
 , 33, . 3, 2021 . // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021

-
IRCLA/2017/32 to Dr. Ciara Breathnach (Department of History DH), in cooperation with Prof. Tiziana
Margaria (Software Systems, Dept of Computer Science and Information Systems CSIS) at the University of
Limerick.

123

DOI: 10.15514/ISPRAS-2021-33(3)-10

Historical Civil Registration Record Transcription
Using an eXtreme Model Driven Approach

1 R. Khan, ORCID: 0000-0001-9006-6748 <Rafflesia.Khan@ul.ieg>
1A. Schieweck, ORCID: 0000-0002-5008-9168 <Alexander.Schieweck@ul.ieg>
1,2 C. Breathnach, ORCID: 0000-0002-4065-0660 <Ciara.Breathnach@ul.ieg>

1,2 T. Margaria, ORCID: 0000-0002-5547-9739 <Tiziana.Margaria@ul.ieg >
1 University of Limerick,

Limerick, V94 T9PX, Ireland
2 Lero: The Irish Software Research Centre

Tierney Building, University of Limerick, Ireland

Abstract. Modelling is considered as a universal approach to define and simplify real-world applications
through appropriate abstraction. Model-driven system engineering identifies and integrates appropriate
concepts, techniques, and tools which provide important artefacts for interdisciplinary activities. In this paper,
we show how we used a model-driven approach to design and improve a Digital Humanities dynamic web
application within an interdisciplinary project that enables history students and volunteers of history
associations to transcribe a large corpus of image-based data from the General Register Office (GRO) records.
Our model-driven approach generates the software application from data, workflow and GUI abstract models,
ready for deployment.

Keywords: Software and System Engineering; Model-Driven Development; Web Application; Historical Civil
Record; Digital Humanities; XMDD; DIME

For citation: Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record
Transcription Using an eXtreme Model Driven Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3,
2021, pp. 123-142. DOI: 10.15514/ISPRAS-2021-33(3)-10

Acknowledgments. We are grateful for the full cooperation of the Registrar General of Ireland for permission
to use these data for research purposes. This research is funded by the Irish Research Council Laureate Award
2017/32 and by Science Foundation Ireland through the grants 13/RC/2094 to Lero - the Irish Software
Research Centre (www.lero.ie).

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

124

-

1 . , ORCID: 0000-0001-9006-6748 <Rafflesia.Khan@ul.ieg>
1 . , ORCID: 0000-0002-5008-9168 <Alexander.Schieweck@ul.ieg>
1,2 . , ORCID: 0000-0002-4065-0660 <Ciara.Breathnach@ul.ieg>

1,2 . , ORCID: 0000-0002-5547-9739 <Tiziana.Margaria@ul.ieg >
1

, V94 T9PX,
2

.

-

-

: - -

XMDD; DIME

: ,
- .

123-142 DOI: 10.15514/ISPRAS
2021 33(3) 10.

94,
Lero

(www.lero.ie).

1. Introduction
Historical data concerning individual life events, combined with wider socio-economic records
provide excellent sources for analysis and reflection. Accordingly, the digitalisation of corpora of
historical data concerning various aspects of the life and activities of individuals and communities
is an essential precondition for the ease of analysis, for example using modern data analytics and AI
techniques. The Digital Humanities Manifesto 2.0 (DH) [1] presents DH as a discipline which
studies the intersection of the disciplines of computing and humanities. DH currently combines
methods, tools, and technologies provided by the computing sciences (such as data visualization,
information retrieval, text mining etc.) with the perspectives and methodologies stemming from the
humanities disciplines (such as history, trend analysis etc).
One of the increasingly popular means of using digitally available data foots on the concept of a
Digital Twin (DT) [2]. A Digital Twin is a virtual and abstract model of a physical entity (an engine,
a patient, a student, a plant or a city) that serves as the enabler means for simulation, analysis,
prediction, and real-time analysis of the system it represents. It has gained enormous relevance and
popularity in recent years as it provides a handy virtual model of a physical process or service. In

- . 123-142.

125

the Industry 4.0 context, it often leverages technologies such as the Internet of Things (IoT),
Artificial Intelligence (AI), Cyber-Physical Systems (CPS) and Big Data for digitization. By
definition, digital twins refer to a «live» model that continuously updates and changes as its physical
counterpart changes [3]. In the Humanities, the DT concept unfold a massive potential to transform
the landscape of how DH methods can assist in the representation, analysis and understanding of
our past, which in turn can provide useful learnings for the present and future. It promises a
tremendous innovation potential, and most of the current research on digital twins is focusing on
specific implementations for concrete use cases and the generalization towards reusable abstract
models [4]. Developing a mirror of a traditional Digital Humanities record system through the digital
twin lens is time-consuming, complicated and requires deep interdisciplinary knowledge in the
humanities domain and model creation and software development. Too often, this induces a
knowledge gap, giving rise to fundamental research questions on how to connect the two disciplines
in such a way that a «lingua franca» can bridge the concepts and the means of expression and
analysis of both disciplines.
We use a specific kind of Model-Driven Design, called XMDD for (eXtreme Model-Driven Design)
[5] to bridge this gap. Model-Driven Development (MDD) specifically focuses on supporting the
collaborative (software) development process by using abstract representations of data and
processes. Using these models, we combine computing knowledge with the formal descriptions of

 way succeed in reducing complexity and improve productivity,
as described by [6].
To reduce the discipline-specific knowledge gap between humanities and technology, the project
«DBDIrl1 - Death and Burial Data: Ireland 1864-1922» [7] adopts a data-driven public-history and
digital-humanities research methodology which uses advanced MDD for application development.
DBDIrl is an interdisciplinary project that combines historians' understanding of Big old data with
computer analysts' tools and methodologies. Its objective is to build an extensible and reusable Big
Data interoperability and analysis framework that supports flexible Big Data integration between
different historical data sources and provides a web-based platform for the analysis of its underlying
corpora. The corpora stem from various sources of national records, like the civil registration records
of the General Register Office, the individual level census returns of 1901 and 1911, and various
coroner's court records within the period 1864 to 1922, i.e., from the introduction of civil registration
records in 1864 to 1922, when the Irish Free State was established. This Digital Humanities platform
needs to be robust and easily evolvable, able to integrate different data and interpreted terms, able
to manage and analyze various data representations and enrichments, all in a transparent and FAIR
(i.e., Findability, Accessibility, Interoperability, and Reuse of digital assets) [8] data context.
This paper focuses on developing an efficient and flexible data access mechanism to make the
heterogeneous sources of historical data available to a wider range of researchers through adequate
user interfaces.
DBDIrl applies the eXtreme Model-Driven Approach for complete design, development and
execution of a Big Data interoperability framework. The first component of that framework is a Web
application that supports efficient and correct data entry. We refer to it as the Historian DIME app
or Historian app in short, and it is completely developed following a model-driven approach.
Key contributions of this work are:
 A model-driven Web application for input and storage of Irish Civil Registration data,

specifically death registration data, from 1864 to1922, introducing a database for subsequent
digital data analysis.

 Producing a systematic and clean data source for (relevant subsets of) the death records. Massive
information regarding the death records was previously collected as images of the original
registers stored as TIFF files, plus an excel index summary. The page-by-page images of the

1 https://www.dbdirl.com/

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

126

handwritten records were digital, but it was impossible to analyze them. The database of
systematic and clean data can now be processed for further research, concerning the discovery
of information, its evolution, trends over time, and finding insightful patterns about individuals
and families.

 Illustrating the impact of the MDD approach on the adaptation and evolution of the Historian
App, from its first version to the current one, including the re-usability of components and the
refinement of its organization, to support increasing levels of error prevention and embedded
error checking. It is essential if we want to gradually build a platform, where such applications
and data analytics applications can be quickly and correctly assembled from a service-oriented
Domain Specific Language that covers the functionalities and the data occurring in a history
research context.

 Showcasing the use of DIME [9], a specific low-code application design framework, where
stakeholders can develop their specific application without any coding knowledge.

To our knowledge, this is the first attempt to work with Historians as customers using a model-
driven approach.
The paper is organized as follows: Section 2 presents the project background and motivation. Section
3 describes related work in the fields of MDD and Big data analysis. Section 4 discusses the co-
development methodology and its life-cycle along with an explanation of the abstract architecture
and workflow of the proposed XMDD based application. Section 5 illustrates the model types of the
XMDD technology and the concrete design of the Historian App. Section 6 describes some major
challenges with corresponding proposed solutions. Finally, Section 7 concludes the paper and
highlights some future work.

2. DBDIrl Project Background
The General Register Office (GRO) is responsible for recording Irish civil information of birth,
marriage and death. In 2016 it placed historical data online for free on irishgenealogy.ie. To initiate
a search at the site, some basic personal information is required, but it has limited functionalities.
This site holds civil data sets regarding individuals, but for the fundamental objectives of DBDIrl, a
centralized data storage containing complete and correct data is needed for future research and
exploration.

Fig. 1: Death record of Irish civil registration: the GRO original register page (TIFF file available at

irishgenealogy.ie) with properties highlighted

- . 123-142.

127

As the primary data, DBDIrl uses the Death Registration Data (DRD) from 1864 to 1922 directly
shared by from the GRO. We received approximately 4.3 million individual Civil Register records
of death registration in two different formats. Over 1 TB were images produced through high-
resolution scans of the original register pages and provided as .TIFF files. We also received .csv
files with group id, name, age, superintendent's district and .TIFF file path of all individual death
records. Fig. 1 shows a page from the death register. Each scan captures a full register page,
including up to 10 individual records, each recording an individual death.
In the absence of complete metadata and a fully digital version of the image's contents, the .TIFF
file is de facto just a picture, i.e., an unstructured analog image of the page, and useless for the
purpose of automatic analysis of the contained information. A human eye sees easily that every
record has 11 index properties (identified and numbered in fig. [1] describing the death event and
its circumstances. This set of complex properties collectively represents the individual's death event
along with its essential information. Their complete digitization, meaning the transformation of the
TIFF images into a curated repository of clean and faithful data that is fully automatically searchable
and analyzable, is the aim of the current phase of DBDIrl.
For essential quality guarantee, the historical digital data collection must maintain with certainty the
overall integrity of the original historical data. Additionally, the technology needs to enable domain
experts, like historians and archivists, to handle the maintenance of the data collection and the
evolution of the applications. These experts are mostly not programmers, and most certainly not
experienced in all of web development, databases, software architectures, UI design and
development, privacy and security, testing and deployment. So we adopted a programming-less low
code approach based on an Integrated Modelling Environment (IME) that subsumes most of these
characteristics in the development platform of choice.
The goal consists of three main tasks:
 transform the TIFF files into a digital curated repository;
 achieve this transformation in a low-code environment that is easily maintainable and evolvable,

effectively building a new generation data entry, storage and management platform for digital
humanities;

 make historical data from heterogeneous sources available to a wider range of researchers
through adequate user interfaces and easy-to-use analysis tools.

Currently we are working on tasks 1 and 2.

2.1 Automated Digitization Attempt

DBDIrl started with attempts to transcribe the .TIFF files to an operable, structured data format. A
widespread approach would use OCR or Natural Language Processing (NLP) tools to extract the
text from each .TIFF file. While the state of the art tools work quite well for printed texts, they
severely failed in our case. In fact well-known language processing tools could not produce any
useful results. There are many reasons for this failure: (1) death records are handwritten texts, which
is a difficult problem; (2) they were written by different registrars and their superintendents, with
considerable variation of handwriting pattern; (3) tools have difficulty handling the data variety, (4)
for some writers the corpus of records is very small and insufficient for a good training set; (5) very
few existing tools extract the text as individual properties, thus even in case of success a significant
manual post-processing would be needed; (6) accurate text extraction needs a well-trained model
with a huge and precisely labelled data sets for training, which is not available here; (7) there should
be reliable methods to combine all the individual property texts into correct death record entries,
which is difficult when most properties are not correctly recognized; and (8) there is a scalability
issue when uploading millions of records into a server.

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

128

2.2 Supported Digitization
As a consequence, we abandoned an automated recognition approach for the time being, in favour
of a manual, but highly assisted and supported data enrichment through a web based application. In
this sense, the first and second task now align much more closely: We have now an XMDD based
web application for the historians' data entry, where application developers and historians work side
by side in application design and development within a model-driven, low-code environment. This
application development approach helps the historians to further develop and maintain their own
application at the model level, without the need of any programming knowledge.

3. Related Work
Since the emergence of UML and its predecessors, several MDD approaches have been proposed in
the literature to address the generation of code from models representing various aspects of the
system [10], including for telecommunications [11], web and client applications [12-15]. MDD
techniques are mainly used for decreasing the effort needed for application development and
maintenance and increase the portability to new platforms. The eXtreme Model-Driven
Development (XMDD) [5] approach is a low-code approach that combines several software designs
and programming paradigms such as agility, model-driven development, service orientation,
domain-specific languages, data management, data flow and control flow design, Formal models
and methods, generative programming, eXtreme programming, aspect orientation and full code
generation [5], [16]. According to [17],

«Models allow sharing a common vision and knowledge among technical and non-technical
stakeholders, facilitating and promoting the communication among them.»

In terms of specific MDD approaches and applications, [18] proposed automated extraction,
analysis, and visualization of data and metrics on model-driven artifacts. In cyber-physical systems,
[19], and [20] demonstrate the use of MDD in robotics. [21] proposed a DSL for service
customization for telecommunications sytems. [22] proposed a Domain-Specific Modelling
Language for smart home applications with two transformation templates that generate code from
instances of SmartHomeML for SmartThings and Alexa. They designed the transformation using an
MDD approach in a platform-specific model-to-code implementation artefact.
In e-learning, [23] propose a course management system that stores a course model as machine-
readable components that generates a final course in different platform-specific target models.
In web applications, modern Single-Page Applications (SPA) use MDE to connect between client
and server of a web application, and [24] present a model-driven approach for the consumption of
RESTful Web services in SPA.
Ref [25] defines a Machine Learning based MDE approach that analyzes Big Data for probabilistic
modelling by defining a domain-specific modelling language. In Big Data, [26] introduced SkyViz,
a model-driven approach for automating the translation of user objectives to visualize the Big Data
Analytics' results into a set of most suitable and concrete visualizations. [27] proposed a design
method to specify, deploy, and monitor Big Data Analytics solutions using MDD.
While all this shows that MDD is applied in a variety of relevant areas for the DBDIrl project, as
per our study there are no MDD based context-aware web applications that work with real-world
big data archiving, management and analysis.

4. The Historian App as a MDD Application
The Historian App we developed and evolved in a number of iterations is the DBDIrl solution to
data entry, storage and management for the historical civil registration (i.e., death) data of Ireland
from 1864 to 1922. We adopt the eXtreme Model-Driven Development (XMDD) [28], which
provides a fast turnaround of easily modifiable prototypes understandable to the non-IT experts. In

- . 123-142.

129

this way, a more collaborative approach between domain experts (here the historians as central
stakeholders) and developers establishes itself along the entire project life cycle.
The agile model-based approach helps repeat the feedback and co-design cycles with the historians
in a continuous refinement process. In addition, using models also helped the developer team when
reflecting, presenting and explaining the work progress to the historians and the historians when
understanding and monitoring the development.
We chose the DIME Integrated Modelling Environment [9, 29], based on Domain-Specific Libraries
(DSLs), as the XMDD framework for our project. DIME provides reusable features, and
functionalities [20, 30] where developers can develop web applications within a low-code
environment without having any programming knowledge. DIME supports model types for
processes, services, data, and the UI that are integrated and kept consistent to a reasonable extent by
the platform. Many domain-specific libraries (DSLs) are already available, for example, for the GUI
design of the web applications. New services as well as entire new DSLs can be introduced in an
easy way. These characteristics help the IT specialists and the domain specialists to better understand
and monitor the development throughout the project life cycle on the basis of the domain knowledge.

4.1 he IME-based co-development lifecycle
The application development life cycle of the Historian App is illustrated in fig. 2.

Fig. 2: Collaborative development lifecycle in an IME: agile iterative phases, roles of Historians and
Computer Scientists (CS).

The project development life cycle involves in each phase both the computer scientists and
historians, in different roles. The historians become successively more skilled in dealing with the
models and application design. At project completion the historians may be able to modify and
evolve, or even design and implement, their own web applications on the basis of the existing
DSLs, without any coding knowledge.

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

130

4.1.1 Phase 1 Application Modelling

As illustrated in fig. 2, the project life cycle starts by collecting and collaboratively analyzing the
historians' requirements. They are materialized as abstract workflow models with the corresponding
(unique and coherent) data model. Data and processes go hand in hand in DIME, so they are typically
co-developed and co-evolved in an XMDD approach. In this phase, the historians used their expert
knowledge about handling historical data and the correctness of the data and the records. The
historians collected the data and analysed their characteristics. While historians were finalizing the
data properties that they need for their further analysis, the computer scientists started designing the
data models including entities, attributes and relations. Then the historians specified how they want
the data to be stored, explaining what is already there and usable, what else needs to be added, and
how. Next, the CS team designed the corresponding data and workflow models, expressing the high-
level application logic and the elementary operations required for application development.
Gathering this expert knowledge in terms of workflows and properties or conditions (on the
individual data item, the record, the workflows) corresponds to gathering the historian data entry
application's static and behavioral requirements. At this phase, the historians also validated the
models and helped in finalizing them.

Fig. 3. Create Entry process of Historian DIME app including all other processes that successfully stores a
death record with all its attributes and event listeners.

4.1.2 Phase 2 Model Completion and Compilation

The second phase includes all the XMDD: model refinement, followed by DSL extension and
implementation of new functionalities. Here the historians participated as stakeholders for detailed
questions, the CS team as fine granular designers and developers. The CS team extended the DSLs
where functionalities were missing, implemented them in a reusable, service-oriented way and
modelled the Web application GUI. A growing hierarchy of nested workflows structure the

- . 123-142.

131

application logic in behavioural features. For the business logic they acted as application
configurators on the basis of these models and services. We reuse existing DIME process models
such as RetrieveEnumLiteralSIB that gets a field status (illustrated in fig. 3) but also designed new
processes for further required operations such as GetPrePopulated to load in the application a
predefined set of data from a file. This phase also includes the models-to-code generation phase
from the collection of validated models, and the deployment on a standard web stack. It produces a
deployed, running application, that is further examined, updated, recompiled and redeployed.

4.1.3 Phase 3 Application Execution and Testing

In this phase, the Historians and other end users (like history students and volunteers in the
transcribathons for the data entry) test and use the application, as shown in fig. 4. Small adjustments
and optimizations may be carried out as a consequence of live testing. This is the validation and use
phase of the current version of the application. It includes live debugging, error handling and fixing,
as well as the definition of new features and changes for the next development phase.

Fig. 4: Model- Feature level

The whole cycle follows an agile software development procedure.

4.2 Modeling the Historian Web Application: The Full Workflow
We describe now the application workflow along with the explanation of the main processes and
GUI models developed for the application. The Model-Driven Development (MDD) of DBDIrl
starts with listing and developing process models, the data model and identifying user roles. Fig. 4
illustrates the feature-level abstract architecture of DBDIrl's data entry web application in terms of
Processes, GUIs, Actions and Event Handlers (as indicated by the respective stereotypes
<<Process>>, <<Action>> etc.) along with the connections among them.

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

132

The application homepage2 is a GUI model where users can login. Its action Login calls the process
IsSupervisorGuard, that checks the login credentials and establishes the user role: Supervisor or
Student.
In the Student role, a successful login directly links to the EntryTable page, a GUI model where the
student sees all the entries recorded by him/her. Action AddNewEntry leads the user to the
EntryForm page, a GUI model which calls the CreateEntry process shown in Fig. 3.
On the EntryForm page, users enter the data of all the records from the .TIFF file of the death record
register page, by filling up field by field the record's properties in the corresponding fields on the
web page.
CreateEntry is a big process: it receives the data entered by the user and to do so in an error-free
way it calls other processes that provide support functions. For example, it uses the
GetPrePopulation process for reading pre-populated data from a file, GetSuggestions to provide
pre-populated options in the Web form as drop-down menu for certain data attributes, CreateAddress
to create a new (complex) address object with the individual attributes city, county, district and
street.
Similarly, CreateTimeDuration creates a duration object from various time properties. The
GetPrePopulation process receives the group id of a death record provided by the user, and it reads
name, age, superintendent's district and .TIFF file path from the .csv files we received from the
GRO. It also auto-fills the corresponding fields of the EntryForm.
The GetSuggestions process reads large lists of pre-populated, validated values for a number of
properties. It displays those options as a drop-down menu in the form, to ease the input of attributes
like cause of death, registrar name, assistant name, rank profession and street names of Ireland from
1864 to 1922. These data collections are pre-validated, as the Historians collected them from 18's
Ireland records.
CreateEntry performs all the individual operations needed to successfully save an entry with all its
values entered by the user (either by hand or by selecting pre-populated fields), property by property.
Event listeners on CreateEntry process help check data validity and show alert messages in case of
a wrong entry (incorrect value or format).

Fig. 5. The Entry Table of the Historian App: Web page (Left) and its corresponding GUI model (Right)

2 The Historian App is available at https://civilreg.dbdirl.com/home, it is accessible to predefined, verified
users.

- . 123-142.

133

Finally, the action SaveEntry from the EntryForm successfully saves an entry and sends the user
back to the EntryTable, to process the next record.
Fig. 5 shows the entry table as it is displayed on the Historian App web page, with the corresponding
GUI model in DIME. We see here that the structure and look and feel are very recognizable. The
data flow is explicitly modelled, and we recognize buttons (like the CreateEntry button) and other
elements like fields filled from the database and status indicators that are color coded (orange, green
and blue).
From the EntryTable, selecting an entry leads the users to the EntryDetails GUI: there they can
(re)view the entered entry details and choose to edit the entry (this brings them back to the
EntryForm, filled with all the previously entered data), or submit the entry for review. The Entry
Delete option is only available to the Supervisor role, who can delete an entry from the database.
In the Supervisor role, a successful login directly links to the EntryTable GUI. The supervisor is

 entries and also has other options, like seeing all submitted and approved entries
individually. The Supervisors have a validation and approval function: they can see the details of all
the entries stored by Student users, and have actions to perform edits, approve, as well as remove
each entry.

Fig. 6: Entry table management process of Historian app, with flows for the Approve, Submit for Review,

Edit, Remove, Close entry operations

Fig. 6 shows the ShowEntry process, with flows for the Approve, Submit for Review, Edit, Remove,
Close entry operations. Selecting ManageUser leads the supervisor to a UserTable page that

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

134

includes the AllUser GUI (displaying all the users) and the AddNewUser action. AddNewUser calls
the UserForm GUI, containing all the fields required to creating an user.
Similar to CreateEntry, the CreateUser process performs all the operations necessary to create a
user. It also includes an event listener that alerts the supervisor in case wrong or ill-formatted
information is provided. After saving a user, the action EditUser calls the UserForm again with the
previously provided data to edit, while DeleteUser calls the RemoveUser process to delete the user.
Supervisor can also import and export data to and from the application. An event listener is used to
check issues regarding import/export operations, together with the processes ExportEntry and
ImportData that export and import data, respectively.
Altogether, Fig. 4 presents an overview of how the Historian App is organized, and shows the
interplay among all the Processes, GUIs, (GUI)Actions and Event Handlers.

5. Model Types and Concrete Models
We describe now the main model types, model elements and models of the Historian App.

Fig. 7: Data model of Irish civil registration in DIME

- . 123-142.

135

5.1 Data Model
Fig. 7 shows the data model of the application, representing both the concrete and abstract data. It
contains both unidirectional and bidirectional relations such as association and inheritance. In our
finer granular representation of a record, every Entry has 27 individual properties. Some properties
like Sex, Address, Age include sub properties, which are at the elementary granularity needed for
data analysis. The decision of moving to these 27 properties from the original 11 properties of fig.
1 is an example of the design choices for the Historian App stemming from the co-design practice.
As shown in fig. 7, every concrete user can have base user who as act as creator (only students) or
approver of an entry. The Entry itself is a concrete type data at DIME (green data objects at fig. 7).
Most of the attributes of entry are stored as text or number i.e. primitive attributes of DIME (small
yellow components at fig. 7). Some are Enum type attributes e.g. Civil Status with some optional
values (brown data objects at fig. 7). Some properties may not be present in the original record: the
corresponding cases are captured by the FieldStatus. Some attributes e.g. Registrar Name are created
as concrete type object so that they can receive list of data options and presented as drop-down menu
to the application and user can choose the correct information from provides options. Duration and
Address are also concrete type objects with required values.

5.2 Graphical User Interface Models
In DIME, the GUI model type represents the structure (layout and contents) of the Historian app's
individual web pages. A collection of GUI models defined, therefore the abstract and concrete
«look» of the presentation layer of a DIME application. We see in fig. 4 that the created GUI models
connect the GUI and Process Models. Every GUI models of Historian DIME app is created using
components from DIME palette. The GUI models call process models to execute an operation. These
GUI models are also reusable, for example we use EntryForm at fig. 4 for both create and update
operation of each entry.

5.3 Native DSLs
In DIME, the actions and services are collected in domain specific palettes that are basically a service
or component oriented DSL. The DSL elements correspond to (calls to) individual functionalities
that are either directly implemented or provided by an external service provider, like e.g. the
database. The individual functionalities are modelled as special native types called SIBs, for service-
independent building blocks, where service-independent means that they are widely reusable across
applications. These Native SIBs enable interoperability on a structural level. Within the Historian
app, besides the pre-existing DIME SIBs we create Native SIBs for different operations such as data
pre-population, CSV file import and export and to get field suggestions etc.

5.4 Data-flow

In DIME data flow is explicitly modelled within the process models. The input/output ports of SIBs
can either be connected directly with each other or used to read and write from/to variables placed
in a dedicated container representing the data context [9]. Fig. 4 shows the data flow connections of
the proposed application using arrows. All other figures of the Historian DIME app shows data flow
connection.

5.4 Process models
Process models express the business logic in a fashion roughly similar to Activity Diagrams, but
with a clean formal semantics. There are several process types: basic, interactable and interaction
processes. Each process type follows certain rules regarding which kind of SIBs they contain and
the kind of tasks they express. The graphical syntax and general handling are the same for all the

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

136

types of SIBs and processes. Fig. 4 shows the process models that are created for the Historian
application. The collection of process models together with the connected GUI, actions and data
flow expresses the behaviour of the application in terms of its operation. Fig. 3 shows the actual
process model CreateEntry of Historian app (also presented in fig. 4) that performs all necessary
operations and successfully stores an entry to the database.
Process models can also be of different type such as
a) Basic Processes: Basic Processes consist of native SIBs and built-in SIBs, and express the

smallest processes of the application's business logic. In the Historian app, basic processes
models are the CRUD (i.e., create, read, update, and delete) operations and data operations. In
fig. 4 CreateUser and RemoveEntry are two examples of basic processes.

b) Interactable Processes: Interactable Processes work as interfaces between the front-end layer
and the backend of the application. They are similar to Basic processes, but are restricted to non-
native type. The StartUp process is the only interactable process in the Historian app. This
process includes operation of successful login of user with different role.

c) Interaction Processes: Interaction Processes are used to define the immediate interaction
between user and application, accordingly they can be seen as a sitemap [9]. Where interactable
SIBs communicate with the backend, interaction SIBs establish a new hierarchy level with the
frontend. As the Historian app is essentially a sophisticated daTa entry app, most of its processes
are developed as interaction process, like GetPrePopulation, GetSuggestions, CreateAddress
etc.

d) Security Processes: Security Processes realize the (role based) access control with a predefined
interface. The IsSupervisorGuard and ExportFileGuard processes are two examples of security
processes in the Historian application. In IsSupervisorGuard the start node must include the
currently signed-in user (i.e., the Supervisor) as an input, and all following nodes are restricted
to be labelled with «granted».

6. Challenges and Solutions

6.1 Defining the major context parameters
In a context-dependent application, a DSL should enable modelling the different context situations
that may occur during user interface usage. This DSL will eventually help developers to separately
specify context-specific services to monitor various parameters and react accordingly. For example,
the application's abstract GUI rules cover various adaptation dimensions: layout, navigation,
reusability. Accordingly, modelling, adaptation, transformation and execution of processes and
GUIs take into consideration the context management and the corresponding adaptation. In
particular, the processes and functionalities are associated with responsive GUIs.

6.2 User interface adaptation at runtime
To achieve a responsive web application, the integrated execution environment must be equipped to
generate adaptation services in dependence of the context. For this, the generated adaptation
processes need to be coupled with generated code that enables an automatic dynamic reaction of the
runtime UI to the context-of-use. In the Historian App, the data entered by the user is the
predominant part of the dynamic context to which the app reacts. The reaction manifests itself in a
validation of the entry or an error message if problems are detected. To address various run-time
errors, we introduced Alert models with the event handler. To this aim, we introduced native SIBs
for several condition checks, detecting e.g., whether an unintentional special character is entered, or
a date entered in an incorrect format, a required field is left unattended, the ID not unique etc. Process
events are connected with those detections, and respective event-listeners are introduced at the
corresponding GUI models, enabling this was a run time error handling. Fig. 8(a) shows an event
and corresponding event listener model connected with respective alert that warns the user that

- . 123-142.

137

Name can't have special character (fig. 8(b)). We also proposed a rule-based classifier [31] for
overall data monitoring and error detection. The integration of the classifier with the DIME
application is currently ongoing.

(a) Detection: Event Listener in the CreateEntry Process

(b) Handling: Event with corresponding alert in the EntryForm GUI

Fig. 8. Handling a run-time error in DIME: unexpected special character in the name field

6.2 Data Entry with minimum error
In 2020 we conducted a pilot Transcribathon using the Historian application version 1, which was
not a responsive application with built-in data checks. Examining the resulting data entry, it emerged
that most of the wrong entries occurred at the fields Cause of death, Address, Age/Duration and at
the Registrar names. The date format also posed problems.
As a solution, we worked together to create drop-down lists of cause of death, registrar name and
street name which can be used to provide a predefined list of suggestions, thereby eliminating the
free text entry, and reducing error rate. For registrar name prediction, it is possible to create a
registrar names list for the period and location of interest. Using the method employed by 18 we
ordered the geographical data like street, city and county names of Ireland, which occur in various
address fields. All these lists are added to the application, by augmenting it with native SIBs and
adequate GUI and process elements. Fig. 9 shows an example. The Web page screenshot of fig. 9b
shows the Registrar data entry page, and in particular the pre-populated data field for the registrar
name of a death record. This drop-down menu or combo-box lists all the registrar names collected
from the early 1900s Dublin Street Directory. Once the historians found and verified the names of
the registrars who registered the death records relevant to this specific time and place, the IT
specialists created the GetSuggestion process shown in fig. 9(a). This process shows the list as a
drop-down menu in the right location of the application page. Thus, instead of inputting a free string

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

138

that needs to be validated, in version 2 for this field users can select the correct option from this
menu, avoiding errors instead of repairing them.

(a) GetSuggestions process

(b) Registrar name field with suggestions

Fig. 9. Data entry error handling in the Historian App by providing suggestions

6. Conclusions
In this paper, we presented the first MDD based application developed in the DBDIrl project to
support the correct and reliable data entry of Civil registration records. As this project deals with a
large dataset, we need a reliable application that prevents as much as possible errors. To this aim,
we co-developed with the Historians a model-driven application using XMDD as an agile version

- . 123-142.

139

of MDD and the DIME integrated modelling environment. We briefly introduced the various model
types and showed how they are used in conjunction to create a coherent data, process, GUI and role-
based access model. The main advantage of these choices is the ability to quickly react to the
findings, exemplified here by the evolution from the V1 to V2 of the App. In particular, the V2
greatly improves the achieved data quality by making the Application reactive to context-specific
events, and equipping most of the data entry fields with pre-populated lists of plausible options, as
for addresses causes of death and registrar names, and with context-specific rule checks, as for date
and age formats. The main lesson learned is that such an application is necessarily long lived, due
to the sheer enormous amount of data to be digitized over time, by many groups of volunteers, and
never really «finished». In such a context of continuous improvement, the ability to collaborate with
the Historians on the basis of models rather than code is an essential asset, producing successive
versions of the app that improve or customise specific aspects of the functionality and the
presentation.
The work currently in progress concerns on the one side the inclusion of rule-based classifiers in the
application, and on the other side the development in the same paradigm of a data analytics
application. The Analysis App needs to be as flexible and customizable as this one, because it will
serve the certainly diverse and specialized analysis needs of a growing community of researchers
working on big data archival systems in the digital humanities.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Khan R., Schieweck A., Breathnach C., Margaria T. Historical Civil Registration Record Transcription Using an eXtreme Model D riven
Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142

140

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

 / Information about authors

Rafflesia KHAN, MSc in Computer Science and Engineering from Khulna University, Khulna,
Bangladesh, currently Research PhD Student at Computer Science and Information System
Department. Her research interests are Big Data, Model-Driven Development, Digital Humanities,
Historical Data Analysis, Pattern Recognition, Image classification, Object detection & recognition,
Facial behaviour analysis, Image and Video Processing, Internet of Things, Security of IoT, Machine
learning, Computer Graphics and Artificial Intelligence.

-

r

- . 123-142.

141

Alexander SCHIEWECK, Master in Computer Science form the TU Dortmund University,
Germany, currently Research PhD Student at Computer Science and Information System
Department. Research Interests: Low-Code and Formal Methods for Software Verification as part
of the Software Engineering process.

-

Ciara BREATHNACH, PhD in History, University College Cork (UCC), Associate Professor in
History at the University of Limerick, Ireland. Research Interest: modern Ireland, social history,
gender, medicalization, death, migration, health-history; social determinants of health in nineteenth
and early twentieth Irish history; infant and maternal mortality; social history of medicalisation; the
social function of modern medicine in acculturating Irish immigrants in New York and Boston,
1860- 1912.

, UCC),

-
-

Tiziana MARGARIA, PhD in Computer and Systems Engineering, Politecnico di Torino, Italy,
Professor at Computer Science and Information System Department at the University of Limerick,
Ireland. Research Interest: eXtreme Model Driven Design, lightweight formal methods, automatic
program synthesis, system correctness, in particular compliance and security, future education in SE
and IT.

 .

