Tpyowr UCIT PAH, mom 33, evin. 4, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021

DOI: 10.15514/ISPRAS-2021-33(4)-1

Validation Automation of UML Diagrams Created by
Students

T.S. Gasheva, ORCID: 0000-0002-8095-4538 <gasheva_99@mail.ru>
D.I. Vilasov, ORCID: 0000-0002-1968-5148 <dima.viasov@icloud.com>
A.V. Otinov, ORCID: 0000-0002-4226-5694 <otinovandry@gmail.com>

N.N. Datsun, ORCID: 0000-0001-8560-7036 <nndatsun@inbox.ru>

Perm State University,
15, Bukireva st., Perm, 614990, Russia

Abstract. Unified Modeling Language (UML) is widely used standard for models visualization in software
industry. Hence, a preparation of IT professionals involves the learning modeling process. Studies of student
perception of UML modeling indicate that this process is perceived as quite complex. This paper presents
software for validation activity, class and use-case diagrams by XMI representation. To achieve this goal, we
researched existing methods and systems. Besides, we analyzed mistake catalogues and Perm State University’s
student models to propose a mistake classification and checklist that presents a list of validation to be done.
This paper focuses on validation each type of diagram separately, without maintaining consistency between
different UML models. However, all these validation modules are combined in one system, which allows to
check any of the described types of diagrams.

Keywords: validation; UCD; AD; CD

For citation: Gasheva T.S., Vlasov D.I., Otinov A.V., Datsun N.N. Validation Automation of UML Diagrams
Created by Students. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 7-18. DOI: 10.15514/ISPRAS-
2021-33(4)-1

ABTomaTtusauus nposepku UML anarpamm, co3gaHHbIX CTyAEHTaMun

T.C. I'awesa, ORCID: 0000-0002-8095-4538 <gasheva_99@mail.ru>
JIL.U. Bracos, ORCID: 0000-0002-1968-5148 <dima.vlasov@jicloud.com>
A.B. Omunos, ORCID: 0000-0002-4226-5694 <otinovandry@gmail.com>

H.H. Jlayyn, ORCID: 0000-0001-8560-7036 <nndatsun@inbox.ru>

Tepmckuil 2ocydapcmeennplil HAYUOHATbHBLI UCCIEO08AMENbCKULL YHUGEpCUNen,
614068, Poccus, 2. Ilepmo, yn. Bykupesa, 0. 15

AnHoranus. YuudumuposaHHbIH s3blk MogemupoBanus (UML) sBIseTcss HDIMPOKO HCIONB3YEMBIM
CTaHJApTOM [BH3yalM3allMd Mojeleil B oTpaciaum IporpaMMHOro obecmedenus. ClieJoBaTelbHO,
noaroToBka MT-cnenuanncTo BKIroyaeT B cebs oOydeHHe MOIENHPOBAHMIO. MccienoBaHus BOCTIPHATHUS
crynenramu UML-MoennpoBaHus MOKa3bIBalOT, YTO O0YYEHHE MPOXOJUT JOBOJIBHO HENpocTo. B naHHOM
CTaThe IIPEJCTaBICHO IPOrpaMMHOE OOecHeueHHe Ul IIPOBEPKHM JAUArpaMM aKTUBHOCTH, KIACCOB H
NPELEeJIeHTOB 110 UX HpeacTaBieHuio B ¢opmare XML Jlns JOCTHXKEHHsS STOH LENUM MBI HCCIEAOBAIU
CYILIECTBYIOIIHE METOABl H CHUCTeMBL. KpoMe TOro, Mbl MpOaHaIM3MPOBANTU KATAJIOTH OMMOOK M MOZIENIH
cTyzienToB IlepMCKOro TrocCyJapCTBEHHOTO HAIJMOHAIBHOTO HCCIIEA0BATEIbCKOTO YHHBEPCHTETA, UYTOOBI
NPEJIOKUTh KIACCH(GHUKAMIO OMMHMOOK M KOHTPOJNBHBIA CIHCOK, KOTOPBI IIPEACTAaBISIET CIHCOK
HEeOOXOJMMBIX HPOBEPOK. B maHHOH cTaThe OCHOBHOE BHUMAaHHE YAENSIETCS NMPOBEPKE KaXJOro THIIA
JUarpaMM He3aBHCHMO JPYT OT ApYra, 6€3 COXpaHEeHHs COrJacOBAaHHOCTH MEXAY PasIHYHBIMH MOJETAMU

7

Gasheva T.S., Vlasov D.I., Otinov A.V., Datsun N.N. Validation Automation of UML Diagrams Created by Students. Trudy ISP RAN/Proc.
ISP RAS, vol. 33, issue 4, 2021, pp. 7-18

UML. Oxnako Bce 3TH MOAYIH NPOBEPKH OOBEAMHEHBI B OJHY CHCTEMY, KOTOpas IO3BOJISET IPOBEPHTH
11000# U3 UCCIIETOBAHHBIX THIIOB HArPaMM.

Kimouessie ciioBa: nposepka; UCD; AD; CD

Jist uuruposanus: Famesa T.C., Banacos JI.1., Otunos A.B., lanyn H.H. ABtomarn3zanus nposepku UML
nuarpamm, cosianubix cryaentamu. Tpynst UCIT PAH, Tom 33, Beimn. 4, 2021 1., ctp. 7-18 (Ha aHrIuiickom
spike). DOIL: 10.15514/ISPRAS-2021-33(4)-1

1. Introduction

Modern approaches to validation student models are UML is a standard that provides system
architects, software engineers, and software developers with tools for analysis, design, and
implementation of software-based systems as well as for modeling business and similar processes
[1]. This standard is widely used in the software industry.

On the one hand, it is used in Object-oriented analysis and design (OOAD) in the development of
complex systems [2]. Formal methods or model-based specification [3] are used to verify such
models [4], [5].

On the other hand, a preparation of IT professionals involves the learning modeling process [6] and
Model Driven Architecture (MDA) [7]. Studies of student perception of UML modeling indicate
that this process is perceived as quite complex. This opinion is shared by both computer scientists
[8], [9] and computer science majors [8].

Besides, the process of manual validation of models is a time-consuming process, especially during
the review of dozens of student models by the teacher. Therefore, the creation of such system is
actual.

This paper presents a description of a system for automatically checking use case (UCD), class (CD)
and activity diagrams (AD) based on an XMI [10] representation. This format can be exported from
most Case-tools creating UML diagrams and contains description of the diagram elements.

Not all types of UML diagrams were chosen for research. To automate the validation, two analysis
phase models were chosen - UCD and AD, and one design phase model - CD. This choice is based
on the experience of checking these models and on others papers [8], [11].

We researched existing tools for validation UML diagrams. We put forward the criteria of
applicability to the solution of our problem for the found tools but they do not fulfill our criteria.
Modern approaches to validation student models are based on the use of catalogues or lists of
common mistakes [12], [13], [14], [15], [16]. Using the results of these catalogues and own review
models of Perm State University (PSU) students we classify the mistakes in two dimensions. The
first dimension represents the severity of the mistake. We distinguish three types of severity:
Warning, Serious, Fatal. In the second dimension, we consider three main categories of mistakes:
Model, Consistency, Layout. Model mistakes contains subcategory.

In this study, we consider in detail only the model mistakes. Using these mistakes, checklists for
UCD, CD and AD are composed. These checklists are used to validate diagrams using Case-based
reading method (CBR) [17]. Besides, for checking AD we use a graph with semantics similar to the
Petri net, which was mentioned in the article [18], and colored tokens, similar to tokens in colored
Petri nets [19].

To this end, we present the system implementation and demonstrate case studies. The quality of
mistakes detections by the system is high, which confirms the achievement of the research goal.

2. Related Works

2.1 Analysis of Existing Mistakes Classifications

Chren et al. [12] evaluated over 2700 UML diagrams and examined students' mistakes with use case
diagrams, activity diagrams, class diagrams, state machine diagrams, sequence diagrams,
8

Tamesa T.C., Bnacos /.M., Otunos A.B., Jlanyn H.H. ABromatnsamms nposepkr UML quarpamm, co3naHHbIX cTyneHTamu. Ipyost UCIT
PAH, Tom 33, Bhim. 4, 2021 1., cTp. 7-18

communication diagrams, and entity-relationship diagrams. They produced their catalogue from
papers and their own research and identified 146 mistakes. They split all mistakes in two dimensions
— the first one represents the severity of mistakes, the second refers to the nature of the mistakes.
The overview of the classification scheme is in fig. 1 [12].

Use case specification

3\
Actor specification | Use Case diagram System boundaries
Relationship specification | Domain understanding Level of detail
e
Action nodes specification Issues Conceptual
im \ &
Control nodes specification | Activity diagram visual readability

Clarity

1
I

Flow specification | —
e — Issues

— Naming

Class specification
Class diagram

\
Relationship specification p—— - agra
#} Diagram element | Consistency Interconnection between diagrams

State specification 2 issues |ssugs
Transition specification }
et AT e e S

Lifeline specification Diagram Issues
Message specification ‘| Interaction diagram Classification

[Combined fragment specification |
= ifieation UML specification error
Re\ali;s:\?;:%: ERD . Violation of recommendation
Fig. 1. Orthogonal classification scheme for diagram issues
They figured out that the most common mistakes for UCD, AD, and CD are Diagram element issues.
The detection rate for top four mistakes in UCD is 31-42.9%, in AD - 26.2-42.9%, in CD - 42.9-
59.5%.
Delgado et al. [16] considered use case, class, state-machine, sequence diagrams. They separated
mistakes on six categories: Layout mistakes, Traceability, Notation, Semantic, Documentation,
Naming, Conventions. They concluded that in UCD the most common mistakes are Notation
mistakes and the least common are Traceability mistakes. In CD the most common defects are
Documentation and the least common Traceability.
Reuter [8] classified mistakes in a category system that is commonly known from errors in
programming languages and the Standard Classification for Software Anomalies [20]: Lexical,
Syntactic, Semantic, Logic, Missing, and Unnecessary. Unfortunately, the numbers of mistakes were
not presented, so that no conclusions could be drawn about the frequency of mistakes.
Bolloju [15] separated 380 mistakes in the 14 projects in three groups: Syntactic, Semantic,
Pragmatic. They found out that the most frequent types of mistakes for UCD and CD are Syntactic
(57% for UCD and 64% for CD) and Semantic (64% and 50%, respectively).
In our work, we use classification structure similar to Chren’s. We also use two dimensions, one of
which is severity and another links with the origin of the mistake. However, we use different severity
subcategories. It relates with our future work — the development of system of qualifying the degree
of deviation of the student model.

2.2 Analysis of Existing Software for Validation of UML Diagrams
Special criteria were identified for the existing UML diagram validation software:

e meet all the standards of the UML language;

e open source and free to use;

e support for graphical display of diagrams;

e software is easy to install and use.

Gasheva T.S., Vlasov D.I., Otinov A.V., Datsun N.N. Validation Automation of UML Diagrams Created by Students. Trudy ISP RAN/Proc.
ISP RAS, vol. 33, issue 4, 2021, pp. 7-18

The first two criteria are critical when analyzing existing software because of the target group of
users — teachers and students.

For UC validation, two software products were discovered: FOAM [21] tool and Rational Rose [22].
FOAM it’s open-source project, but disadvantage of this tool is that in order to analyze an existing
UCD, you should independently translate all the contents of the diagram into a special text format,
in which you must manually specify all the established elements and the relationships between them.
Also, this tool doesn't have a graphical interface. Rational Rose it's a commercial product, that
supports modeling UCDs and their continues validation. But the list of checking mistakes is quite
small.

For AD validation, there are analyzed tools such as UML-VT [23] and Woflan [24]. These funds
also do not match the main criteria identified earlier.

In existing publications [25], there are only brief descriptions of algorithms for validating CD, and
it is impossible to study and analyze them in detail, since they are in the private domain. The set of
libraries used in private validation systems: Eclipse (2000 LoC) and Java classes (11500 LoC) [26]
[26], Dresden OCL toolkit [26], [27] extensible libraries (for processing and loading constraints)
and MDR (for importing/exporting UML models from XMI [10]).

2.3 Analysis of UML Diagram Creation Software Providing Metadata

The choice of the software that will be used for the construction of diagrams is an important step in
this work, since the chosen software tool will determine the possibility and success of further
analysis, design and implementation of the prototype. That is why special requirements were defined
for the selection process of competing modeling systems. The result of the research in this issue was
the choice of the GenMyModel [28]. It combines a simple user interface, does not require installation
and has the function to export the diagram in the required formats. The advantage of this tool is that
when building diagrams, it does not allow you to perform some activities that can lead to mistakes.
Due to this, the list of conditions to be checked can be reduced.

Based on this, it was decided that the input data (XMI and PNG files) will be generated using the
GenMyModel tool.

3. Classification of Students Mistakes

Based on existing catalogues and own student’s models analysis, we composed the classification.

1) Model: The Model category covers mistakes that violate the UML specification or
recommendation.

a) Lexical.
b) Syntactic.
¢) Semantic.

2) Consistency: The Consistency category contains mistakes that are related to maintaining the
dependencies between the diagrams.

3) Layout: The mistakes in the Layout category are caused by incorrect arrangement of elements
on the diagram (overlapping elements, crossing of relationship lines); these mistakes are
extremely difficult to detect using the XMI representation.

4) Severity.

a) Warning.
b) Serious.
c) Fatal.

The Severity category depends on how accurately the mistake can be detected by system (warning
— if the mistake cannot be accurately identified by the system), on the possibility of further validation

10

Tamesa T.C., Bnacos /.M., Otunos A.B., Jlanyn H.H. ABromatnsamms nposepkr UML quarpamm, co3naHHbIX cTyneHTamu. Ipyost UCIT
PAH, Tom 33, Bhim. 4, 2021 1., cTp. 7-18

(fatal mistakes in AD lead to the termination of further validation) and on the recommendation
(warnings for minor mistakes, fatal for major mistakes).

Model mistakes are also divided into lexical, syntactic, and semantic subcategories. On lexical step,
the diagram elements are considered separately, individually (a mistake in the name of the element,
the type of the element does not belong to the diagram). On syntactic step, we consider mistakes
related to the constructing diagram rules, the rules for connecting diagram elements. Semantic
captures the quality of a model. This category covers mistakes relating to invalid representation of
domain, violation of the boundaries of the system, incorrect display of meaning.

In this work, we consider in detail only the model mistakes. GenMyModel does not allow to make
some syntax mistakes in UCD, AD and CD, so we did not include them in the checklists. Table 1
presents the examples of Model mistakes.

Table 1. Examples of model mistakes

Mistake Subcategory Severity

Invalid actor name: should be
represented by a noun, starting Lexical Serious
with a capital letter

More than one initial node Syntactic Fatal

When specifying the roles
multiplicity, some numbers are Semantic Serious
negative integers

4. Validation Methods

4.1 Approach for Use-Case Diagram Validation

A research was carried out among the existing UCD validation methods. For the use case diagrams,
the following were identified: Object-Oriented Reading Techniques (OORT) [29] and CBR [30] —
reading based on a list of requirements.

Since we have a list of mistakes, the CBR methodology was chosen. CBR is a very common method.
List of mistakes should be checked during the validation. CBR provides more aid and advice to the
inspectors than ad-hoc reading and is therefore a very common technique.

Initially, the XML document is read into the program internal data representation. Each chart
element has a unique identifier, coordinates on the image, and a name or description. On the reading
stage, some types of mistakes can be verified (mostly lexical). Items not included in the UCD list
are excluded.

The next stage involves conducting sequential checks of each type from the list of the most common
mistakes of students.

4.2 Approach for Activity Diagram Validation

To solve the AD validation problem, the analysis of existing methods was carried out, such as the
construction of a Petri net [31], the use of temporal logic [32], as well as graph with semantics
similar to Petri Net [18].

For this work, we use a subset of UML elements. We consider the initial node, final node, decision
node, merge node, activity node, fork node, join node, swimlane, comment node, flow.

Now we describe the basic idea of the validation process. For each element in AD, there is a class
in our system. Each class has field for token and field for list of links on the next objects. Besides,
it can contain additional information about AD element. For each AD element, the object is created

11

Gasheva T.S., Vlasov D.I., Otinov A.V., Datsun N.N. Validation Automation of UML Diagrams Created by Students. Trudy ISP RAN/Proc.
ISP RAS, vol. 33, issue 4, 2021, pp. 7-18

and placed in a graph. The graph’s vertices represent AD’s nodes and the graph’s edges represent
AD’s flows.

The validation is divided into two steps. At the first step, lexical, semantic and part of syntactic
mistakes are checked. Then we check unpaired using fork and join by modeling token flow through
the graph.

After the model passes the first steps of validation, in order to continue validation, we impose some
restrictions. The restrictions are as follows.

1) AD must have exactly one initial node, one or more final nodes and at least one activity node,
2) initial node has no incoming edge and the final node has no outgoing flow,

3) activity, merge, join and init nodes must have exactly one outgoing flow,

4) fork and decision nodes can have any number of outgoing flows,

5) activity, fork, decision, final nodes should have only one incoming flow,

6) each join and merge node can have any number of incoming flows,

7) flows cannot start and finish in the same node.

If the restriction was violated, we finish validation without graph checking.

The tokens flow through the graph along the edge directions from initial to final node. The validation
is completed when all token flows are checked or a mistake is found. In this case mistakes are the
situations when several tokens appear in one node at once or when a token remains in the graph
upon reaching the final node or when deadlock occurs (the situation when there is no token can be
moved).

According to [18], the graph uses token-flow semantics. Each element has own set of rules, which
ensure the token flows through the graph.

The state of the graph at each step can be encoded with a sequence of zeros and ones, where zero
means that the element is inactive (does not have a token), and one means that it is active. A stack
of current masks and a set of checked masks are created. At each step, the top mask is taken from
the current masks and processed. The processing’s result is new masks, that are checked for use
early using a set of used masks and, if they have not been previously used, are added to the list of
current masks.

At each step, all existing tokens are moved to one of the next nodes. In the case of a decision node,
a token can activate a random element. Therefore, it generates several possible next states that are
pushed into the current mask stack.

However, the problem of unpaired use of a joint and a fork remains. When there are several fork
nodes corresponding to one join nodes, the join can be activated wrongly. Fig. 2 presents this issue.

—— |
-

Raview o St
F S Searching good Getling
ormaeon sgreement

HEE.

Fig. 2. Several fork nodes corresponding to one join nodes

Review status

12

Tamesa T.C., Bnacos /.M., Otunos A.B., Jlanyn H.H. ABromatnsamms nposepkr UML quarpamm, co3naHHbIX cTyneHTamu. Ipyost UCIT
PAH, Tom 33, Bhim. 4, 2021 1., cTp. 7-18

To figure out this kind of mistake, it was proposed to use tokens of different colors. It is some
additional data that is stored on the token’s stack [19]. The fork node generates a unique color every
time a token pass through it. The output tokens have the same color; it means that the fork’s color is
placed on the token’s stack of colors. For join node activation, it is necessary that the colors at the
top of the stacks have the same color. If the condition is right the join node becomes activated, and
the output token remains all colors except the top color. In other case, a fatal mistake occurs and
validation is completed.

4.3 Approach for Class Diagram Validation

There are very few fully automated methods for validating CD. Most of the existing solutions require
a translation process into specific data formats that must be performed by a human. This approach
is not suitable, since we need to quickly validate the diagrams, and the translation process takes a
sufficient amount of time.

The validation process is based on and similar to the program compilation analysis stage, and it can
be divided into three stages: the first stage is lexical analysis, the second is syntactic analysis and
the third stage is semantic analysis. At each stage, the corresponding rules will be checked. During
the first stage, metadata is converted into a set of tokens, the use of invalid tokens, incorrect names,
designations and properties of tokens is detected. During the second stage, the correctness of creating
constructions of the UML language from a valid set of tokens. And at the final stage of validation,
the semantics of the constructed class diagram is considered, namely the correctness of the semantic
meanings of words, phrases and elements.

Validation process begins with reading all data about the model from the XMI file. All properties of
the CD tokens can be retrieved from these data. Already on the basis of these properties, it will be
easy to detect some inconsistencies and mistakes.

The main point in this method is to designate a set of rules for constructing UML CD such as to
identify all mistakes in the validated diagram. The set of rules was compiled using the UML
specification [1]. The list of all rules that will be checked during validation was described in detail
earlier. Also, special attention will be paid to common mistakes when constructing CD.

5. Implementation

For developing the system, we used C#. The process of validation system creating was divided into

two stages:

1) implementation of the UCD, AD, and CD validation modules in prototype mode as a console
application and presentation the result in the form of text message,

2) integration of UCD, AD, and CD validation modules into the system with a user graphical
interface.

The system has the following features:

1) the ability to upload one or several files into the system;

2) the ability to validate one or several models;

3) the ability to automatically find the pair "metadata - image" while files are uploading into the

system;

4) the ability to add and remove diagrams from the current list of models;

5) the ability to work only with metadata diagrams (without images);

6) dynamic changing the graphical presentation of diagrams while switching is occurring between

them;

7) dynamic mistakes designation on the graphical presentation of the diagram while switching is

occurring between mistakes;

8) highlighting each mistake in a different color depending on its severity;

13

Gasheva T.S., Vlasov D.I., Otinov A.V., Datsun N.N. Validation Automation of UML Diagrams Created by Students. Trudy ISP RAN/Proc.
ISP RAS, vol. 33, issue 4, 2021, pp. 7-18

9) the ability to check all diagrams with "not checked" status at once.
Fig. 3 shows the results of CD validation.

o Bepugurauns guarpauu UML - o X

@aitn Cnpaska

Ouwwbw (Tin Anarpamusi: [narpamia K1accos)

Cepuanocts Texct

VMR KNZCC HBMWNBETCH © MANENLKO BYKBH:

“token"
1 Vs knacca conepxit npobens: "Value Token”
Knace "Lexer” He uMeeT KoHTeRHepa ans
ofbexTos knacca "token”

[narpams:

LexicalAnalyser
[varpammad
[Avarpamma3
[varpamma2

xcnopt

S Ypanure FloBasus

Bepuchuumposate

Fig. 3. Results of CD validation

6. Case Study

We analyzed the quality of projects developed in PSU by full-time undergraduate majors "Software"
and "Computer security» (course «Modeling of Information Systems») and part-time specialty
"Information technologies" (course "Design and implementation of information systems»). These
are projects of information systems (IS) for business applications, computer security, and
information technology. Each project includes models of three stages of IS life cycle: analysis (UCD,
AD, sequence diagrams), design (collaboration diagrams and CD), implementation (component
diagrams and deployment diagrams). The projects were carried out by teams of 2-3 students.

The checklists used in CBR to validation diagrams include 6, 10, and 5 lexical mistakes; 14, 15, and
8 syntactic, 7, 1, and 2 semantic mistake for CD, AD, and CD.

Fig. 4 presents examples of mistakes in Table 1 in: a) for UCD, b) for AD, ¢) for CD.

Employee Sender Task

2 number: int

WorkCounter 3 description: string
o o
Work with the
syt 7 3 @ setNumber (iN:int):void
/ Create base Create archival # getDescription(): string
copy # setDescription (iD:string): void
T~
Create new 1

load log
TaskList

€2 multipleTasks:Task(]
&2 quantityOfTasks: int
getQuantity(): int

@, add (taskTask):void
a) b) c)

Fig. 4. Examples of mistakes found by system

14

Tamesa T.C., Bnacos /.M., Otunos A.B., Jlanyn H.H. ABromatnsamms nposepkr UML quarpamm, co3naHHbIX cTyneHTamu. Ipyost UCIT
PAH, Tom 33, Bhim. 4, 2021 1., cTp. 7-18

7. Results

An analysis was carried out of 191 the work of IT students who create models of information systems
based on an object-oriented approach to modeling. UCD module was tested on 70 student models,
AD —41, CD — 80. UCD module can detect 25 mistakes, AD — 26, CD — 26.

Fig. 5 presents percentage of mistakes found by system. System did not find semantic mistakes in
students’ CD models.

Percentage of mistakes found by system

100 97 100
92 -
100 77 - 83 2
= 50
8 9
i) |
lexical syntactic semantic

BUCD mAD D
Fig. 5. Percentage of mistakes found by system

8. Discussion and Future Work

The current version of the UML diagram validation system solves the following tasks:

1) based on the exported XMI file, mistakes are searched in UCD, AD, and CD,

2) visualization of found mistakes and their display on exported diagram images.

It can be recommended for use by two categories of users:

1) students: to check models before submitting for teacher’s grading.

2) teachers: to validate models of students.

For the future, we will work on the validation functions for teachers in order to qualify the degree

of deviation of the student model from the task specification and to form the recommended score
for the model.

9. Conclusion

We proposed a mistakes’ classification with two dimensions and observed model mistakes in detail.
We justified the choice of the tool for creating UML diagrams. Modules for validation of UCD, AD,
CD were developed and realized. These modules were integrated into a system allowing package
processing of model files. In the end, we tested the system on 191 student models.

References / Cnucok nutepaTtypbl

[1]. Unified Modeling Language 2.5.1. (2017). Object Management Group, Available at:
https://www.omg.org/spec/UML/About-UML/, accessed 03.09.2021.

[2]. Boberi¢ Krsticev D., Tesendic D. Experience in Teaching OOAD to Various Students. Informatics in
Education, vol. 12, 2013, pp. 43-58.

[3]. Koznov D.V. Methodology and tools for domain-specific modeling. Doctor Degree thesis. Saint-
Petersburg, 2016, 430 p. (in Russian) / KoznoB /I.B. Merononorus 1 MHCTpYMEHTapuil NpeIMeTHO-
OPHEHTHPOBAHHOT'0 MOJeIUpOBaHus. Jluccepranus JokTopa TexHudeckux Hayk. CII6., 2016 1., 430 cTp.

[4]. Baresi L., Morzenti A. et al. A logic-based approach for the verification of UML timed models. ACM
Transactions on Software Engineering and Methodology, vol. 26, issue 2, 2017, article no. A7.

[5]. Daw Z., Mangino J., Cleaveland R. UML-VT: A Formal Verification Environment for UML Activity
Diagrams. In Proc. of the MoDELS 2015 Demo and Poster Session co-located with ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems (MoDELS 2015), 2015,
pp. 48-51.

15

Gasheva T.S., Vlasov D.I., Otinov A.V., Datsun N.N. Validation Automation of UML Diagrams Created by Students. Trudy ISP RAN/Proc.
ISP RAS, vol. 33, issue 4, 2021, pp. 7-18

[6]. Bourque P., Dupuis R. et al. Guide to the software engineering body of knowledge. IEEE Software, vol.
16, no. 6, 1999, pp. 35-44.

[7]. Object Management Group. MDA Guide revision 2.0. 2014, Available at: https://www.omg.org/cgi-
bin/doc?ormsc/14-06-01, accessed 03.09.2021.

[8]. Reuter R., Stark T. et al. Insights in Students’ Problems during UML Modeling. In Proc. of the IEEE
Global Engineering Education Conference (EDUCON), 2020, pp. 592-600.

[9]. Matyokurehwa K., Makoni K.T. Students' Perceptions in Software Modelling Using UML in
Undergraduate Software Engineering Projects. International Journal of Information and Communication
Technology Education, vol. 15, no. 4, 2019, article no. 2.

[10]. Object Management Group. XML Metadata Interchange (XMI) Specification 2.5.1. 2015. Available at:
https://www.omg.org/spec/XMI/2.5.1/PDF, accessed 03.09.2021.

[11]. Lima V., Talhi C. et al. Formal Verification and Validation of UML 2.0 Sequence Diagrams using Source
and Destination of Messages. Electronic Notes in Theoretical Computer Science, vol. 254, 2009, pp. 143-
160.

[12]. Chren S., Buhnova B. et al. Mistakes in UML Diagrams: Analysis of Student Projects in a Software
Engineering Course. In Proc. of the IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), 2019, pp. 100-109.

[13]. Fernandez-Saez A.M., Caivano D. et al. On the use of UML documentation in software maintenance:
Results from a survey in industry. In Proc. of the ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS), 2015, pp. 292-301.

[14]. Chytalova K. Catalog of errors in UML diagrams PB007 - software engineering 1. Lasaris Lab, Faculty of

Informatics, Masaryk University, 2018, Available at:
https://drive.google.com/file/d/1J3_Ueb4E2YdAZjksryC4-F123Xgmyhkm/view, accessed 03.09.2021
(in Czech).

[15]. Bolloju N., Leung F.S.K. Assisting novice analysts in developing quality conceptual models with UML.
Communications of the ACM, vol. 49, no. 7, 2006, pp. 108-112.

[16]. Delgado A., Dias A., Brito e Abreu F. Verification and Validation of UML Diagrams using Checklists.
Auvailable at:
https://moodle.fct.unl.pt/pluginfile.php/22771/mod_folder/content/0/ArtigoGrupoB.pdf?forcedownload=
1, accessed 03.09.2021.

[17]. Sabaliauskaite G., Matsukawa F. et al. An experimental comparison of checklist-based reading and
perspective-based reading for UML design document inspection. In Proc. of the International Symposium
on Empirical Software Engineering, 2002, pp. 148-157.

[18]. Rafe V., Rahmani A.T. Formal Analysis of Workflows Using UML 2.0 Activities and Graph
Transformation Systems. Lecture Notes in Computer Science, vol. 5160, 2008, pp. 305-318.

[19]. Jensen K. A brief introduction to coloured Petri Nets. Lecture Notes in Computer Science, vol. 1217,
Berlin, 1997, pp. 203-208.

[20]. IEEE 1044-2009 - IEEE Standard Classification for Software Anomalies. 2010, 23 p.

[21]. Vinarek J., Imko V., Hnetynka P. Verification of Use-Cases with FOAM Tool in Context of Cloud
Providers. In Proc. of the 41st Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2015), 2015, pp. 151-158.

]. Rational Rose. Available at: https://www.ibm.com/software/developer/rosexde/, accessed 03.09.2021.

]. UML-VT. Available at: http://www.cs.umd.edu/~rance/projects/uml-vt/, accessed 03.09.2021.

[24]. Woflan. Available at: https://www.win.tue.nl/woflan/doku.php/, accessed 03.09.2021.

]. Mokhati F., Gagnon P., Badri M. Verifying UML Diagrams with Model Checking: A Rewriting Logic
Based Approach. In Proc. of the Seventh International Conference on Quality Software (QSIC 2007),
2007, pp. 356-362.

[26]. Cabot J., Claris'o R., Riera D. Verification of UML/OCL Class Diagrams using Constraint Programming.
In Proc. of the IEEE International Conference on Software Testing Verification and Validation Workshop,
2008, pp. 73-80.

[27]. Dresden OCL. (2016), Available at: https://github.com/dresden-ocl/dresdenocl, accessed 03.09.2021.

[28]. GenMyModel. Available at: https://www.genmymodel.com/, accessed 03.09.2021.

[29]. Conradi R., Mohagheghi P. et al. Object-Oriented Reading Techniques for Inspection of UML Models —
An Industrial Experiment. Lecture Notes in Computer Science, vol. 2743, 2003, pp. 483-500.

[30]. Naveed A., Ikram N. A novel checklist: Comparison of CBR and PBR to inspect use case specification.
Communications in Computer and Information Science, vol. 558, 2015, pp. 109-125.

16

T'amesa T.C., Bnacos JI.W., Otunos A.B., Jlaiyn H.H. ApTomatusarms nposepkn UML nuarpamm, co3ianHbIX cTyaeHTamu. 1pyost UCIT
PAH, Tom 33, Bhim. 4, 2021 1., cTp. 7-18

[31]. Baresi L., M. Pezzé. On Formalizing UML with High-Level Petri Nets. Lecture Notes in Computer
Science, vol. 2001, 2001, pp. 276-304.

[32]. Araujo J., A. Moreira. Integrating UML Activity Diagrams with Temporal Logic Expressions. In Proc. of
the 10th International Workshop on Exploring Modeling Methods for Systems Analysis and Design
(EMMSAD'05), 2005, pp. 91-98.

Information about authors / UHcpopmauums 06 aBTOpax

Dmitry Igorevich VLASOV - student. His research interests include modeling languages, object-
oriented programming, modeling tools, programming language toolkits.

Hmutpuit Uropesnu BJIACOB — crynent OakanaBpuara. Hay4dHple HHTEpECHl BKIIIOYAIOT SI3BIKH
MOJICTIMPOBAHHS, O00bEKTHO-OPUEHTUPOBAHHOE IPOrPAMMHUPOBAHHUE, CPEACTBA MOACIHPOBAHUS,
WHCTPYMEHTAPHU SI3BIKOB IPOrPaMMHUPOBAHUSI.

Tatiana Sergeevna GASHEVA — student. Her research interests include modeling, UML, object-
oriented programming.

Tatpana CepreesHa I'AIIIEBA — cryneHtr OakamaBpuara. Haydnbsle HHTepechl BKIIOYAIOT
MozienupoBanue, 1361k UML, 00beKTHO-OpHEHTHPOBaHHOE TPOTPaMMUPOBAHHE.

Andrei Valerievich OTINOV - student. Research interests: object-oriented programming, modeling,
information systems.

Amnnpeit Baneppeuu OTHHOB — crynent. Hayunble uHTepechl: 00BEKTHO-OPHEHTUPOBAHHOE
MPOTrpaMMHPOBaHNE, MOJIETUPOBAaHNE, HH)OPMAI[IOHHBIE CHCTEMBI.

Nataliya Nikolaevna DATSUN — Candidate of Physical and Mathematical Sciences, associate
professor of the Computer Science Department. Research interests: modeling languages, modeling
tools, object oriented modeling.

Haranes Hukomaesna JIAIIYH — kanmupmar (u3HKO-MaTeMaTHYECKMX HAyK, JOICHT, JIOLEHT
Kagenpbl MaTeMaTHYECKOro o0ecreueH s BEIYUCIUTENbHBIX cucTeM. Cdepa HaydHBIX HHTEPECOB:
SI3BIKM MOJICITUPOBAHMS, CPEICTBA MOJICIUPOBAHUS, 00bEKTHO-OPUEHTHPOBAHHOE MOJIETUPOBAHHE.

17

