Tpyowt UCIT PAH, mom 33, ewin. 3, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

DOI: 10.15514/ISPRAS-2021-33(3)-9

Method of Performance Analysis of Time-Critical
Applications Using DB-Nets

A.M. Rigin, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
S.A. Shershakov, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>

HSE University,
20, Myasnitskaya st., Moscow, 101000, Russia

Abstract. These days, most of time-critical business processes are performed using computer technologies. As
an example, one can consider financial processes including trading on stock exchanges powered by electronic
communication protocols such as the Financial Information eXchange (FIX) Protocol. One of the main
challenges emerging with such processes concerns maintaining the best possible performance since any
unspecified delay may cause a large financial loss or other damage. Therefore, performance analysis of time-
critical systems and applications is required. In the current work, we develop a novel method for a performance
analysis of time-critical applications based on the db-net formalism, which combines the ability of colored Petri
nets to model a system control flow with the ability to model relational database states. This method allows to
conduct a performance analysis for time-critical applications that work as transactional systems and have log
messages which can be represented in the form of table records in a relational database. One of such applications
is a FIX protocol-based trading communication system. This system is used in the work to demonstrate
applicability of the proposed method for time-critical systems performance analysis. However, there are plenty
of similar systems existing for different domains, and the method can also be applied for a performance analysis
of these systems. The software prototype is developed for testing and demonstrating abilities of the method.
This software prototype is based on an extension of Renew software tool, which is a reference net simulator.
The testing input for the software prototype includes a test log with FIX messages, provided by a software
developer of testing solutions for one of the global stock exchanges. An application of the method for
quantitative analysis of maximum acceptable delay violations is presented. The developed method allows to
conduct a performance analysis as a part of conformance checking of a considered system. The method can be
used in further research in this domain as well as in testing the performance of real time-critical software
systems.

Keywords: performance analysis; time-critical applications; db-nets; FIX protocol; software modeling;
software testing

For citation: Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications
Using DB-Nets. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 109-122. DOI: 10.15514/ISPRAS-
2021-33(3)-9

Acknowledgements. This work is supported by the Basic Research Program at the HSE University.

109

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

MeTop aHanu3a NPoM3BOAUTENBLHOCTU KPUTUUYHbIX MO BPEeMeHMU
npunoxeHnm c nomoubio DB-Nets

A.M. Pueun, ORCID: 0000-0003-4081-9144 <amrigin@edu.hse.ru>
C.A. Llepwaros, ORCID: 0000-0001-8173-5970 <sshershakov@hse.ru>

Hayuonanwnoiii ucciedosamensckuii ynugepcumem «Boicuias wikona skoHoMuKuy,
101000, Poccus, 2. Mocksa, yn. Macnuykas, 0. 20.

Annortanus. B HacTosmee BpeMs GOIBIIMHCTBO KPUTUYHBIX 110 BPEMEHH OH3HEC-IIPOLIECCOB BEIOIHAIOTCS C
HCIIONIb30BaHHEM KOMIBIOTEPHBIX TEXHONOTHH. B kadecTBe mpuMepa MOMKHO PacCMOTpPETh (PUHAHCOBBIE
HpPOLIECChI, BKJIIOYAsh TOProBiII0 Ha (DOHIOBBIX OUpIKAX, HCIOJB3YIOUIME TaKHE IMPOTOKOJIBI Iepetauu
napopmanuy, kak Financial Information eXchange (FIX) Protocol. OmuH n3 OCHOBHEIX BEI30BOB,
BO3HHKAIOIIUX OTHOCHTEIHHO TaKUX MPOLECCOB, — ITO MOANEPKKA HAMITYYIIei IPOU3BOJUTEILHOCTH, TaK KaK
nr00ast 3a/iepiKKa, He YCTAHOBIICHHAs CIeHU(UKanUeil, MOXKET PUBECTU K GOJIBLINM (HHAHCOBBIM MOTEPSIM U
uHoMmy yuepOy. CnenoBaTenbHO, HEOOXOAMMO IMPOBOJUTH AHAJIN3 IPOU3BOJAMTEIILHOCTH KPUTHYHBIX I10
BpeMEHH CHCTeM U TIpUIOXKeHHH. B 1aHHOH paboTe mpemIOXKeH HOBBIE MeTOH I aHaIH3a
MPOM3BOAUTEILHOCTH KPHTHYHBIX II0 BPEMEHH IPUIIOKEHHIl, OCHOBaHHBIH Ha (opmammsme db-net. DtoT
(opManu3M MO3BOJISIET MOJACIMPOBATH MOTOK YHPABJICHHS CHCTEMOH C HCIONB30BAHHEM LBETHBIX CeTeil
Ietpu, a TakxKe MOAENIUPOBATH COCTOSIHUS PEISILIMOHHOM 0a3bl JAHHBIX. MeTO0] TO3BOJISET IPOBOUTD AaHAIIN3
MPOM3BOAUTENFHOCTH KPUTHUHBIX II0 BPEMEHH INPHJIOKEHUH, KOTOpble paboTaloT KaK TPaH3aKIHOHHBIE
CHCTEMBI U CO3/JAI0T JIOTH C COOOIICHUSMH, TIPEACTABUMBIMU B (hopMe 3anuceil B TabiiuLe pensiuoHHON 6a3bl
JaHHbIX. [IpUMepoM TakuX NPUIIOKEHUH SBIISETCS KOMMYHHUKALMOHHAs CUCTEMA JUIsl TOPrOBIIM Ha ()OHI0BOM
Oupxe, paboraromas Ha ocHoOBe Hporokona FIX. Dra cucrema paccMarpuBaeTcss B JaHHOH paboTe uist
JEMOHCTPAIHH IPHMEHUMOCTH NIPEJIOKEHHOTO MeToa. B TO jke BpeMs CyIIecTBYeT MHOXECTBO MOTOOHBIX
CHCTEM B Pa3iIMYHBIX HPEIMETHBIX 00MACTSX, H HPEITOKEHHBIH METOJ MOXKET OBITh TaKKe NPHMEHEH U IS
aHaIM3a MPOU3BOJAUTEIBHOCTH TaKMX cucTeM. It TeCcTMpoBaHMsA W anpoOMpOBaHMs MeToza pa3paboTaH
nporpaMMHBIH pototur. OH OCHOBaH Ha PAaCHIMPEHHH IIPOrPaMMHOIO HHCTpyMeHTa Renew — cumyisitopa
ccbulouHbIX cereid [lerpu. IIpoToTHI MpOTECTHPOBAaH Ha Jiore, ColepikaiieM cooliieHus: nportokona FIX,
MPEIOCTABICHHOM pa3pabOTYMKOM pEHICHHH 178 TeCTHPOBAHMS HPOTPAMMHOTO OOeCIeyeHHs OIHOU U3
MHpPOBBIX (DOHIOBBIX Oupx. Iloka3aHO IpUMEHEHHE METOJA IS KOJIMYSCTBEHHOIO aHAIM3a IPEBBINICHHI
MAaKCHMAJIBHO JIOIIYCTHMBIX 3aIePiKeK MEXIy COOOLICHUIMH. Pa3paboTaHHEI! METO MO3BOJISIET BEIIOIHATH
aHaJIM3 HPOHM3BOAUTEILHOCTH KaK 4YacTh TPOBEPKHM COOTBETCTBUS CBOWMCTB CHCTEMBI 3aJaHHOH MoOJenu
(conformance checking). MeTo MOXeT OBbITh MCIIOIb30BAH KaK I HAYYHO-HUCCIIEA0BATENbCKUX LIEJICH, TaK 1
JUISL aHAJIN3a IIPOU3BOAUTEIEHOCTH PEANIbHBIX HH(OPMAITHOHHBIX CHCTEM.

KinloueBble cj10Ba: aHaIIM3 IPOM3BOANTEIBHOCTH; KPUTHYHBIC [0 BpeMeHH npuioxenus; db-nets; mpoTokos
FIX; monenuposanue I10; recruposanue I10.

Js uurupoBanus: Purun A.M., lllepmakos C.A. MeToJ aHaiM3a NPOU3BOAUTENLHOCTH KPUTUYHBIX 110
BpeMeHH npuIoxeHui ¢ nomompsio DB-Nets. Tpyast UCIT PAH, Tom 33, Bemm. 3, 2021 r., ctp. 109-122 (Ha
aHrmiickoMm si3sike). DOIL: 10.15514/ISPRAS-2021-33(3)-9.

Baaroaapuoctu. Pa6ota BhinonHeHa B pamkax [IporpamMmel ¢pyHaMeHTanbHbIX HecnenoBanuit HUY BIID.

1. Introduction

Nowadays, most of time-critical business processes are performed using computer technologies.
Nuclear reactor control, medical equipment control, spaceship control are some obvious examples
of such processes. However, different financial processes including trading on stock exchanges also
can demand strict performance requirements.

In the previous century, trading on stock exchanges was primarily performed through phone calls
and with use of paper-based order books [1]. Working this way did not allow traders to compete for
the best price that is generally offered during very short period. This was the reason of beginning of
automatization of trading on stock exchanges. In order to guarantee compatibility of software
systems of different traders, brokers, and exchanges, there were financial protocols for electronic
communication between trading participants created. Financial Information eXchange (FIX)
110

Purun A.M., lllepmakos C.A. MeTos anaiu3a Npou3BOMTENLHOCTH KPUTHYHBIX MO BPEMEHH NPHIOKeHUH ¢ momomnibio DB-Nets. Tpyost
HCIT PAH, Tom 33, Bbim. 3, 2021 1., cTp. 109-122.

Protocol maintained by the FIX Trading Community [2] is one of the most known and widely used
protocols of such type. There exist different approaches to encode messages transferring with the
FIX protocol. In this paper we focus on the FIX TagValue Encoding, which is the main standard of
encoding FIX messages [2].

The FIX protocol allows traders, brokers, and exchanges to create and fill (execute) orders for buying
or selling securities in several milliseconds using electronic communication channels such as
Internet [2]. It is a great driver for competence in the global stock markets, however it creates new
challenges for financial software vendors. One of such challenges is maintaining the best possible
performance. Any unspecified delay may cause a large financial loss for a trader due to the best
price is missed. Such delays may create unequal and unfair conditions for different participants, lead
to local or global economic problems as well as public scandals and reputational problems for the
exchange or some traders or brokers.

Financial protocol-based communication systems are considered in this work to demonstrate
applicability of the proposed method for time-critical systems performance analysis. However, there
are plenty of similar systems existing for different domains, and the method can also be applied for
a performance analysis of these systems.

Any FIX message consists of a set of tag-value pairs [3]. In fact, it means that we can represent these
messages in the form of records of a table in some relational database. Therefore, some methods of
system modeling, which rely on relational database states, can be considered here. The same is valid
not only for messages of the FIX protocol, but for any messages of transactional systems that are
represented as sets of tag-value pairs.

In 2020, we developed a software simulator for the db-net formalism [4] introduced by Montali and
Rivkin in 2017. This formalism is represented by the layer with modified colored Petri net modeling
a control flow of a process system, and two inner layers for working with an attached relational
database modeling a persistent storage [5] as shown in Fig. 1. This simulator is developed as a plugin
for Renew (Reference Net Workshop) software tool which is a Java-based reference net simulator

[6].

control layer

data logic layer

persistence layer

Fig. 1. The db-net structure [5].

Generally, the lowest layer of the db-net (the persistence layer) is represented by an ordinary
relational database [5]. However, it can be replaced with any other information storage, which is
accessible through a custom relational DML interface that is to be implemented.
One can model a tag-value message sending by using the “insert” database operation, where tags
are represented as attributes of a relational table and values are represented as attributes of a record
in the table. A tag-value message receiving can be modeled similarly using the “select” database
operation.
In the current time, there are some performance analysis research works focused on distributed
software systems such as [7, 8], however performance analysis using db-nets has its advantages for
transactional systems which send and receive messages that are representable in the form of records
in relational tables.

111

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

Firstly, it allows to integrate performance analysis into conformance checking of a system. A

performance property can be considered together with other checked properties of the system to

check all of them simultaneously. Therefore, it allows to abstract away from the performance and to

combine performance analysis of transactional systems with other methods for their verification and

validation, based on Petri nets and their modifications, especially db-nets (e.g., checking safety,

liveness, fairness, and similar properties). Moreover, colored Petri net models, that are automatically

generated from event logs using process discovery algorithms, may be extended with db-net

elements and time constraints, and used for performance analysis.

Secondly, this method allows to apply well-known approaches used in the relational database

domain to the wide set of transactional systems supporting time-critical applications.

All the above provides the motivation for the research.

The purpose of the research is development of a method of performance analysis of time-critical

applications using db-nets.

The objectives of the research are as follows.

1) Developing a method for performance analysis of time-critical applications using db-nets.

2) Developing a software prototype for performance analysis of time-critical application logs using
db-net models.

3) Checking the method by testing the developed software prototype on a test log of FIX messages
provided by a software developer of testing solutions for one of the global stock exchanges.
The rest of the paper is organized as follows. The Section 2 presents the theoretical foundations and
concepts of the work and the developed method. In the Section 3, the developed software prototype
and its testing are described. After this, the main points of the paper are summarized in the

conclusion.

2. Performance Analysis Using DB-Nets

2.1 DB-Nets

The db-net formalism is a modification of the colored Petri net, which allows to model a system

control flow together with relational database states. The db-net consists of three layers: (1) the

control layer, (2) the data logic layer which connects the control layer and the persistence layer

together, and (3) the persistence layer [5]. The scheme of db-net structure is shown in Fig. 1.

The persistence layer allows to store the persistent data and is formally defined by a relational

database schema and constraints that declare the data consistency rules [5].

The data logic layer is defined by two sets: (1) set of queries for retrieving records from a database

in the persistence layer and (2) set of actions for insertion and deletion of records in the persistence

layer database. Each action includes sets of added and deleted facts (records in relational tables) [5].

The control layer allows to model a system control flow and is defined by a colored Petri net with

the following modifications [5].

1) Queries defined in the data logic layer are assigned to places of a colored Petri net in the control
layer. Such places are called view places. View places cannot contain tokens (resources modeled
in a Petri net) such as other places, but they produce new tokens by retrieving data from the
persistence layer through assigned queries.

2) Actions defined in the data logic layer are assigned to transitions of the net in the control layer.
When a transition with the assigned action is fired (executed), the action is performed on a
database in the persistence layer.

3) In addition to traditional Petri net arcs, there exist read arcs and rollback arcs in the db-net
control layer. The former is used for connecting view places with transitions and the latter is
used for defining a flow for a case of rollback of an action due to violation of the data
consistency rules in a database of the persistence layer after performing the action.

112

Purun A.M., lllepmakos C.A. MeTos anaiu3a Npou3BOMTENLHOCTH KPUTHYHBIX MO BPEMEHH NPHIOKeHUH ¢ momomnibio DB-Nets. Tpyost
HCIT PAH, Tom 33, Bbim. 3, 2021 1., cTp. 109-122.

The db-net control layer’s net and persistence layer’s database schema example for the taxi booking
software system is shown in Fig. 2.

PICKUP.

—_t y i " s |

Fig. 2. The control layer’s net and persistence layer’s database schema example for the taxi booking software
system [5].

2.2 Conformance Checking

Conformance checking allows to verify that a considered system satisfies desirable properties
through ensuring that an event log produced by the system fits a designed model [9]. These
properties include safety, liveness, fairness, and similar ones. For example, safety properties
guarantee that the system does not achieve certain undesirable states.

The method proposed in this paper allows to check performance simultaneously with checking other
properties of a system. A performance property is considered in this work as a safety property for
satisfying that a system should not achieve the state where a delay between two messages exceeds a
maximum acceptable one. Therefore, performance can be checked in a process model designed for
checking other properties by extending the model with information about time constraints [9].
Since the db-net formalism extends colored Petri net, it is possible to check all properties using a
db-net if these properties can be checked using a traditional colored Petri net. The performance in
the proposed method is checked using db-net elements.

The set of properties S = {54, S5, ..., S}, where s;,i = 1, n is the i-th checked property, is considered
as an example. Some of these properties may be performance properties. The set of performance
properties is P ={py,py ...,Pm}, Where P CSS. Each performance property
pj,J = 1,m contains time constraints in the form of a maximum acceptable delay for pairs of
messages of particular types as specified in the proposed method (the subsection 2.3). Each property
pj,j = 1,m such that p; € P is checked by the proposed method using db-nets. Other properties
s;,i = 1,n such that s; € S\ P are checked by other methods utilizing colored Petri nets and db-
nets.

As a result, performance analysis can be conducted as a part of conformance checking of a system,
where performance properties are among of all checked properties. This allows to abstract away
from the performance properties and check all properties simultaneously.

2.3 Method of Performance Analysis Using DB-Nets

The developed method implies analyzing messages sent or received by the application or its modeled
part (request and response messages, respectively) and stored in a log of the application. We analyze

113

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

those messages for which a maximum delay between sent message and received response is
restricted. The method utilizes the db-net formalism.

The method consists of two parts: (1) set of requirements for implementing the method in a software
tool and (2) sequence of stages and steps for using the method after being implemented.

2.3.1 Implementing the Method in a Software Tool

The following set of requirements specifies how the method of performance analysis using db-nets
is to be implemented as a software tool. These requirements extend general principles of the db-net
behavior, which are described in [5].

1) When a request message is inserted in an action assigned to a db-net transition, it should be
stored in the memory (RAM or persistent storage) for further retrieving when the corresponding
response message is retrieved.

2) When a response message is retrieved by a "select" query assigned to a db-net view place and
the connected by a read arc db-net transition contains parameters for performance analysis as
specified in the step 6 of the stage 1 of the method (the Section 2.3.2), the following sequence
of steps is to be executed:

a) The corresponding request message (with the same id attribute value) is to be retrieved
through the specified query from the memory/storage (as specified in the item 1 of the
current set of requirements).

b) Ifthere is no stored corresponding request message, then this sequence is to be stopped and
the token with the response message is to be moved to the places connected by output arcs.

¢) The sending timestamps of the request and response messages are to be parsed using a
specified pattern or a regular expression.

d) A delay that is a difference (in milliseconds) between these two sending timestamps is to be
calculated. If it exceeds the specified maximum acceptable value of a delay, then the
validation is to be considered as failed — information about the id and message type of the
problematic messages is to be displayed or stored in the report (depending on the
requirements and implementation), for the first violation or for each violation (also
depending on the requirements and implementation).

3) Ifthere are several response messages for one request message, only the first response message
is considered.

4) If the simulation is finished (no transitions can be fired — executed) and the validation did not
fail, then such validation is considered as succeeded.

2.3.2 Use of the Method

After implementing the software tool, the method is to be used by following the sequence of steps

divided into three stages, as follows.

Stage 1. Modeling a DB-Net. A db-net that matches a system/a modeled part of a system is to be

modeled using the following steps.

1) A scope of the modeled system is to be defined. It should include considered components of the
system which send request messages (messages sent by the system or its considered component)
and get responses to them (response messages), and considered types of request messages and
corresponding types of response messages. From now on, we will call a modeled system/part
of the system a time-critical application (or just an application).

2) It is necessary to make sure that the application works as a transactional system and satisfies
the ACID (atomicity, consistency, isolation, durability) properties [10], and a log with its
request and response messages can be represented in the form of tables in a relational database.
It means that each message includes a set of tags (attributes) together with their values. Tags
are represented as attributes of a relational table, messages are represented as records of the

114

Purun A.M., lllepmaxos C.A. MeTos aHaian3a NPOU3BOANTEILHOCTH KPUTHYHBIX [0 BPEMEHH NpPHIIokKeHHit ¢ momosio DB-Nets. Tpyos
HCII PAH, Tom 33, Bbim. 3, 2021 1., cTp. 109-122.

table, and values are represented as attributes of a record in the table. Types of messages and

parts of the application which do not satisfy these properties, if any, are to be removed from the

scope.

3) A persistence layer of the modeled db-net is to be defined. To do this, a relational database
schema is to be created and populated with necessary tables. The table attributes reflect the tags
of considered request and response messages.

4) A data logic layer of the modeled db-net is to be defined. The «insert» queries, which model
insertion of the request messages into the modeled relational database, are to be specified. The
«select» queries, which model retrieving the request and response messages from the modeled
relational database, should similarly be specified.

5) A model of a system control flow (a control layer of the modeled db-net) is to be defined. After
that, «insert» and «select» queries from the modeled data logic layer are assigned to transitions
and view places, respectively.

6) For each db-net transition connected by a read arc with a view place that is assigned with a
«selecty query for retrieving the response messages, the following parameters for conducting a
performance analysis are to be specified:

a) The name of a variable in the control layer that stores a value of the id attribute of a response
message, which allows to find a corresponding request message by the same value of the
same id attribute.

b) The name of a variable in the control layer that stores a value of the sending timestamp
attribute of a response message.

¢) An ordering number of the sending timestamp attribute of a message in results of a "select"
query for retrieving the corresponding request message, that is mentioned in the item “f” of
the current list.

d) A pattern or a regular expression for parsing the sending timestamp string in a message.

e) An ordering number of the message type attribute of a message in results of a "select" query
for retrieving the corresponding request message, that is mentioned in the item “f” of the
current list.

f) The name of a declared "select" query for retrieving the corresponding request message.

g) The maximum acceptable value of a delay between sending timestamps of corresponding
request and response messages (in milliseconds).

Stage 2. Preprocessing the Log. Preparing a log of the application includes the following steps.

1) It is necessary to make sure that the messages in a log are represented in a form satisfying
properties described in the step 2 of the stage 1. Any messages that are not represented in a valid
form as well as broken messages are to be removed.

2) The log should be prepared in a format compatible with a software tool implementing the
method.

Stage 3. Conducting a Performance Analysis Using DB-Nets. A simulation of the modeled db-

net is to be run in the software tool implementing the method.

2.4 Example of Performance Analysis Using DB-Nets for the FIX Protocol

The developed method is illustrated by an example modeling a trading order creation with use of
the FIX protocol. The example includes the analysis of two types of FIX messages: (1)
create_order_single (msg_type = “D”) which is used for request messages sent from a trader or a
broker to the exchange, to create an order for buying or selling securities, and (2) execution_report
(msg_type = “8”) which is used for response messages sent from the exchange to the trader or the
broker as a confirmation of the order creation (or information about the order rejection with
clarification of a reason). For each message, the attributes msg type, cl_ord id and sending time
are considered in the model. The msg type attribute defines a type of the message. The

115

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

corresponding request/response messages are connected by a key (id), whose role is played by the
cl_ord_id attribute. The sending_time attribute is a sending timestamp of the message.

The db-net modeling this example is shown in Fig. 3. A schema of a relational database in the db-
net persistence layer includes a msg relational table for storing FIX messages. The table contains
msg_type, cl ord id and sending time attributes. The create order single action models the
“insert” DML query for insertion of the msg type, cl_ord _id and sending time attributes of the
create_order_single FIX message. The create order_single and execution _report queries model the
“select” SQL query for retrieving the same attributes of the create order single and
execution_report FIX messages, respectively. The create_order single corr _req query models the
“select” SQL query for retrieving the same attributes of the create order single FIX message by
the given ¢/ ord id. It is used for retrieving the corresponding request message for a previously
retrieved response message.

schema = { CREATE TABLE IF NOT EXISTS msg (msg_type TEXT NOT NULL, cl_ord_id TEXT NOT NULL
sending_time TEXT NOT NULL, PRIMARY KEY (msg_type, ¢i_ord_id)),)
i sending_time >

M msg WHERE msg_type ="D";)
50 WHERE msg_t)
me FROM msg

sending_time

Processed
messages

c_ord_id
sending_time

msg_type
2 ¢l_ord_id
_analysis { sending_time

performan
Query execubion_report

request_message_query = “create_
max_delay = 100

Fig. 3. Example of a db-net model for a performance analysis of a FIX protocol-based system.

The view place assigned with create order single query (fig. 3) is responsible for retrieving
messages of create_order single type. The following transition executes the create_order single
action, modeling insertion of the messages into the msg table. Then the transition transfers the
messages to the Processed messages place.

The view place assigned with execution_report query (fig. 3) is responsible for retrieving messages
of execution_report type. After retrieving an execution_report message, the following transition
retrieves the corresponding create order single message (with msg type = “D” and the same
cl_ord _id) using the create_order single corr req query and calculates a delay between these two
messages as a difference between their sending timestamps (the sending time attribute). If the
calculated delay exceeds max delay (it is 100 ms in the example), then the validation fails.
Otherwise, the execution_report message is transferred to the Processed messages place. After all
messages are retrieved from the log, and validation did not fail, the validation of the log is considered
succeeded.

116

Purun A.M., lllepmakos C.A. MeTos anaiu3a Npou3BOMTENLHOCTH KPUTHYHBIX MO BPEMEHH NPHIOKeHUH ¢ momomnibio DB-Nets. Tpyost
HCIT PAH, Tom 33, Bbim. 3, 2021 1., cTp. 109-122.

We consider two following FIX messages (these messages are presented below in the human-
readable form, not in the original FIX tag-value form): (1) create_order_single (msg_type = “D”,
cl ord id = “12345”, sending time = “20190218-02:14:45.490000”) and (2) execution_report
(msg _type = “87, ¢l ord id = “12345", sending time = “20190218-02:14:45.492787"). Firstly,
the create order single message is retrieved by the view place assigned with the
create_order_single query. The following transition performs the create_order_single action with
the “insert” DML query for this message and transfers the message to the Processed messages place.
Secondly, the execution_report message is retrieved by the view place assigned with the
execution_report query. By the ¢l _ord id = “12345” attribute value of the message, the following
transition retrieves the corresponding create order single message (with msg type = “D” and the
same c¢/_ord_id = “12345"”) using the create order single corr_req query and calculates a delay
between these two messages as a difference between their sending timestamps (the sending time
attribute). This delay equals 3 ms (rounding up). A maximum acceptable delay linked with the
transition is defined to 100 ms. The delay does not exceed the maximum acceptable delay, so the
validation does not fail, and the execution_report message is transferred to the Processed messages
place. However, if the sending time attribute value of the execution _report message was, for
example, “20190218-02:14:45.592787 ", then the delay would be equal to 103 ms (rounding up)
and the maximum acceptable delay would be exceeded which would lead the validation to fail.

3. Software Prototype

3.1 Software Prototype Features and Implementation

For testing and illustrating abilities of the method, the latter is implemented in the form of a software
prototype. For doing this, we developed the db-net software simulator (Renew DB-Nets Plugin) in
2020 [4] and then extended it with features for conducting a performance analysis of time-critical
applications using the proposed method. The simulator has a form of a plugin for Renew software
tool which is a Java-based reference net simulator [6]. The simulator has a graphical user interface
as shown in the screenshot in fig. 4.

xeowe - o x|

L2 o e i S b M P Tl LTI —— —

// Y N
f \ I A
| e e s |] e | |
|) el S S —— oo o et
@Y : ey
= e T
|
tit— e — \ |
3 A -
/'_ \ Y y \\
1 = { \
s i | 1 " b e
\ Y 9 y
= \\\.__ _ 4

Fig. 4. Screenshot of a graphical user interface of the developed software prototype.

The prototype allows to (1) model a db-net for a considered system, (2) specify parameters for
conducting a performance analysis of time-critical applications, as described in the step 6 of the
stage 1 of the described method (the Section 2.3.2), (3) conduct a performance analysis of an

117

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

application in parallel with a db-net model simulation using the proposed method and (4) work with
a FIX log (raw binary data of the FIX protocol packages captured as a Wireshark PCAP file [11]
with further filtering) through a relational DML interface.

An implementation of the developed db-net simulator is described in [4]. This implementation is
based on an implementation of Renew software tool, a reference Petri net simulator. The Renew
code which was suitable for the db-net behavior is reused. Other code is overridden by a custom db-
net implementation. Classes representing elements of the db-net control layer are inherited from
Renew classes representing similar elements of traditional colored Petri nets and necessary methods
are overridden. The prototype is implemented as a pure plugin for Renew tool, without modifying
existing Renew source code [4]. The plugin code, UML class diagram and documentation are
available in the project GitHub repository’.

For working with a FIX log through a relational DML interface, the alternative implementation of
the database connection interface is created. It is used if the JDBC URL in a db-net model starts
from the “fixpcap:” prefix. All messages that are read from file through this connection are stored
in RAM (in the java.util. HashMap container, where keys, which are pairs of message type and id,
are stored in a hashtable). When the message is being retrieved through this connection, it is firstly
searched in RAM. If it is found in RAM, it is returned and removed from RAM. If it is not found in
RAM, then the file is scanned until finding this message (and all scanned messages are stored in
RAM). This approach allows to scan each line of the file only once and to minimize the RAM usage.
For goals of a performance analysis, the prototype follows the set of requirements described in the
subsection 2.3.1. When the first maximum acceptable delay violation is detected while simulating a
db-net model, the dialog window with an information message describing this violation is shown
and the corresponding CSV report is created. All maximum acceptable delay violations that are
detected during the current simulation are written into the created CSV report. The format of a CSV
report is presented in Table. 1.

Table. 1. Columns of the CSV Report

Column Name Description Type Example
Order number of the row in
the CSV report (starting from | Integer 1
D
Reque;t Message Type of the request message String D?
ype
Message ID ID of the request anq response | ¢ tring 15504
message pair
Difference (in milliseconds)
Delay between request and response | Integer 493
message sending timestamps
Max Delay Maximum acceptable delay Integer 100
Difference between detected
Diff delay and maximum Integer 393
acceptable delay

! Link: https:/github.com/Glost/db_nets_renew_plugin
2 In the FIX Protocol, the D message type is used for the New Order Single messages.

118

Purun A.M., lllepmakos C.A. MeTos anaiu3a Npou3BOMTENLHOCTH KPUTHYHBIX MO BPEMEHH NPHIOKeHUH ¢ momomnibio DB-Nets. Tpyost
HCIT PAH, Tom 33, Bbim. 3, 2021 1., cTp. 109-122.

3.2 Testing the Prototype on the FIX Log and Quantitative Analysis of
Maximum Acceptable Delay Violations

The developed software prototype is tested on a log with FIX protocol messages, which is
represented by the raw binary data extracted from a Wireshark PCAP file with some FIX protocol
messages captured in the testing environment. The file is provided by a software developer of testing
solutions for one of the global stock exchanges.

The screenshot in fig. 4 shows the db-net model for performance analysis applied to the FIX protocol
messages for the New Order Single scenario (request message: New Order Single, message type:
"D"; response message: Execution Report, message type: "8") and the Order Mass Cancel Request
scenario (request message: Order Mass Cancel Request, message type: "gq"; response message:
Order Mass Cancel Report, message type: "r"). The total number of processed messages in this
model equals 321671.

Mas delsy volatont

Fig. 5. Quantitative analysis of maximum acceptable delay violations for maximum acceptable delay values
Sfrom 1000 ms to 9000 ms.

Max delyy violstions count for mar delays from 3100 to 390K Man delay volatans count percentspe for mas delayt from 1100 to 19C

P repardt waviap trpw T .
Por el wavage trpe Y Por gt meage Trie §
" e

Fig. 6. Quantitative analysis of maximum acceptable delay violations for maximum acceptable delay values
from 3100 ms to 3900 ms.

119

Rigin A.M., Shershakov S.A. Method of Performance Analysis of Time-Critical Applications Using DB-Nets. Trudy ISP RAN/Proc. ISP
RAS, vol. 33, issue 3, 2021, pp. 109-122.

Using this model, the quantitative analysis of maximum acceptable delay violations is conducted
based on the CSV reports with information about violations. The plots in Fig. 5 show (1) counts of
maximum acceptable delay violations and (2) percentages (ratios) of message pairs with maximum
acceptable delay violations (where 100 % is all processed message pairs), in the db-net model
described above, with a breakdown to the request message types (D" is used for the New Order
Single messages and "g" is used for the Order Mass Cancel Request messages) for maximum
acceptable delay values from 1000 ms to 9000 ms.

The significant decrease in count of violations between maximum acceptable delay values 3000 ms
and 4000 ms is notable. The plots in Fig. 6 show the same metrics for maximum acceptable delay
values from 3100 ms to 3900 ms. We can conclude that the most of delays larger than 1 second are
between 3 and 4 seconds.

Such quantitative analysis is an example of possible applications of the developed method. For
instance, requirements and service level agreements (SLAs) can be specified and adjusted basing on
some statistics on ratio of message pairs violating each maximum acceptable delay. This information
with a breakdown to the request message types allows to focus on improving the speed of the most
critical scenarios.

4. Conclusion

In the current work, a novel method of performance analysis of time-critical applications based on
the db-net formalism is developed. This method allows to integrate performance analysis into
conformance checking of a system. Therefore, it allows to abstract away from performance and to
combine performance analysis of transactional systems with other methods for their verification and
validation, based on Petri nets and their modifications, especially db-nets (e.g., checking safety,
liveness, fairness, and similar properties). Colored Petri net models, that are automatically generated
from event logs using process discovery algorithms, may be extended with db-net elements and time
constraints, and used for performance analysis. Moreover, the method allows to apply well-known
approaches used in the relational database domain to a wide set of transactional systems supporting
time-critical applications.

A software prototype implementing the method is developed. The prototype is checked on a test log
with FIX messages provided by a software developer of testing solutions for one of the global stock
exchanges. A quantitative analysis of maximum acceptable delay violations is conducted based on
this log. This demonstrates how the method can be applied for similar analysis.

The developed method can be used in research in this domain as well as in testing performance of
real time-critical software systems. Further steps include extending the method for use with
hierarchical Petri nets and more complex variants of performance analysis of transactional systems.
Approbation of the method for integrating performance analysis into conformance checking of a real
software system is planned.

The developed software prototype is to be improved for being more usable. This will make the
prototype a new software tool in the pool of open-source solutions for conformance checking and
performance analysis.

References

[1]. Harris L. Back Office Operations. Trading and Exchanges: Market Microstructure for PractitionersOxford
Univyversity Press, 2003, chapter 7, section 7.2.2, pp. 148-149.

[2]. Introduction, FIX Trading Community, Available at: https:/www.fixtrading.org/online-
specification/introduction/, accessed 28.03.2021.

[3]. FIX TagValue Encoding, FIX Trading Community, Available at:
https://www.fixtrading.org/standards/tagvalue-online/, accessed 28.03.2021.

[4]. Rigin A., Shershakov S. Data and Reference Semantic-Based Simulator of DB-Nets with the Use of
Renew Tool. Lecture Notes in Computer Science, vol. 12602, 2021, pp. 453-465, DOI: 10.1007/978-3-
030-72610-2_34.

Purun AM., lllepmakos C.A. MeTos aHajiu3a Npou3BOMTENLHOCTH KPUTHYHBIX MO BPEMEHH NPHIOkKeHUH ¢ momomibio DB-Nets. Tpyost
HCII PAH, Tom 33, Bbim. 3, 2021 1., cTp. 109-122.

[5]. Montali M., Rivkin A. DB-Nets: On the Marriage of Colored Petri Nets and Relational Databases. Lecture
Notes in Computer Science, vol. 10470, 2017, pp. 91-118.
[6]. Renew — The Reference Net Workshop. Renew.de, Available at: http://www.renew.de/, accessed
28.03.2021.
[7]. Vetter J. Performance analysis of distributed applications using automatic classification of communication
inefficiencies. In Proc. of the 14th international conference on Supercomputing (ICS '00), 2000, pp. 245-
254.
[8]. Marsan M. A., Bianco A. et al. A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking, vol. 2, no. 2, 1994, pp. 151-165.
[9]. van der Aalst W., Adriansyah A., van Dongen B. Replaying history on process models for conformance
checking and performance analysis. WIREs Data Mining and Knowledge Discovery, vol. 2, no. 2, 2012,
pp. 182-192.
[10]. Haerder T., Reuter A. Principles of transaction-oriented database recovery. ACM Computing Surveys,
vol. 15, no. 4, 1983, pp. 287-317.
[11]. 5.2 Open Capture Files, Wireshark.org, Available at:
https://www.wireshark.org/docs/wsug_html chunked/ChIOOpenSection.html, accessed 28.03.2021.

UHgpopmayus 06 aemopax / Information about authors

AnTtoH Muxaitnosud PUI'MH nony4un cTeneHb Maructpa B 00J1aCTU CUCTEMHOU U IPOrpaMMHON
umwxkeHepuu B 2021 r. B HanuoHanbHOM HCClleIOBaTENbCKOM yHUBepcuTeTe «Bpicmias mikona
skoHOMUKW» (Mocksa, Poccus). Ero uccnenoBaTenbckue HHTEPECH BKIOYAIOT IPOrPaMMHYIO
WHKEHEPHI0, N3BJIEIEHNE N aHAIN3 TPOILECCOB (process mining), BepHGHUKALIIO TPOrPaMMHOTO
o0ecIiedeH s, aNTOPUTMBI M CTPYKTYPHI JaHHBIX M UX NPUMEHEHHE B 3a/[a9aX HHAEKCHPOBAHUS H
XpaHEHHs TaHHBIX B CHCTEMaxX yIpaBIeHHs 0a3aMH JaHHEIX.

Anton Mikhailovich RIGIN received his master’s degree in System and Software Engineering from
the National Research University Higher School of Economics (Moscow, Russia) in 2021. His
research interests include software engineering, process mining, software verification, algorithms
and data structures and their usage in problems of data indexing and storage in database management
systems.

Cepreit Aunnpeesuu IIIEPHIAKOB momyumn creneHb KaHAWAaTa KOMIIBIOTEPHBIX —HayK
HanmoHansHOTo WMCCIIeIOBATENBCKOTO YHHBepcHTeTa «Bpicimas mmikoida 3KOHOMHUKH» (Mockea,
Poccus) B 2020 rony. B HacTosIMii MOMEHT OH SIBIISIETCS JIOLIEHTOM JenapTaMeHTa OOoJIbIIUX
JTAHHBIX ¥ WH()OPMAIMOHHOTO TIOMCKA U HAYYHBIM COTPYAHHKOM HAay4HO-y4eOHOU JlabopaTopuu
MPOLIECCHO-OPUEHTHPOBAHHBIX HH(popMaoHHbIX cucteM (Jlaboparopun ITOUC) dakynsrera
KOMITHIOTEPHBIX HayK BpIcIIeidl MKOIBI SKOHOMHKH. B 4YHCIO HaydHBIX HHTEPECOB BXOIAT
M3BJICYCHUE M aHAJIU3 MPOIIECCOB (process mining), BepupHUKaLUs MPOrpaMMHOTO 00ecIieueHHs,
APXUTEKTYPHI HHPOPMALIOHHBIX CHCTEM H IPETIOJaBaHNe IPOrPAMMHON HHXKESHEPHH.

Sergey Andreevich SHERSHAKOV received his PhD degree in Computer Science from the
National Research University Higher School of Economics (Moscow, Russia) in 2020. He is
currently an Associate Professor at the Big Data and Information Retrieval School and a research
fellow at the Laboratory of Process-Aware Information Systems (PAIS Lab) of the Faculty of
Computer Science at the HSE University. His research interests include process mining, software
verification, information system architectures and teaching software engineering.

121

