKTyalbHbIX cucTeM kubepOesomacnocty BMK MI'Y. HayuHble HHTepechl: TECTUPOBaHUE
BeO-NIPUIIOKEHUI METOJOM YEPHOTO AIUKa, 00HApYKEHHUE YSA3BUMOCTEll, aHaIM3 IPOrpaMM.

Andrew Alexandrovitch PETUKHOV, researcher in Cybersecurity Lab, CS department, MSU.
Research interests: black-box testing of web applications, vulnerability analysis, program analysis.

86

