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with Petri nets.
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AHHoTanus. B pabGore mpeanoxxkeH noaxox K reHepauuu cereid Ilerpu, oOnamarommx skenaeMbIMU
CTPYKTYPHBIMH M HOBEJECHUECKUMHU cBoiicTBamu. Ha BXox mopaercst stanoHHas cerb Ilerpu, K KOTOpOit
MPUMEHSIETCs] HabOop JIOKAJIBHBIX TpaHC(HOPMALHid, PACIIMPSIOIINX €€ BHYTPEHHIOK CTpyKTYypy. KoppekTHOCTh
MIPUMEHEHHUS 3THX TpaHchopManuii 00ycaaBiIuBaeTCsi TEM, YTO OHHU MOPOXKIAI0T MOpdU3MBI Ha ceTsix [leTpw,
a TaKke He J00ABISAIOT HOBBIX TYIMKOB IIPU PACIIMPEHHH STaNOHHbIX cereil Ilerpu. Takum obOpasom,
COXPAHSIIOTCS OBE/ICHUECKHE U CTPYKTYPHbIE CBOMCTBA, KOTOPBIMU 00JIa/laeT TajoHHas ceTh [letpu. Boum
pa3paboTaHbl aIrOpuTMbl (DUKCHPOBAHHON W ciy4ailHOW reHepanuu cereil IleTpu. DTH  anropuTMbI
peanu3oBaHbl B BUJE paciiMpeHus Ui penaktopa cerei Ilerpu Carassius. Kpome Ttoro, mposenena
9KCIEPUMEHTAJIbHASL OLIEHKA pa3padOTaHHbIX alropuT™MOB. [Ipeyiaraemelii moixon k renepanuu cereit [lerpu
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U pa3pabOTaHHBIC AITOPUTMBI MOIYT HPHMEHSATHCS UL IPOBEJCHMS KOMIUIEKCHOI 3KCIICPHMEHTAIbHON
OLCHKH M HArpy304HOrO TECTHPOBAHHUsA AITOPUTMOB, Ha BXOJA KOTOPBIM IIOJAIOTCS MOZENH IIOBEICHHSI
nporeccoB B Buze cereif [lerpu.

KuroueBble ciioBa: ceru Ilerpu; MopdusMbl; TpanchopMarnm; COXpaHeHHe CBOHCTB; TeHepaLus Moelei

Jast uutupoBanusi: Hecrepos P.A., Casenses C.1O. I'enepauust cereii [Terpy ¢ IOMOLIBIO CTPYKTYPHBIX
TpaHchopManuii, coxpaHsronmx noseaeHueckue coiictea. Tpyast UCIT PAH, Tom 33, Bein. 3, 2021 1., cTp.
155-170 (na anrnuiickom sizsike). DOI: 10.15514/ISPRAS-2021-33(3)-12.

Baaropapuoctu. Pabora nojyiepxana IIporpamMmoii ¢yHIaMeHTaNbHBIX HccienoBaHuii HaumonansHOro
HCCIIeZIOBATeNIbCKOT0 yHUBepcuTeTa «Bricimas mkona sxonomukny (HUY BIIID), Poccus.

1. Introduction

Petri nets are widely used to formally represent the behavior of distributed systems for their precise
semantics, which helps to prove many crucial behavioral properties, including boundedness,
deadlock-freeness, covering by place invariants, and others [1]. The automated verification of these
properties is supported by different algorithms. For instance, covering by place invariants can be
decided using linear algebraic techniques [2].

The software implementation of algorithms operating with Petri nets naturally requires the
preparation of model sets that exhibit the specific structural and behavioral properties. Such sets of
models are then used for the thorough evaluation of algorithms under development. Firstly, the
manual generation of Petri nets with specific properties is a time-consuming activity. Moreover, if
one has to prepare a particularly large-scale model, then there arises an additional task to verify the
necessary properties of this model. The computational cost of such a verification can grow too fast
due to the well-known state-explosion problem of distributed systems, when the number of reachable
states grows exponentially compared to the size of a system model.

In our paper, we propose an approach to the generation of Petri nets based on structural
transformations. Firstly, a reference Petri net is constructed. This model has all the target structural
and behavioral properties. Secondly, applying a collection of /ocal transformations that extend the
internal structure of a reference Petri net, we obtain a refinement exhibiting the same properties as
an initial reference model. The general scheme of this approach is schematically shown in fig. 1,
where a refinement is a result of applying & local transformations to a reference Petri net. Note that
a refinement has the more sophisticated structure than a reference model. Transformations,
considered in our study, are called /ocal, since they change only the specific part of a model, while
the rest of the model remains untouched. The mathematical framework of these transformations is
responsible for preserving the structural and behavioral properties of a reference Petri net. In
addition, the application of transformations requires only the local checks of structural constraints.

Reference transform -
i ey Refinement
Pelri net |Step1  Step2  Stepk

Fig. 1. Step-wise generation of a Petri net
We consider two generation schemes: fixed and randomized. Within the fixed generation of Petri
nets, a specific sequence of transformations is applied to an initial reference model. Conversely, the
randomized generation is a based on a non-deterministic choice of transformations.
Thus, the main results of our paper are as follows:
the algorithms for the fixed and randomized generation of Petri nets from a given reference model;
the software implementation and evaluation of these algorithms within the environment of the
Carassius Petri net editor [3].
The remainder of this paper is structured as follows. The next section discusses the related research.
In Section 3, we define a class of Petri nets considered in our paper. Section 4 describes the
mathematical framework behind a collection of structural transformations that are used to refine
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Petri nets. The algorithms for the fixed and randomized Petri net generation are presented in Section
5. In Section 6, we describe a software implementation as well as evaluation of these algorithms,
and Section 7 concludes the paper.

2. Related Work

Process Log Generator PLG2 [4] is a well-known software used for the random generation of
process models. It supports different notations, including Petri nets and Business Process Model and
Notation (BPMN). As shown in [5], the specific classes of BPMN models correspond to Petri nets
and vice versa. PLG2 generates process models based on randomly generated context-free grammars
and parameters such as the maximum model size, the frequencies of standard behavioral patterns,
and others. Compared to our approach, PLG2 offers only the fully randomized model generation
and guarantees the behavioral correctness of constructed models. However, within our approach, a
reference model may have, for instance, deadlocks, which will be preserved in its refinement.

The generation of BPMN process models has also been considered in [6]. The authors of this
approach allow specifying the parameters such as the size of models, the frequencies of behavioral
patterns, the types of activities. Similar to our approach, they have also used a collection of initial
BPMN models to generate a set of synthetic models.

PTandLogGenerator [7] is another tool supporting the randomized generation of process models. It
produces so-called process trees, which specify relations among process activities, for example,
sequential, alternative, or concurrent. Process trees can be converted to Petri nets. The prime
objective of PTandLogGenerator and the previously mentioned PLG?2 is to simulate the behavior of
randomly generated process models.

An approach to the generation of benchmarks, using random step-wise Petri net refinements, has
been presented in [8]. Within this approach, the authors have also defined a set of refinement
transformations similar to those used in our study. Based on the proposed transformations, different
Petri net classes have been identified and studied. It has been shown what transformations can be
used to generate all Petri nets representing a given class.

Structural transformations of Petri nets have been first studied in the works [9-11], describing simple
yet powerful reduction and extension transformations, s.t. liveness, boundedness, home states, and
other behavioral properties are preserved.

Morphisms on Petri nets provide a formal and natural framework to express structural property-
preserving relations between Petri nets [12-14]. Using morphisms, one can consider more
sophisticated problems of property preservation, including, for instance, bisimulations between Petri
nets, as discussed in [13]. For elementary net systems [15] — a fundamental class of Petri nets also
considered in our paper — a-morphisms have been introduced in [16]. They help to formalize
structural relations between abstract models and their refinements. Concerning our approach to the
Petri net generation, a reference Petri net represents an abstract model. In addition, a-morphisms
preserve the behavioral properties (reachable markings) as well as reflect them under the specific
local requirements.

Since the direct application of a-morphisms is rather difficult for the sophisticated constraints to be
checked, a collection of local transformations proposed in [17] can be used to define a-morphisms
systematically in a step-by-step way. These transformations are used in our study to generate Petri
nets, which preserve the properties of an initial reference model. Correspondingly, the mathematical
framework behind transformations, which provide the property preservation, is based on a-
morphisms.

The existing open-source Petri net editors, among the others, include Platform Independent Petri
Net Editor [18, 19], PNEditor [20], WoPeD [21, 22], Wolfgang [23], Carassius [3]. They allow
modeling, simulating and analyzing the behavior of Petri nets. The problem of the model generation
has not been considered within these editors. In our study, we will extend the functionality of the
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Carassius Petri net editor to provide the generation of Petri nets with the desired structural and
behavioral properties.

3. Elementary Net Systems

In our study, we consider the generation of elementary net systems (EN-systems). They form the
fundamental class of Petri nets used to model the control-flow of distributed systems, while other
aspects such as data and time are not considered. The structure of EN-systems is modeled using
bipartite graphs with two kinds of nodes: places and transitions. Places in an EN-system can carry
at most a single zoken. Thus, they can be interpreted as boolean conditions, truth values of those are
changed by transition firings. Below we provide the formal definitions based on [15] concerning the
structural and behavioral aspects of EN-systems.

Let S be a set. The set of all finite non-empty sequences over S is denoted by S*, and $* = S* U
{€}, where ¢ is the empty sequence.

Definition I (Net): A netisatriple N = (P,T,F), where P and T are two disjoint sets of places and
transitions, and F € (P X T) U (T X P) is flow relation. For any node x € P UT:

1) ex = {y € X|(y,x) € F}is the preset of x.

2) xe= {y € X|(x,y) € F}isthe postset of x.

3) exe=-exUx eis the neighborhood of x € X.

The standard graphical notation is adopted: places are shown with circles, and transitions are shown
with boxes.

In our work, we consider nets without self-loops, i.e., Vx € PU T: ex N x e = @ and isolated
transitions, i.e., Vt € T:|et| > 1and|te|=>1.

The e-notation can also be extended to subsets of nodes. N = (P,T,F)be anet,andY < (P U
T).TheneY = Uyey*y, Yo= Uyecyyeand eY e =eY UY o N(Y) denotes the subnet of N
generatedby Y,ie, NY) = (P nY,T nY,F n (Y X Y)).

A marking (state) min a net N = (P,T,F) is a subset of its places, i.e., m S P. Pictorially,
markings are depicted by placing black dots inside corresponding places. A marking m inanet N =
(P,T,F)hasacontactif3t € T: emandm Nte * Q.

Definition 2 (EN-system): An elementary net system (EN-system) is a couple (N, m,), where N =
(P,T,F)isanet,and my, S P is the initial marking.

The behavior of EN-system is defined by the firing rule. A markingm in anet N = (P,T,F)
enables transition t € T, denoted m[t), iff e t S mand m Nt e = @. Enabled transitions may fire.
Firing t at m evolves N to a new markingm’ = (m\te) U t e, denoted m[t)m’.

A sequence w € T™ is a firing sequence in an EN-system N = (P,T,F,my) ifw = tt,...t, and
mg[ty)my[t,)...my_q[ty)m,. Then we write m[w)m,,. The set of all firing sequence in N is
denoted by FS(N).

A markingm in N = (P,T,F,my) is reachable exists 3w € FS(N): my[w)m. The set of all
markings reachable from m will be denoted [m).

A reachable marking m € [my) in N = (P,T,F,m,) is a deadlock iff it does not enable any
transitions. An EN-system is deadlock-free iff there are no reachable deadlocks.

A state machine is a connected net N = (P,T,F), whereVt € T: |et| = |te] = 1. A subnet
of an EN-system N = (P,T,F,m;) generated by Y S P and Y e, ie., N(Y UeY o) is a
sequential component of N if it it is a state machine and has a single token in the initial marking. N
is covered by sequential components if every place belongs to at least one sequential component. In
this case, N is state machine decomposable (SMD). Reachable markings in SMD-EN systems are
free from contacts.

State machine decomposability is a basic feature bridging the structural and behavioral properties of
EN-systems [15]. The example shown in fig. 2 provides an SMD-EN system with three sequential

158



Hecrepos P.A., CaBenbes C.1O. T'enepauus cereii [Terpu ¢ MOMOIIBIO CTPYKTYPHBIX TPAHCHOPMALIMIA, COXPAHSIOIINX TTOBEICHYECKHE
cpoiictBa. Tpyovt UCIT PAH, Tom 33, Beim. 3, 2021 1., ctp. 155-170

components: 4 (dotted line), B (dashed line), and C (dash-dotted line). Sequential components 4, B,
C have independent parts (concurrent behavior) and synchronous transitions, e.g., transition t,,
which will be executed by 4 and B simultaneously. Each token of a reachable marking in an SMD-
EN system can be characterized by sequential components. For instance, a token in p;, shown in fig.
2, belongs to two of three sequential components: 4 and B.

Fig. 2. SMD-EN system with three sequential components
Further, we work with SMD-EN-systems unless otherwise stated explicitly. Thus, we omit the SMD
abbreviation in their descriptions.

4. Refinement of EN-systems

In this section, we discuss the mathematical framework behind our approach to the generation of
EN-systems using refinement transformations. Firstly, we consider a-morphisms formalizing
relations between abstract and refined EN-systems [16]. Secondly, we describe a set of local EN-
system transformations that induce corresponding a-morphisms and define them in a step-wise
manner [17].

4.1 Morphisms

A class of a-morphisms has been introduced in [16] to formalize relations between an abstract EN-
system and its refinement, where subnets in a refined model can substitute places in an abstract
model. Using the example shown in fig. 3, we briefly discuss the main intuition behind a-
morphisms.

Abstract EN-system

Refinement

Fig. 3. The a=morphism ¢: Ny — N,
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An a-morphism ¢: N; = N, is a total surjective map from the set of nodes of a refined EN-system
N, on the set of nodes of an abstract EN-system N,. Places in an abstract EN-system can be refined
with \emph {acyclic} subnets in its refinement. For example, subnet N; ( ¢ ~1(p;)) refines place p;
in N, shown in fig. 3. The refinement of places can also result in a split of transitions, e.g., transition
t,in N, is split into two transitions, t;; and t;,, in Ny, as shown in fig. 3.

An a-morphism ¢@: N; = N, is defined in terms of how transitions in N; are mapped to nodes in N,.
If the image of transition in N; is also a transition in N,, then their neighborhoods should correspond
as well. For instance, since the image of transition ¢, in N; shown in fig. 3 is transition ¢; in Ny, the
image of e t;;  is e t; o. If the image of transition in N; is a place in N,, then the image of its
neighborhood is this place as well. For instance, transitions in subnet N; ( ¢ ~1(p,)) are mapped to
place p; inN, as well as their neighborhoods.

These constraints combined with several other structural restrictions imposed on subnets in a refined
EN-system, discussed in detail in [16], assure the main motivation behind a-morphisms: a
refinement should behave «in a similar way» as an abstract model does. Whenever there is a token
in a place in abstract EN-system, there exists the possibility to fire a transition that puts a token into
a corresponding subnet in a refined EN-system, s.t. the other input transitions remain disabled
afterwards (see Lemma 1 in [16]).

The direct application of @-morphisms is rather difficult for their sophisticated structural constraints.
An approach based on the subsequent application of local structural transformations [17] comes to
the aid of this problem. It is discussed in the following section, where we redefine the refinement
notion through these transformations.

4.2 Refinement Transformations

The main idea of structural transformations, defined in [17], lies in a step-by-step construction of a
refined model from an abstract one. These transformations are called /ocal because they change only
a specific subnet in an initial model, while the rest of the model remains untouched.

As shown in [17], every step of applying a transformation to an EN-system induces a corresponding
a-morphism from a transformed model to an initial one. Moreover, after a series of transformations
is applied to an EN-system, there will be an @-morphism from a result EN-system towards an initial
EN-system. Fig. 4 shows the main idea of this approach, where R is a refinement obtained from 4
by a sequential application of k transformations, s.t. there is an a-morphism ¢: R — A, and R
preserves the behavioral properties of A, especially the presence or absence of deadlocks.

A T TR

Y transform
_.\!Mm' | bl S Refinement
EN-system |Step 1 Step2  Sepk

Fig. 4. Refinement based on transformations and $\alpha$-morphisms
Structural transformations help us to reconsider the notion of a refinement without referring to the
formal definition of a-morphisms. In addition, within the framework of our approach to the Petri
net generation, transformations play a crucial role. A reference model (see fig. 1) is an abstract EN-
system, and its refinement is a result of applying transformations.
We next briefly consider the key aspects of refinement transformations, described in [17].
A transformation is a tuple p = (L, R, c;, cg), where:
1) L is the left part — a subnet to be transformed.
2) R is the right part — a subnet replacing L.
3) ¢, — constraints imposed on L.
4) cg — constraints imposed on R.

160



Hecrepos P.A., CaBenbes C.1O. T'enepauus cereii [Terpu ¢ MOMOIIBIO CTPYKTYPHBIX TPAHCHOPMALIMIA, COXPAHSIOIINX TTOBEICHYECKHE
cpoiictBa. Tpyowst UCII PAH, Tom 33, Bpim. 3, 2021 1., ctp. 155-170

Constraints ¢; and cp are structural and marking restrictions. They are responsible for
corresponding a-morphisms.

The application of a transformation p to an EN-system N involves (1) finding a match for L in N
according to ¢, i.e., subnet N(X;) with X; € P U T and (2) replacing N (X;) with R according
to cg. The result of applying p to N is denoted by p(N, X,). We write N ENitN = p(N,X.)
and the specification of an affected subnet is not important.

The set of four refinement transformations RT = {py, p2, P3, P4} is described in Table 1, where we
provide their constraints as well. Intuitively, p; adds concurrency, p, and p, introduce and extend
choices, while pzadds a new transition into an initial model.

Table 1. Refinement transformations

Transformation Constraints

p1: Place duplication
IL.*p ="*p="px;

2.p* =p* =p%
3 (p1 € mg and p2 € mg) iff
'\. ’/' p € mo.

\
.u'

L

pa: Trll’i.\lllul’l duplication
® ®y L%ty ="t ="ty
l "‘j 2 41 =t* =t2".
LJTJ -

¥

P =
Q)L RE

]’JJ Transition introduction

®y h L*t={m}, t* = {mk
2p*="p2={t}h
3.°m =°p.pa® =p%

E —> :é 4. p1 € mf & p € mo;

p4: Place split

L*pC*p.*p2Cp:
2.%p U'p2 ="p;
~ L nN*p=0;
\P/ —D 3. p1®, p2* are two complete
copies of p*;

. 4. *@*)\{pi} =*(p*):
m L R El m 5. if p € mg, then py € my iff

p € ma;

Then we can define a refinement as an EN-system that is obtained by applying a sequence ™ € RT”*
of refinement transformations to another EN-system, as formally given below.
Definition 3 (Refinement): Let N; = (P, T;, F, mb) be an EN-system with i =1,2. N; is a

. . . p
refinement of N, iff there is a sequence of transformations (p; . p ... px ) € RT", s.t. N, S N, >

Pk
- N;.

Let us consider the example of applying transformation p; to place py in the EN-system shown in
fig. 2. According to Table 1, there are no specific restrictions imposed on a place in the left part of
ps3. Then, we can replace place ps with a subnet, corresponding to the right part of ps, as shown in
fig. 5. Since pq is not marked, added places are also not marked.

As proven in [17], refinement transformations do not introduce new deadlocks, unless they are
already present in an initial EN-system, i.e., the deadlocks in a transformed EN-system are the
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inverse images of the deadlocks, present in an initial EN system (under the corresponding a-
morphism).

Fig. 5. Application of 3 to the EN-system from fig. 2
Thus, the following proposition holds.
Proposition 1: Let N; = (Py, T;, F;, mb) be an EN-system with i = 1,2 s.t. N is a refinement of
N,. If N, is deadlock-free, then N; is deadlock-free as well.
Now we can proceed to the design and implementation of algorithms, which use the set of refinement
transformations to generate EN-systems.

5. Generation Algorithms

In this section, we discuss two algorithms that support the automated generation of EN-systems,
using the structural transformations, described in Table 1, according to Definition 3. The first
algorithm corresponds to the generation of an EN-system by applying a fixed sequence of the
refinement transformations to an initial model. The second algorithm corresponds to the randomized
EN-system generation, parameterized with the probability of applying each transformation.

5.1 Fixed Generation of an EN-system

Algorithm 1 corresponds to a direct implementation of Definition 3. There is a fixed finite sequence,
T ={(p;.P3-Pn) ERT", of refinement transformation to be applied to an EN-system N =
(P,T,F,my).
Algorithm 1: Fixed generation
Input: EN-system N = (P, T, F, mg)
Transformations RT = {py, p2, p3, ps}
Sequence ™ = (py, P2, ..., Pn) € RT*
Output: EN-system R = (P, 7', F',m{) - a
refinement of N

R+« N
i1
foreach p; € 7 do
if 3X; € P'UT' and p; is applicable to subnet
R(X}) in R then
| R+ pi(R,X})
end
i—i+1
end

If a current transformation p; can be applied to some subnet generated by X, € P’ U T', then we
replace R with a result of applying p to R. If a current transformation p; can be applied to different
subnets, the choice is made non-deterministically (it may be determined by the specific
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implementation of Algorithm 1). Otherwise, if a current transformation p; cannot be applied to a
subnet in R, we skip it and pass on to the next transformation in a sequence 7.

The correctness of the fixed generation algorithms follows from (a) the finitness of 7 (the algorithm
always terminates) and (b) Proposition 1, i.e., an obtained refinement R preserves the deadlock-
freeness of N.

5.2 Randomized Generation of an EN-system

Within the randomized generation algorithm, presented in this paragraph (see Algorithm 2), a
sequence of refinement transformations is not known in advance, as opposed to the fixed generation.
A specific sequence of refinement transformations is constructed with respect to the parameters
defined by a user.

Algorithm 2: Randomized generation

Input: EN-system N = (P, T, F,mg)
Transformations RT = {py, pa, p3, ps}
Probabilities prob: RT — [0,1], s.t
Ype RT: ¥ freq(p) =1
Maximum mumber of nodes maxSize
Maximum number of steps maxSteps

Output: EN-system R = (P, T",F',m{) - a

refinement of N

R« N
totalSteps « 0
while |P' UT’| < maxzSize OR
totalSteps < maxSteps do
AT « FINDAPPLICABLE(R, RT)
sumProb + E':’pe a1 Prob(p)
foreach p € AT do
e prob(p)
prob/(p) = sumProb
end
order AT in the descending order of prob’;
r + RANDOMNUMBER(0, 1)
cumul Prob « 0
i+1
while cumul Prob < r do
cumul Prob + cumul Prob + prob'(p;)
i—i+1
end
R « pi(R,X})
total Steps « totalSteps + 1

end

The randomized generation parameters include:

1) The maximum size of a refinement — the number of places and transitions;

2) The maximum number of steps — the number of applied transformations;

3) The probability of choosing a specific refinement transformation — the value in the interval [0,
1].

Probabilities are set for the four refinement transformations, s.t. the sum of all four probabilities is

equal to 1. Below we describe how the specific refinement transformation is chosen at each step of

Algorithm 2.
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Firstly, we find a set of refinement transformations AT that can be applied to a given EN-system
(function findApplicable(R,RT) ), according to constraints given in Table 1. Secondly, we
normalize the probabilities of the applicable transformations in AT and obtain the values of prob’
function. Then, by generating a random number r, we choose the specific refinement transformation
p; - Intuitively, we divide the interval [0, 1] into sub-intervals, according to the normalized
probabilities of applicable refinement transformations, and check where the value of r is. We
assume to use the uniform distribution for the random number generation.

The correctness of Algorithm 2 follows from the fact that (a) the total number of steps (the actual
length of an applied transformation sequence) is bounded by the maximum size of a refinement and
by the maximum number of steps that can be done; and from (b) Proposition 1, i.e., a constructed
refinement preserves the deadlock-freeness of N.

5.3 Example: the Fixed Refinement of an EN-System with a Deadlock

Here we consider an example of applying the fixed generation algorithm to the EN-system that has
a deadlock (see fig. 6, where N has the deadlock {p,} reachable from its initial marking {p,, p,}).

Let T = (04 P3P1P3P4P4 P2 ) € RT™ be a sequence of refinement transformation to be applied to N.

P I@{ f_\; P2
s

T

® ®®

Fig. 6. EN-system with a deadlock

A possible result of applying  to N is provided in fig. 7, where we show transformations affecting
disjoint subnets as a single step. It can be seen that none of the p,-elements in  have been applied
to N, since there are no places with two or more input transitions. That is why they have been skipped
in this example.
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Fig. 7. A result of applying T to the EN-system from Fig. 6

What is more important is that the reachable deadlock {p,} have not been lost in the transformed
EN-system. The inverse image of {p,} (under the corresponding a-morphism, refer to fig. 4) in the
transformed EN-system is also the reachable deadlock {s¢}, as formally proven in [17]. New
deadlocks have not been introduced into the transformed EN-system.
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5.4 Example: a Step in the Randomized Refinement of a Deadlock-Free EN-
System

In this paragraph, we consider a step of Algorithm 2 in more detail. Given the EN-system N shown
in fig. 8 and the following probabilities: prob(p;) = 0.15, prob(p,) = 0.10, prob(ps) =
0.05, prob(p,) = 0.7, we will show how the choice of a refinement transformation is performed.
We start with finding the applicable transformations. Here we have that only p;, p,, and p; can be
applied to the EN-system from fig. 8. Their normalized probabilities are: prob(p;) = 0.50,
prob(p;) = 0.33, and prob(p;) = 0.17.

S
E A
N

2

Fig. 8. Deadlock-free EN-system
Then we generate a random number r. Let r = 0.73. We check where the value of r is in the
interval [0,1$ concerning the cumulative normalized probabilities (see fig. 9).

0 05 083 1
" pmal T py
0.73

Fig. 9. Checking the placement of the random number T
The value of r is in the interval [0.5, 0.83], corresponding to the refinement transformation p,. Thus,
we apply this transformation to the EN-system from fig. 8, and a possible result is shown in fig. 10,
if we choose transition ¢, to be transformed.

4

Q9 e

@

Fig. 10. Applying the chosen transformation to the EN-system from fig. 8

Then, according to Algorithm 2, we continue choosing refinement transformations, according to
their probabilities, until we reach either the limit of the size or the limit of the total number of applied
transformations.

6. Software Implementation and Evaluation

In this section, we describe details concerning the implementation of the two generation algorithms
discussed in the previous section. We have evaluated the randomized generation algorithm using
Petri net models for interaction patterns described in [24] as reference models. They provide a highly
abstract view of typical asynchronous agent interactions, whereas a refinement of an interface
pattern can be seen as the model of a specific system implementing this pattern.

6.1 Carassius Petri Net Editor

The Carassius software tool has been presented in [3]. It supports various modeling notations,
including (communicating) finite state machines and Petri nets. The Carassius allows one to simulate
Petri nets according to the transition firing rule, import and export files in different formats, visualize
process behavior. Apart from that, the Carassius has a modular architecture, and it can be easily
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extended with new features. For example, in [25], the authors have described an extension to the
Carassius that supports the simulation of Petri nets with two special types of arcs: reset and inhibitor.
The main window of the editor is shown in fig. 11.

We have introduced the following features into the Carassius Petri net editor:

1) the internal storage of refinement transformations;

2) the choice and application of a single transformation to a given EN-system;

3) the generation of an EN-system by applying a fixed transformation sequence (Algorithm 1);

4) the generation of an EN-system by applying a randomly constructed transformation sequence
(Algorithm 2).

Z/I5|@ B e T e

Fig. 11. Carassius process model editor
The implementation of the generation algorithms has also been enriched with the possibility to «roll
back» following a transformation sequence to check intermediate results.
The parameters necessary for the fixed and randomized generation are configured in the top panel.
A fixed transformation sequence (Algorithm 1 is constructed using a drop-down menu, where one
may choose a transformation and assign the corresponding number of occurrences to it (see fig. 12).
The configuration of probabilities and other parameters of Algorithm 2 is shown in fig. 13.

Enter cequence
15 v | PTS/ TS5/ A312

Add | Place Duphcation Update net size

| Transition Duplication
| Local Tr. Introduction

| Place Spiit

Fig. 12. Constructing a sequence of transformations

Random rule. Enter prob. Iter. Limit  Size Limit
PL Duplication: 0,11 Tr. Dublication: 10,11 1000 300
Local Tr. Intro: (0,11 Place split: 0,67 Parform

Fig. 13. Parameters of the randomized generation
As described in the following paragraph, we have considered the application of Algorithm 2 to
construct refinements of so-called interface patterns.

6.2 Evaluation: Randomized Refinement of Interaction Patterns

Modeling complex information systems is a rather difficult task due to the coordination of several
interacting components. Service interaction patterns, introduced in the Business Process
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Management (BPM) community [26], provide generic solutions for designing composite systems
with several interacting entities. The patterns give a highly abstract view of component interactions.
The identification of the typical interface patterns and their modeling using Petri nets have been
considered in [24], where the seven asynchronous interaction patterns have been discussed. The
models of these patterns are shown in fig. 14. For instance, IP-4 describes the simple message
exchange, when the first component sends a message to the second one, and the latter sends back an
acknowledgment.

/l r-\
% ®
N, o (N,
(a) IP-1

~O-F-®
' -®

e

Ny( N,

r
-
Ve

(d) P-4

(2) 1P-7

Fig. 14. Interaction patterns: reference models

We have used these interaction patterns to evaluate the randomized generation algorithm. Given an
interface pattern, we apply Algorithm 2 and obtain a possible refinement of this pattern. A
refinement of an interface pattern inherits its structural and behavioral properties. Intuitively, such
a refinement represents a possible system model implementing an interaction pattern.

The results of applying the randomized refinement to the interaction patterns with different
parameters are provided in Table 2, where we show the number of places and transitions in the
reference model and the obtained refinements. Correspondingly, we have considered five different
cases:

e the randomized refinement with equal probabilities for each transformation (p; = 0.25);
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e the four cases when the probability of one transformation (0,67) outweighs the equal
probabilities of the other three transformations (0,11).
Table 2. Randomized refinement of interaction patterns

Randomized generation (mazSize=300, maxSteps = 1000)
Reference | p, = 0,25 | py =0,67 | p2=0,67 | p3 =0,67 | p4y =0,67
[Pl 7| | IPt 1T 1Pl 1T IR T | 1Pl |7 | Pl T

IP-1 5 2 134 166 | 234 66 76 224 | 156 144 | 141 166

Ip-2 | 12 6 147 153 | 216 84 66 256 | 155 145 | 146 154
1P-3 6 4 154 149 | 212 88 85 215 | 154 147 | 156 144
P-4 8 4 132 168 | 217 83 7 229 | 152 148 | 144 156

IP.5 | 18 10 | 139 163 | 207 94 78 222 [ 156 145 | 157 143
IP-6 | 12 107 193 | 218 83 72 232 | 158 142 | 158 143
IP-7 | 11 140 161 | 190 110 | 59 256 | 143 158 | 85 215

oo oo

As it can be seen from Table 2, the number of places and transitions in the constructed refinements
is consistent with transformation application probabilities. Within all transformations being equally
probable, we do not observe notable differences in the number of places and transitions in the
obtained refinements. However, when the place (transition) duplication has the highest probability,
we have that the number of places (transitions) significantly outweighs the number of transitions
(places) in the refinement. The predominance of the transition introduction (p3) and place split (p4)
also does not lead to substantial differences in the number of places and transitions. The application
of p, requires places with two more input transitions, which may not be present in the reference
model.

In addition, fig. 15 provides a possible result of applying ten refinement transformations to the
interface pattern IP-1, where the transformations have equal probabilities.

Fig. 15. Refinement of IP-1: 10 steps, equal probabilities

6. Conclusions

In this paper, we have presented an approach to the generation of Petri nets using structural property-
preserving transformations. We have considered the generation of elementary net systems, which
form the basic class of Petri nets. Elementary net systems reflect the control-flow of a process, while
data and time aspects are ignored. Given a reference model, we apply a sequence of refinement
transformations to obtain a Petri net with similar structural and behavioral properties valid for the
reference Petri net. Refinement transformations extend a reference model by adding new places and
transitions, i.e., make the structure of a reference model more sophisticated. The proposed approach
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can be applied for a complex evaluation of algorithms operating with Petri nets requiring the
preparation of model sets containing Petri nets with the specific structural and behavioral properties.
The correctness of applying these transformations is based on two observations. Firstly, the
transformations induce morphisms between reference and transformed Petri nets. Secondly, the
transformations do not introduce new deadlocks, unless they are already present in reference models.
We have designed two algorithms supporting the automated generation of Petri nets with the help
of structural property-preserving transformations. The fixed generation corresponds to the direct
application of a fixed sequence of refinement transformations. Within the randomized generation, a
user chooses the maximum size of a target model and sets the probability of applying each
transformation. We have conducted a series of experiments to evaluate the developed algorithms
using Petri net models of service interaction patterns. The experimental results confirm the
consistency of the randomized generation algorithm, according to changes in the number of places
and transitions with respect to probability values. These algorithms have also been implemented in
the existing Carassius Petri net editor.

The main limitation to the proposed approach, based on transformations, is that it is impossible to
generate a cyclic Petri net from a reference model without cycles. In the future, we plan to relax
these constraints and to extend the collection of property-preserving transformations
correspondingly. In this light, we also plan to develop a «designer» of structural Petri net
transformations that will allow us to construct new transformations. Another direction for the future
research is the development of property-preserving transformations for different extensions of Petri
nets, including, e.g., colored Petri nets, where tokens can carry data, or timed Petri nets, where
transitions are assigned firing time intervals. Note that certain extensions of Petri nets can also be
«unfolded» to elementary net systems.
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