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Abstract. The true concurrency models, and in particular event structures, have been introduced in the 1980s 
as an alternative to operational interleaving semantics of concurrency, and nowadays they are regaining 
popularity. Event structures represent the causal dependency and conflict between the individual atomic actions 
of the system directly. This property leads to a more compact and concise representation of semantics. In this 
work-in-progress report, we present a theory of event structures mechanized in the COQ proof assistant and 
demonstrate how it can be applied to define certified executable semantics of a simple parallel register machine 
with shared memory.  
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Аннотация. Модели истинной конкурентности и, в частности, структуры событий были представлены 
в 1980-ых как альтернатива операционным семантикам с чередованием, и на сегодняшний день эти 
модели вновь обретают популярность. Структуры событий позволяют явно выразить отношения 
причинно-следственной связи и конфликта между атомарными событиями системы, что приводит к 
более компактному и лаконичному представлению семантики. В данной отчете о текущей работе мы 
представляем теорию структур событий, механизированную в системе интерактивного доказательства 
теорем COQ и демонстрируем пример применения этой теории к проблеме задания сертифицированной 
исполняемой семантики простой параллельной регистровой машины с разделяемой памятью.  
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1. Introduction  
Event structures is a mathematical formalism introduced by Winskel [1] as a semantic domain of 
concurrent programs. In recent years there has been renewed interest in event structures, with the 
applications of the theory ranging from relaxed memory models [2-4] to model-based mutation 
testing [5]. The main advantage of event structures compared to traditional interleaving semantics 
is that they give a more compact and concise representation of programs’ behaviors. For example, 
consider the following code snippet of a simple parallel program. 

 

 
Fig. 1. Example of program traces 

Under the interleaving semantics, it has 3! = 6 traces with each trace consisting of 4 events, as 
depicted in fig.1. Events themselves represent atomic side-effects produced by instruction 
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executions. In our case, an event is either a write of a value a to a shared variable x denoted as 
W(x,a), or a read of a value a from a shared variable x denoted as R(x,a). The same information 
can be encoded in a single event structure containing 6 events in total (see fig.2). In the event 
structure, there are two types of edges between the events. The grey arrows represent the causality 
relation, a partial order reflecting the causal relationship between the atomic events of computation. 
The red edges represent the conflict relation which is a symmetric and irreflexive relation encoding 
mutually exclusive events. Each particular trace can be extracted from the event structure as a 
linearization of some configuration, that is a causally-closed and conflict-free subset of events, 
which additionally should satisfy the constraint that each read is preceded by a matching write. 
The programming languages theory and formal semantics research communities are moving to 
increase the usage of proof assistants like COQ [6], AGDA [7], ISABELLE/HOL [8], AREND [9], 
and others, to complement theoretical studies with their mechanization, as this process increases the 
reliability and reproducibility of scientific results. Yet, to the best of our knowledge, there is little 
work on mechanization of the theory of event structures. The present report aims to close the gap. 
We have chosen COQ as the proof assistant because it’s a mature formal proof management tool 
with a rich ecosystem of libraries, plugins, documentation, and existing applications including the 
certification of properties of programming languages: the verified C compiler CompCert [10], the 
Verified Software Toolchain [11] for verification of C programs, and the Iris framework [12] for 
concurrent separation logic, to name a few. 

 
Fig. 2. Example of program event structure 

Our end goal is to develop a COQ library containing a comprehensive set of common definitions, 
lemmas, and tactics that would allow researchers to utilize the theory of event structures for the 
needs of their domain. In this work-in-progress report, we sketch the common design principles 
behind our library and give a concrete example of its usage by developing a formal mechanized 
semantics of a simple register machine with shared memory. Our library together with the examples 
of its usage is available online at https://github.com/event-structures/event-struct. 

2. Related Work 
Event structures were introduced by Winskel to study the semantics of the calculus of 
communicating systems [1], [13]. Several modifications of event structures [14], [15] were later 
proposed to tackle similar problems. More recently, event structures were applied in the context of 
relaxed memory models [2–4], [16].  
Among this line of work, we are aware of only one paper [16] that was accompanied by a 
mechanization in a proof assistant. The authors formalized the WEAKESTMO [4] memory model 
in COQ. However, this memory model uses a custom variant of event structures, that does not obey 
the axioms of any conventional class of event structures [13–15]. This fact makes it harder to reuse 
and adapt it to other applications of the theory. 

3. Background 
There exist several modifications of event structures. Currently, we have implemented only the 
prime event structures [1] in our library. We give some background on this class of event structures 
below. 
Definition 3.1: A prime event structure (PES) is a triple (ܧ,≤, #) where 
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 is a set of events ܧ •
• ≤ is a causality relation on ܧ such that 

o (ܧ,≤) is a partial order 
o for every ݁ ∈ ۀ݁ڿ its causality prefix ܧ ≝ {݁ᇱ: ݁ᇱ ≤ ݁	} is finite, i.e., every event is caused 

by a finite set of events. 
• # is a conflict relation on ܧ such that 

o # is irreflexive and symmetric 
o it satisfies hereditary condition: ݁ଵ#݁ଶ and ݁ଶ ≤ ݁ଷ implies ݁ଵ#	݁ଷ. That is, if two events 

are in conflict, then all their causal successors are necessarily in conflict. 
A single prime event structure can encode multiple runs of a program. Each individual run can be 
extracted as a configuration. In other words, configurations are used to model a history of 
computation up to a certain point. 
Definition 3.2: A configuration of PES (ܧ,≤, #) is a set of events ܺ ⊆  such that ܧ

• it is causally closed: ݁ଵ ≤ ݁ଶ and ݁ଶ ∈ ܺ then ݁ଵ ∈ ܺ 
• and conflict-free: if ݁ଵ, ݁ଶ ∈ ܺ then ݁ଵ#	݁ଶ is false 

4. Overview of Our Library 
In this section, we sketch the design principles of our library. We build our mechanization on top of 
the MATHCOMP [17] library which is an extensive and coherent repository of formalized 
mathematical theories, whose implementation is based on the SSREFLECT [18] extension of the 
COQ system. By using MATHCOMP, we draw on the large corpus of already formalized algorithms 
and mathematical results: its core mod-ules feature support for a range of useful data structures, e.g. 
numbers, sequences, finite graphs, and also interfaces: types with decidable equality, subtypes, finite 
types, and so on. We also use the small-scale reflection methodology [18], [19], a key ingredient of 
SSREFLECT. The small-scale reflection approach is based on the pervasive use of symbolic 
representations intermixed with logical ones within the confines of the same proof goal, as opposed 
to large-scale reflection which does not allow such mixing. Symbolic representations are connected 
to the corresponding logical ones via user-defined reflect predicates. The symbolic representation 
can be manipulated by the computational engine of the language, allowing the user to automate low-
level routine proof management by using various decision and simplification procedures. Whenever 
the user needs to guide the proof they can switch to the logical representation and perform some 
proof steps manually. To achieve better automation and e.g. get proof irrelevance for free, one is 
encouraged to use decision procedures whenever possible. For example, in the context of our library, 
we encode the binary relations of the event structures as decidable bool-valued relations, i.e., ≤, # ܧ∶ → ܧ → #,≥  as opposed to propositional relations of type , ݈݋݋ܾ ∶ ܧ → ܧ →  Encoding .݌݋ݎܲ
computable relations in COQ, especially their (computable) transitive closures, can be quite 
challenging since COQ is a total language and its termination checker only understands termination 
patterns going slightly beyond simple structural recursion. To make it easier, we employ the 
EQUATIONS function definition plugin [20] which provides both notations for writing programs 
by dependent pattern-matching and good support for well-founded recursion. In fact, binary relations 
are omnipresent in our formalization. This quickly manifested in a substantial amount of proof 
overhead and we sought for tools to automate our proofs. Since binary relations form a Kleene 
Algebra with Tests (KAT) [21] ,we have chosen to use the RELATION-ALGEBRA [22] package 
which provides a number of tactics to solve goals using decision procedures for a number of theories, 
such as partially ordered monoids, lattices, residuated Kleene allegories and KATs. 
We also favor the computational encoding of semantics. Similar to the recent related works on 
mechanization of operational semantics [23–25], we encode the semantics as monadic interpreters. 
This allows us to extract [26] the semantics as a functional program and run it. We believe that the 
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possibility to run the semantics is a very useful feature, as it allows to debug the formal semantics 
and helps to develop better intuition about it. 
To facilitate computable semantics, we define a subclass of finitely supported event structures as a 
finite sequence of events combined with a finitely supported function which enhances events with 
additional information, such as their labels, causality predecessors, etc. Encoding finitely supported 
functions is not a trivial endeavor in a proof assistant and for this task we use the FINMAP library 
which is an extension of MATHCOMP providing finite sets and finite maps on types with a choice 
operator (rather than on finite types).  
Finally, to encode the algebraic hierarchy of various classes of event structures we use yet another 
feature of MATHCOMP—packed classes [27], which is a design pattern providing multiple 
inheritance, maximal sharing of notations and theories, and automated structure inference. 

5. Case Study 
In this section, we provide a case study demonstrating an application of our mechanized theory of 
event structures. We show how it can be used to encode the semantics of a parallel register machine 
equipped with shared memory. 

5.1 Register Machine 
For our case study, we use a simple idealized model of a register machine, which consists of a finite 
sequence of instructions, an instruction pointer, and an infinite set of registers. The syntax of the 
machine’s language is shown in fig. 3. 

 
Fig. 3. Syntax of the register machine 

We first present the semantics of a single-threaded program. Under this semantics, memory access 
instructions do not operate on shared memory but rather produce a label denoting the side-effect of 
the operation (see fig. 4). This encoding allows us to decouple the semantics of the register machine 
from a memory model. 

 
Fig. 4. Syntax of labels 

 
Fig. 5. Thread state of the register machine 

The semantics is given in the form of a labelled transition system: ܲ ⊢ ݏ →௟  where ܲ is a ,	′ݏ	
program, ݈		is a label, ݏ	 and ݏ′	 are states of the machine. The state of the machine itself consists of 
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an instruction pointer ݅	and a map from registers to their values ߪ, as shown in fig. 5. The rules of 
the semantics are standard (see fig. 6). As we have mentioned, in our COQ development we actually 
use the monadic encoding of the operational semantics. The labelled transition system can be derived 
from this encoding. 

 
Fig. 6. Thread semantics of the register machine 

5.2 Event Structure of Register Machine 
In this section we present operational semantics which constructs a prime event structure encoding 
a set of possible behaviors of the register machine. The event structure is constructed incrementally 
in a step-by-step fashion by adding a single event on each step. In order to generate a new event on 
each step, we require that events behave as identifiers. 
Definition 5.1: We say that a set ܧ	 together with strict partial order ≺	form an identifier set if 
• there exists a distinguished initial identifier	݁଴ ∈  ܧ
• there exists a function ݂ݏ݁ݎℎ ∶ ܧ → ݁  which generates a new fresh identifier, such that	ܧ ≺  (݁)ℎݏ݁ݎ݂
We will encode the event structure as a tuple (ℇ, ݈ܾܽ, ௣݂௢, 	 ௥݂௙) and explain below the meaning of 
each component, and how they together form a prime event structure. 
The first component ℇ is a sequence of events ݁ ଵ 	≻	. . .		≻ ݁௡ in reverse order w.r.t the order in which 
events get added to the structure. The second component is a labelling function ݈ܾܽ	: 	ܧ	 →  ,ܮ	
assigning a label to each event. 
Next, following the theory of axiomatic weak memory models [28], we define the causality relation 
of the register machine’s event structure as the reflexive transitive closure of the union of two 
relations —program order and reads-from, denoted as po and rf correspondingly. ≤≝ ݋݌) ∪  ∗(݂ݎ
The program order relation tracks precedence of events within a single thread. The reads-from 
relation captures the flow of values from write events to read events and ensures that values do not 
appear out of thin air [28], [29]. 
In order to construct po and rf incrementally we represent them via their inverse covering functions ௣݂௢ and 	 ௥݂௙. 
Definition 5.2 (Covering): Let ≤ be a partial order. Then ⋖ is covering relation w.r.t. ≤ whenever  ݔ ⋖ ݔ is true if and only if ݕ ൏ ݔ .s.t ,ݖ and there is no ݕ ൏ ݖ	and ݖ ൏  A (non-deterministic) .ݕ
function ݂ from ܣ to the set of finite subsets of ܣ is a covering function if its corresponding relation, 
i.e., ݂↑ ≝ ,ݔۦ	} ݕ		|	ۧݕ ∈  .is a covering relation ,{(ݔ)݂
We use the inverse covering function because it is more convenient in our setting. Indeed, the 
semantics adds a new event at each step. Then it is convenient to require that, in addition, the small-
step relation is provided with the po and rf predecessors of a new event. ⋖௣௢≝ ௣݂௢↑ ିଵ

݋݌              ≝⋖௣௢ା  
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 ⋖௥௙≝ ௥݂௙↑ ିଵ             ݂ݎ ≝⋖௥௙ା  
We define the conflict relation in two steps. First, we define the primitive conflict relation ~# which 
is generated by the ௣݂௢ function. The two events are considered to be in primitive conflict if they are 
not equal and have a common po predecessor. For this definition to work properly, we also need to 
assume that each thread has a special initial event labelled by a distinguished thread start label TS. 	݁ଵ~#݁ଶ ≝ ݁ଵ ≠ ݁ଶ ∧		 ௣݂௢(݁ଵ) = 		 ௣݂௢(݁ଶ) 
Second, we extend the primitive conflict along the causality relation: 	݁ଵ#	݁ଶ ≝ ∃݁ᇱଵ, ݁ᇱଶ ∈ .ܧ ݁ଵᇱ~#݁ଶᇱ ∧ ݁ଵᇱ ≤ ݁ଵ ∧ ݁ଶᇱ ≤ ݁ଶ		 
We also need a way to reconcile the event structure with the states of the machine’s threads. To do 
so, we use a function Σ ∶ ܧ → ܶℎ݁ݐܽݐܵ݀ݎ which maps an event to a thread state obtained as the 
result of the execution of the event’s side-effect. 
Let us consider an example. Given the program below, our semantics builds the corresponding event 
structure as shown in fig. 7.  

 
Fig. 7. Example of the event structure construction 

The construction starts from an initial event structure containing, for each thread, an event labelled 
by TS. We depict the corresponding thread state below each label. Initially, each event is mapped to 
an initial thread state consisting of an instruction pointer pointing to the first instruction to be 
executed and an initial mapping of registers denoted as	⊥. The first step executes the store instruction 
from the leftmost thread and exits the program, since the execution of this thread terminates (we 
omit the exit instructions at the end of each thread for brevity). Next, the store from the rightmost 
thread is executed and the corresponding write event gets added to the structure. After that, the load 
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instruction from the middle thread is executed. Since there are two matching write events in the 
event structure, two conflicting reads are conjoined to the event structure. Note that the events can 
be added non-deterministically in any order respecting causality. We could have first executed the 
rightmost thread and added write W(x,2) before W(x,1), or we could have added the read with 
label R(x,2) before another read R(x,1). 

 
Fig. 8. Semantics of register machine’s event structure construction 

The rules of operational semantics constructing the event structure are presented in fig. 8. The first 
auxiliary rule (Add Event) adds a new event, sets its label, po and rf predecessors. The (Idle) handles 
the case when a thread of the register machine performs an internal step without anyside effect. It 
chooses an event e together with the thread state s corresponding to it and performs one step 
reduction to a new state s′. It then updates the mapping of events to thread states. The last three rules 
(Store), (Load), and (Load-Bottom) correspond to store and load performed by some thread. 
Similarly to (Idle), an event ݁௣௢ is selected and one reduction is performed from the corresponding 
thread state s. Unlike the (Idle) case, however, a new event e is also generated. In the case of  (Load), 
additionally, an event ݁ ௥௙ is selected, such that it has a write label matching the read label of the new 
event. The rule (Load-Bottom) corresponds to a case when load is performed “too early”, before any 
write to the given location is available. 
The following theorem asserts that the event structure built this way indeed satisfies the axioms of 
the prime event structure. 
Theorem 1: The tuple (ܧ,≤, #), where ≤	 and #	are defined as described above, forms prime event 
structure. 
We sketch the proof below (one can also find mechanized proof in our COQ development). 
First, we need to show that ≤≝ ݋݌) ∪  is a partial order. Reflexivity and transitivity follows ∗(݂ݎ
immediately from the definition of the reflexive-transitive closure. To show antisymmetry note that ⋖௣௢⊆	≺	and ⋖௥௙⊆	≺ by construction. Therefore ≤ is a subset of the reflexive closure of ≺. Since ≺	is a partial order, it is antisymmetric, and thus ≤ should also be antisymmetric. The axiom of finite 
cause, i.e., ۀ݁ڿ is finite for every event e, follows from the fact that at each step of the construction 
the set of possible predecessors of the new event can be over-approximated by the finite sequence ℇ. 
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Second, we need to show that the conflict relation # defined as described above obeys the laws of 
the conflict relation. Trivially, this relation is symmetric, and obeys the hereditary property. The side 
condition ൓	(݁	#	݁௥௙) of the rule (Load) ensures that the conflict relation is irreflexive. 
In fig. 9 one can see the prime event structure obtained as a result of the incremental construction 
depicted in fig. 7. 

 
Fig. 9. Example of prime event structure 

Once the event structure is constructed, one can extract the configurations corresponding to the 
particular runs of the parallel register machine, and further filter them via the consistency predicate 
defining the memory consistency model. 
Our construction of event structures allows to encode a wide class of so-called ݋݌ ∪  acyclic ݂ݎ
relaxed memory models [28].  
For example, a predicate corresponding to sequential consistency [30] requires that the causality 
order can be extended to a total order on all events of the configuration, such that for each read event 
the last preceding write event to the same location has the same value as the read. 

6. Future Work 
There are several directions for future work. 
First, we plan to apply our library to a wider range of problems. We are going to develop a 
mechanized semantics of some long-established languages used to model concurrency, in particular 
the calculus of communicating systems (CCS) [31] and π-calculus [32].  
We also plan to continue our work on expressing various relaxed models of shared memory [28], 
[33], [34] in terms of event structures. Second, we want to cover other classes of event structures in 
our library, in particular bundle [14], flow [15], and stable [1], [13] event structures. We plan to use 
them to develop mechanized denotational semantics of concurrent languages and relaxed shared 
memory models [35].  
Finally, we plan to mechanize in COQ classical results that connect various classes of event 
structures [15], [36]. It would allow us to easily establish the connection between operational and 
denotational semantics of concurrent languages. 
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