
Труды ИСП РАН, том 33, вып. 4, 2021 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021

19

DOI: 10.15514/ISPRAS-2021-33(4)-2

Integration of micro-services as components in
modeling environments for low code development

1,2H.A.A. Chaudhary, ORCID: 0000-0001-9272-2622 <ahmad.chaudhary@ul.ie>
1,3T. Margaria, ORCID: 0000-0002-5547-9739 <Tiziana.Margaria@ul.ieg>

1 University of Limerick,
Limerick, V94 T9PX, Ireland

2 Confirm Research Centre for Smart Manufacturing
IBC Block2, University of Limerick, Limerick, Ireland

3 Lero: The Irish Software Research Centre
Tierney Building, University of Limerick, Ireland

Abstract. Low code development environments are gaining attention due to their potential as a development
paradigm for very large scale adoption in the future IT. In this paper, we propose a method to extend the
(application) Domain Specific Languages supported by two low code development environments based on
formal models, namely DIME (native Java) and Pyro (native Python), to include functionalities hosted on
heterogeneous technologies and platforms. For this we follow the analogy of micro services. After this
integration, both environments can leverage the communication with pre-existing remote RESTful and
enterprise systems’ services, in our case Amazon Web Services (AWS) (but this can be easily generalized to
other cloud platforms). Developers can this way utilize within DIME and Pyro the potential of sophisticated
services, potentially the entire Python and AWS ecosystems, as libraries of drag and drop components in their
model driven, low-code style. The new DSLs are made available in DIME and Pyro as collections of
implemented SIBs and blocks. Due to the specific capabilities and checks underlying the DIME and Pyro
platforms, the individual DSL functionalities are automatically validated for semantic and syntactical errors in
both environments.

Keywords: Domain Specific Language (DSL); Model Driven Development (MDD); eXtreme Model Driven
Development (XMDD); Service Independent Building Blocks (SIBs); Low code development environments;
DIME; Pyro

For citation: Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling
environments for low code development. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30.
DOI: 10.15514/ISPRAS-2021-33(4)-2
Acknowledgements. This work was supported by the Science Foundation Ireland grants 13/RC/2094 (Lero,
the Irish Software Research Centre) and 16/RC/3918 (Confirm, the Smart Manufacturing Research Centre).

Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling environments for low code development. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30

20

Интеграция микросервисов как компонентов сред
моделирования для малокодовой разработки

1,2 Х.А.А. Чаудхари, ORCID: 0000-0001-9272-2622 <ahmad.chaudhary@ul.ie>
1,3 Т. Маргария, ORCID: 0000-0002-5547-9739 <Tiziana.Margaria@ul.ieg>

1 Университет Лимерика,
Ирландия, V94 T9PX, Лимерик

2 Confirm: Исследовательский центр интеллектуального производства
Ирландия, Лимерикский университет, IBC Block2

3 Lero: Ирландский центр исследований программного обеспечения
Ирландия, Лимерикский университет, Здание Тирни

Аннотация. Среды разработки с низким кодом привлекают внимание из-за их потенциала в качестве
парадигмы разработки для очень крупномасштабного внедрения в ИТ будущего. В этой статье мы
предлагаем метод расширения (приложений) предметно-ориентированных языков, поддерживаемых
двумя средами разработки с низким уровнем кода, основанными на формальных моделях, а именно
DIME (родная Java) и Pyro (родной Python), для включения функций, размещенных на гетерогенных
технологиях и платформы. Для этого мы следуем аналогии с микросервисами. После этой интеграции
обе среды могут использовать связь с уже существующими удаленными службами RESTful и
корпоративных систем, в нашем случае Amazon Web Services (AWS) (но это можно легко
распространить на другие облачные платформы). Таким образом, разработчики могут использовать в
DIME и Pyro потенциал сложных сервисов, потенциально всей экосистемы Python и AWS, в виде
библиотек перетаскиваемых компонентов в управляемом ими стиле с низким кодом. Новые DSL
доступны в DIME и Pyro как коллекции реализованных SIB и блоков. Из-за особых возможностей и
проверок, лежащих в основе платформ DIME и Pyro, отдельные функции DSL автоматически
проверяются на семантические и синтаксические ошибки в обеих средах.

Ключевые слова: предметно-ориентированный язык (DSL); управляемая моделями разработка
(MDD); экстремальная управляемая моделями разработка (XMDD); сервисно-независимые компоненты
(SIB); среды малокодовой разработки; DIME; Piro

Для цитирования: Чаудхари Х.А.А., Маргария Т. Интеграция микросервисов как компонентов сред
моделирования для малокодовой разработки. Труды ИСП РАН, том 33, вып. 4, 2021 г., стр. 19-30 (на
английском языке). DOI: 10.15514/ISPRAS–2021–33(4)–2

Благодарности: Эта работа была поддержана грантами Ирландского научного фонда 13/RC/2094 (Lero,
Ирландский исследовательский центр программного обеспечения) и 16/RC/3918 (Confirm,
Исследовательский центр интеллектуального производства).

1. Introduction
Low code development platforms enable their users to design and develop applications with minimal
coding knowledge [1], with the support of drag-and-drop visual interfaces that operate on
representations of code as encapsulated code wrappers. The main aim [2] of these platforms is to
produce flexible, cost effective and rapid applications in a model driven way. Ideally, they are
adaptive to enhancements and less complex is terms of maintenance. Model-driven development
(MDD) is an approach to develop such systems using models and model refinement from the
conceptual modelling phase to the automated model-to-code transformation of these models to
executable code [3]. The main challenges with traditional software development approaches are the
complexity in development at large scale, the maintenance over time, and the adaptation to dynamic
requirements and upgrades [1]. Doing this on source code is costly, and it systematically excludes
the application domain experts. who are the main knowledge and responsibility carriers. At the same
time, the cost of quality documentation and training of new human resources for code-based
development are other concerns in companies and organizations that depend on code.

Чаудхари Х.А.А., Маргария Т. Интеграция микросервисов как компонентов сред моделирования для малокодовой разработки.
Труды ИСП РАН, том 33, вып. 4, 2021 г., стр. 19-30

21

Domain Specific Languages (DSLs) conveniently encapsulate most complexities of the underlying
application domain. Encapsulation of code and abstraction to semantically faithful representations
in models empowers domain experts to take advantage of these platforms. They can develop
products in an efficient manner and also meet the growing demands of application development
without having deep expertise in software development. Based on a study [4] from 451 researches,
the maintenance effort with low code platforms proved to be 50-90% more efficient as compared to
changes with classical coding languages.
Software systems in general, and especially web apps in internet-centered ecosystems and digital
threads in an Industry 4.0 context, are not isolated in nature: they demand interaction with various
external systems, libraries and services. Frequent needs are (but not limited to)
• acquire sensors data from external systems,
• feed data to external dashboards for analytics and publishing,
• utilize the compute power of cloud systems,
• sophisticated enterprise services.
In this context, microservices [5] play an important role at the enterprise level. The microservices
paradigm (SOA done right) defines certain methods to design software services as suite of
independently deployable components with the purpose of modularity, reusability and autonomy
[5]. Different versions of these services may coexist in a system as a set of loosely coupled
collaborative components and must be independently replaceable without impacting the operations
of heterogeneous systems.
This paper proposes the integration of microservices as components in two graphical modelling
development environments based on formal models: the general purpose, desktop DIME [6]
Integrated Modelling Environment and the special purpose, web based Pyrus (Pyro) [7]. Their
extension and integration with external systems through services extends the capabilities of these
platform to meet wider communication needs (e.g. in the cloud), and also to take advantage of
existing sophisticated enterprise services (e.g. AWS).
Low-code programming both at the API and the platform level is considered to be a game changer
for the economy of application development. Gartner Inc., for example, predicts [8] that the size of
the low-code development tools market will increase by nearly 30% year on year from 2020 to 2021,
reaching a $5.8 billion value in 2021. They state that so far, this is the fastest and probably the
simplest and most economical method of developing applications.
In this paper, Section 2 discusses the state of art, Section [3] states the problem, Section [4] gives an
overview of the platforms used to extend the low-code DSLs. Section [5] explains the integration,
architecture and implementation of SIBs in DIME (the desktop IME) and blocks in Pyro/Pyrus (the
web IME). Finally, in Section 6 we conclude and discuss.

2. State of the art
Most domain specific languages today are at the coding level and do not leverage a model driven
approach at the platform level. The rise in re-usability and maintainability demands paved the path
to low code development environments and gained the attention of the developer’s community [9].
The construction of meta-models behind these DSLs is challenging, since they must capture all the
domain knowledge, i.e. provide both semantic and syntactic rules.
Ktrain [10] is a popular coding level DSL: a python wrapper that encapsulates Tensor Flow
functionalities and facilitates developers to augment machine learning tasks with fewer lines of
python code. Xatkit [11], still in early stages of development, increases the reusability of chat bots
by evolving NLP/NLU engine for text analytics. At the language level they support several versions
of bots, but the generation of chatbots from existing data sources at the framework level is in future
plans. jABC [12] is a general purpose XMDD framework for the development of desktop and
enterprise applications in model driven fashion. It enables its users to compose models by drag and

Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling environments for low code development. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30

22

drop of reusable blocks into hierarchical graph structures that are executable (interpreted) and
compilable. Aurera [1] is a standalone desktop system for business modelling and addresses the
challenges of frequent changes to IT solutions. The system is in early stages of development and
does not support communication with external systems.
DIME [6] is a general purpose MDD platform-level tool, suitable for agile development due to its
rapid prototyping for web application development. It follows the One Thing Approach based on
XMDD [13], in a lineage of development environments that traces back to the METAFrame'95 [14].
DIME supports both control flow and data flow modelling in its process diagrams. Control flow
models admit a single start node but may have multiple end nodes, and nodes (called SIBs)
representing single functionalities or sub-models are graphs, i.e. formal models. The SIBs are
connected via directed edges depending on the business logic, with distinct edge types for dataflow
and control-flow.
Agent-based modelling paradigm [15] is another popular approach to increase the development
productivity in simulation environments. CaaSSET [16] is a Context-as-a-Service based framework
to ease the development of context services. The transformation into executable services is semi-
automatic.
The market segment of web based development environments is still relatively young. Not having
many established environments, there is a huge potential for research and collaboration in this area.
Theia [17], is a textual DSL tool supporting both desktop and web based IDEs.
Pyro [7] is a web base graphical modelling environment for the collaborative development of web
applications based on DSLs. Pyro, like DIME, is itself a product modelled with the Cinco [18] Meta
Tooling Framework, which provides a suite of textual DSLs in which to specify the models for
which to generate editors. The MGL («Meta Graph Language») defines the structural information
on the tool’s model; the «Meta Style Language» (MSL) file specifies the visual characteristics (e.g.
shapes and colors) of this model. The «Cinco Product Definition» (CPD) file specifies the details of
the tool generation.
Both DIME and Pyro are advanced graph model editors generated in this way from Cinco
specifications. In this sense, they share a common philosophy, the semantic and syntactic
characteristics of their respective models and edit/check/manipulate capabilities are described
formally in their MGL, MSL and CPD files.
To interact with external entities, Micro service [19] is a popular way to develop modular, reusable
and autonomous service components. We adopt this approach to extend the functionalities of two of
the platforms in a model driven way. Following the same principles of graphical microservices
architectures, AjiL [20] is a good effort in this direction, but due to performance delays in complex
applications, they shifted their focus from graphical to textual notations.

3. Problem Statement
We consider the DIME [6] and Pyro [7] Cinco-products as our case study. Both are graphical
Integrated Modelling Environments for low-code/no-code application development, used to develop
research [21, 22] as well as industrial applications. We will use DSLs to virtualize the technological
heterogeneity of the services, delivering a simple, coherent and efficient extension to both low-code
modelling platforms.
Concretely, we show how to extend the capabilities of the DSLs through new, heterogeneous
services. We
1) extend DIME, an offline eclipse-based general-purpose MDD environment for Web

applications, by integrating a generic RESTful service as a new component, technically adding
a new executable SIB that a) represents and b) executes this REST service;

2) extend Pyrus/Pyro, a collaborative, web based special-purpose MDD environment for data
analytics and AI/ML, by integrating cloud-based enterprise services in a similar fashion. Here
we chose Amazon Web Services.

Чаудхари Х.А.А., Маргария Т. Интеграция микросервисов как компонентов сред моделирования для малокодовой разработки.
Труды ИСП РАН, том 33, вып. 4, 2021 г., стр. 19-30

23

The models in the 2 IMEs are different: DIME has rich models that cover processes, data, GUI, roles
and security, and supports both dataflow and control flow models. Pyrus is simpler, and supports
only dataflow modelling, which is popular and sufficient in the analytics pipelines it addresses. As
the specific integration depends on the characteristic and expressive power of the models, there are
differences.
The extension by integration adds to the tools the capability to communicate with sophisticated
enterprise ecosystems, without sacrificing the flexible yet intuitive modelling style for the no-code
users, who just use the DSLs that are available.

4. Overview of the IMEs
Domain-specific languages aim at minimizing the domain/IT knowledge gap between domain
experts and software developers by lifting the vocabulary, granularity and structure of the
application domain into the modelling language, so that the modelling entities stay familiar to the
domain experts and their intuition is indeed correct. Domain experts prefer graphical languages
because of the haptic functionality of drag-and-drop from a collection of functionalities is an apt
metaphor for the construction of complex behaviors from an appropriate network of identifiable,
well understood building blocks along intuitive control flow and data flow patterns.
The effort to develop these tools from scratch is enormous. Consequently, the specialization and
evolution of such tools is hindered by the sheer cost and complexity of managing their code and its
quality and support. Cinco [18] was a game changer: a meta-level platform that wipes out this cost
and complexity by providing the above described domain specific graphical modelling and code
generation capabilities. Most Cinco products are based on Eclipse, enhanced with graphical
modelling tools and various plug-ins. Suddenly, one can create a new Integrated Modelling
Environment by specifying properties in three files and availing of the Cinco code generation
capability for the target execution environment (e.g., eclipse or web). Modifications are not anymore
at the code level: to change DIME or Pyro, one edits the specifying files and re-generates the tool
with the appropriate generator.
In this paper1, we will discuss the extension and integration of external systems as micro services in
two of the Cinco’s products DIME and Pyro (particularly Pyrus).

4.1 DIME
DIME is an Integrated Modeling Environment based on J2EE eclipse, to design, develop and deploy
web applications in an agile paradigm. Its model types help users to graphically model and develop
different aspects of ordinary web application: (i) data model, (ii) GUI model, (iii) business logic in
terms of processes and persistence, and (iv) roles and security model. The specific functional
capabilities are provided to the users as a family of Graphical DSLs. The GUI DSL and a DSL
providing a collection of generic blocks (called SIBs, for Service Independent Building Blocks)
come with DIME, and other, domain specific DSLs can be added at need.
Modelling in DIME happens mainly by the mechanism of drag-and-drop of DSL components on a
canvas, and components comprise a node and a predefined set of outgoing edges. DIME supports
both data and control flow to implement different aspects of business logic. Consistency checks are
built-in in the DIME MGL and MSL, so that errors are either prevented (e.g., an output cannot
connect to another output) or detected (e.g. the model is incomplete because some edges are
dangling, not connected). DIME follows the One Thing Approach philosophy [23] by enforcing the
SIBs to be generic and encapsulate only the required functionality. This way, SIBs are easily
understandable and reusable, and application experts that are not coders can develop complex
applications by using the SIBs in the provided DSLs. GUI models represent single pages of the web
application and links to the underlying functionalities. Process models can be hierarchical, i.e.

1 The complete project code is available in Github: https://github.com/ahmadch1991/syrcose21.

Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling environments for low code development. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30

24

contain other process models, this way easing the organization and comprehension of the structure
and behaviour of complex applications. Once the models are ready, the product generation step feeds
the models collection to successive model-to-model and model-to-code transformers, resulting in a
complete code generation for a standard web application runtime.
The setup for the development environment for DIME requires Java version 1.8 and eclipse
dependencies to be installed on the development machine.

4.2 Pyro
In contrast to DIME, Pyro is a web based Cinco-product that runs in a web browser and turns it into
a collaborative domain-specific graphical modelling environment for data-flow applications.
%The high level metamodeling is braced by MGL and MSL: The MGL depicts the syntactical
constraints including the available nodes and edges; and the visual appearance of these modelling
artefacts is defined in MSL. Pyro stores objects and data types in a loosely coupled manner [24]. To
incorporate the rich features of typical web application, like the built-in support of cross-platform
and a reusable components focused architecture, its front-end is built upon the Angular Dart [25]
framework. To meet the needs of uninterruptible user interaction with the modelling environment,
data exchange is implemented via non-blocking REST-based asynchronous communication. As a
more recent development, Pyro is being enhanced with performance optimization and integration of
external systems.
Pyrus is a specific Pyro derivative specialized for dataflow models executing within the popular
Jupyter notebook environment. It is therefore particularly attractive for data analytics and AI
applications, that are frequently coded in Python.
Working with Pyro/Pyrus requires the platform deployment on a local or remote server accessible
via browser.

5. Proposed NPU architecture modifications

5.1 Memory synchronization via the shared bus
In this approach, the following modifications are proposed: memory devices containing the
algorithm state are added to each pipeline stage. Memory devices on pipeline stages with equal
depths are connected using a shared bus. The bus is used to synchronize data in the memory devices.
When a memory cell in some memory device is updated, the new value and memory cell address
are sent to other memory devices via the bus.
There are two operations available for the processing unit: read a value from a memory cell and
write a value to a memory cell. When the value is read it is taken from the memory device that is on
the same pipeline stage. When the value is written to the memory it is written to the memory device
on the same pipeline stages and then is sent to appropriate memory devices in other pipelines.

5.2 Combining mechanism
In this approach, memory devices and processing units are connected using a packet switched
network-on-chip with special switches that allow to combine memory requests. Memory requests
have a Read-Modify-Write form. Memory request has a form of a tuple (id, addr, f) where id is a
unique request identifier, addr is a memory cell address and f is a memory operation identifier. The
response consists of two values: request identifier and the value that was in the memory cell before
the memory operation was done.
This approach requires memory cells and network switches to have specialized arithmetic units to
perform memory operations and memory request combinations.

Чаудхари Х.А.А., Маргария Т. Интеграция микросервисов как компонентов сред моделирования для малокодовой разработки.
Труды ИСП РАН, том 33, вып. 4, 2021 г., стр. 19-30

25

6. Extending the IMEs
We show now how to extend DIME and Pyrus with RESTful services and cloud-based AWS
services, respectively. This happens by implementing a new DSL consisting of a collection of
capabilities that run on an external platform in a different technology. Effectively, these are akin to
microservices. We show here exemplarily how to implement one such microservice for each case.
The extension to other RESTful services or other AWS or similar services is then easy to achieve
following these blueprints.

6.1 RESTful extension of DIME
We show now how to develop a generic Service Independent Building Block (SIB) in DIME that
communicates with any external RESTful system.
Extending the DIME functionality happens by using the support of native library it provides. In
DIME's multi-model type architecture, the business/logic model type is where the new SIBs will be
utilized. As shown in fig. 1, the existing model architecture is extended with the addition of a native
library as a new block belonging to the process/business logic model type. The native block will be
merged to the process/business logic models during the automated code generation phase for the
web application. Concretely, the extended functionality will be integrated as Java code with the
remainder of the application during the compilation, and this way it will not add any additional
performance penalty.

Fig. 1. DIME: Modelling Architecture and Native Library support

For the SIB implementation, we consider here a REST service that acts as a server and returns a list
of country names on the basis of a country code input, e.g. United Kingdom for input ‘uk’, and the
name of all countries from the database for input ‘all’. The service is implemented in PHP in a
conventional fashion, and deployed on an external public server. It will respond to the requests
generated by client SIBs
Now, we need to create a new client SIB with appropriate characteristics to communicate with
RESTful service. This encompasses the SIB declaration and the SIB implementation.
The SIB declaration is shown in Listing 1.
package app.demo
sib rest_read_str_list : file_path#Java_fn

url : text
input_var : text
input : text
output : text
-> success

Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling environments for low code development. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30

26

output: [text]
-> noresult
-> failure

Listing 1. SIB declaration for the «REST Read» SIB
• Firstly, in the project explorer we add a new, empty file with extension «.sib» and the name of

the proposed SIB.
• This SIB declaration file contains the signature of the new SIB. It starts with the keyword «sib»,

followed by the new SIB name, that in our case is REST_read_str_list, followed by a colon and
the path to the attached Java function. This is the function be invoked when the SIB is used in
the process modelling.

• The next section contains the proper signature: the list of inputs and outputs, with name and
data types. In our case, the SIB accepts the following I/O:
− URL of an external server;
− input variable name and data to create a valid URL at run time;
− the output variable name is also added in the signature, to extract the requested data from

server response for further JSON parsing.
• Finally, the list of different control branches based on outcomes. In our case the three branches

are «success», which returns a text output provided by the external service, «noresult» of the
external services returns no result, and «failure» in case of error in the communication with the
external service.

For the SIB implementation, The RESTful «Rest Read» service is implemented in PHP in a
conventional fashion, and deployed on an external public server. It will respond to the requests
generated by this SIBs.

Fig. 2. SIBs explorer with the new Native SIBs

Once the declared SIB, its signatures and the attached Java function are validated by the platform,
the SIB will be visible in the explorer as a Native SIB, with the other default SIBs as shown in fig.
2. At this point it is ready to be used, and available to the DIME users as a drag and drop item, ready
to be inserted in any process model.

Fig. 3. The REST Read SIB in use: Visual representation in a model

Чаудхари Х.А.А., Маргария Т. Интеграция микросервисов как компонентов сред моделирования для малокодовой разработки.
Труды ИСП РАН, том 33, вып. 4, 2021 г., стр. 19-30

27

Fig. 3 shows the visual representation of the newly developed SIB, as it appears when it is used in a
process model. The required four inputs are being fed to this block using data flow (dotted) arrows.
We see the three outgoing branches, labelled as defined. On success, the result will be conveyed as
a string (or list of strings) to the successive SIB.
DIME automatically validates semantic and syntactic errors after the insertion and data connectivity
of SIBs, ensuring this way the correctness of intended behaviour (automatic quality assurance [26]
of models).

6.2 Cloud extension of Pyrus
We extend now the Pyrus is an online data analytics platform built using Pyro with Amazon Web
Services (AWS), choosing the Amazon Translate service [27].

Fig. 4. The Pyrus/Pyro Architecture extended with AWS

Pyrus communicates with Jupyter hub at the backend. It uses the RESTful protocol to read function
signatures and execute the attached python code. As shown in fig. 4, Jupyter and Pyrus
communicates in asynchronously manner.

Fig. 5. Pyrus pipeline using AWS translate

Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling environments for low code development. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30

28

The mechanism for the new AWS Translate block definition and implementation is similar to the
DIME SIB declaration, but it only contains the signature, no outgoing branches. As Pyrus supports
a dataflow modelling style, there are no control elements (the branches). The signature declaration
starts with the # keyword, it is followed by meta data and the implementation of the functions in a
python file. It has an extension «.py» and is located in the Jupyterhub space. Pyrus automatically
reads these annotated signatures and shows them as drag-able blocks in its explorer.
Fig. 5 shows the working pipeline of AWS_translate: in reality we have defined 2 blocks,
AWS.init_session and AWS.translate_string.
The initialization block must meet the preconditions of the external server in order to use its services.
Communication with the AWS server/services requires a valid session, validated with credentials,
i.e. access key, secret key, server information. The AWS.init_session initiates the communication
transaction with the AWS server. It accepts the required inputs/tokens from connected grey blocks,
which are constants.
Once successfully authenticated by AWS, a session token is provided for further communication
with AWS. This token (output) is fed to the AWS.translate_string block along with the other required
inputs: the text string to be translated and the code of the from and to languages.
Finally, the (translated text) result is passed to the next block, text_util.print_string, that prints it on
screen.
The pipelines are automatically validated by the underlying modelling platform to check for
connectivity errors of the blocks on the canvas.

6.2 Tool and Technologies
The tools and technologies used for these implementations and extensions are Eclipse, Java, JSON
library, PHP, Python, DIME, Pyrus, Jupyter Hub and Amazon Web Services.
As the methodology is generic, it can be followed like a blueprint to implement communication and
integrate a large variety of external services and platforms. The resulting drag and drop components
enrich the DSL domain and expressive features of low code development in the mentioned
platforms.

7. Conclusion and Discussion
We presented a generic extension mechanism to two low code development environments along a
microservice philosophy. We showed it by integrating preexisting remote RESTful services and
cloud-based enterprise system services as new drag and drop components in the respective DSLs. In
DIME, an offline low-code IME, we used the native library mechanism, with signature declaration,
linked Java backend code, and the code is merged with the logic layer at compile time. Pyrus, an
online no code graphical data analytics tool, is linked with Jupiter Hub for functions discovery and
code execution. To display new python functions as components in Pyrus, custom signatures are
added to the python files defined in Jupyter hub, and the data flow pipeline of the service is modelled
in the Pyrus frontend.
The simplicity and generality of the integration are an important feature of the chosen platforms. We
envisage in fact a systematic integration of DSLs for various application domains stemming for our
research collaborations. The simpler this is, the easier is the adoption of the approach across diverse
application domains, research groups, and industrial partners. The (hand)code based extension
approach of most popular low-code environments, that do not use formal models, nor generate
«intelligent» modelling domains that have built-in checks for the model conformance are in fact
inferior and sources again of complexity in the management of heterogeneity, code maintenance and
evolution. The next application domains will be data visualization and data streaming platforms.
We will support more AI/ML and data analytics functionality both in DIME and in Pyrus, adding

Чаудхари Х.А.А., Маргария Т. Интеграция микросервисов как компонентов сред моделирования для малокодовой разработки.
Труды ИСП РАН, том 33, вып. 4, 2021 г., стр. 19-30

29

also cross-platform integration, in order to use the analytics capabilities of Pyrus pipelines in the
DIME Digital Twin applications for Industry 4.0 as well as in the Digital Humanities [28].

References
[1] R. Waszkowski. Low-code platform for automating business processes in manufacturing. IFAC-

PapersOnLine, vol. 52, issue 10, 2019, pp. 376-381.
[2] R. Sanchis, Ó. García-Perales et al. Low-code as enabler of digital transformation in manufacturing

industry. Applied Sciences, vol. 10, no. 1, 2020, 17 p.
[3] S.J. Mellor, T. Clark, and T. Futagami. Model-driven development: guest editors’ introduction. IEEE

Software, vol. 20, no. 5, 2003, pp. 14-18.
[4] Intelligent process automation and the emergence of digital automation platforms. Available at:

https://www.redhat.com/cms/managed-files/mi-451-research-intelligent-process-automation-analyst-
paper-f11434-201802.pdf, accessed Feb, 2021

[5] S. Newman. Building microservices: designing fine-grained systems. O’Reilly Media, 2015, 280 p.
[6] S. Boßelmann, M. Frohme et al. Dime: A programming-less modeling environment for web applications.

Lecture Notes in Computer Science, vol. 9953, 2016, pp. 809–832.
[7] P. Zweihoff, S. Naujokat, and B. Steffen. Pyro: Generating domain-specific collaborative online modeling

environment. Lecture Notes in Computer Science, vol. 11424, 2019, pp. 101-115.
[8] Gartner forecasts. Available at: https://www.gartner.com/en/newsroom/press-releases/2021-02-15-

gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021,
accessed Feb, 2021

[9] K. Ordoñez, J. Hilera, and S. Cueva. Model-driven development of accessible software: a systematic
literature review. Universal Access in the Information Society, 2020, pp. 1-30.

[10] A.S. Maiya. ktrain: A low-code library for augmented machine learning. arXiv preprint arXiv:2004.10703,
2020, 9 p.

[11] G. Daniel, J. Cabot et al. Xatkit: A multimodal low-code chatbot development framework. IEEE Access,
vol. 8, 2020, pp. 15332-15346.

[12] B. Steffen, T. Margaria et al. Model-driven development with the jabc. Lecture Notes in Computer Science,
vol. 4383, 2007, pp. 92-108.

[13] T. Margaria and B. Steffen. eXtreme Model-Driven Development (XMDD) Technologies as a Hands-On
Approach to Software Development Without Coding. In Tatnall A. (eds) Encyclopedia of Education and
Information Technologies. Springer, 2020.

[14] B. Steffen, T. Margaria et al. The metaframe’95 environment. Lecture Notes in Computer Science, vol.
1102, 1996, pp. 450-453.

[15] F. Santos, I. Nunes, and A. L. Bazzan. Quantitatively assessing the benefits of model-driven development
in agent-based modeling and simulation. Simulation Modelling Practice and Theory, vol. 104, 2020, article
no. 102126.

[16] H. Moradi, B. Zamani, and K. Zamanifar. Caasset: A framework for model-driven development of context
as a service. Future Generation Computer Systems, vol. 105, 2020, pp. 61-95.

[17] Cloud and desktop ide platform. Available at: https://theia-ide.org/, accessed Feb, 2021.
[18] S. Naujokat, M. Lybecait et al. Cinco: a simplicity-driven approach to full generation of domain-specific

graphical modeling tools. International Journal on Software Tools for Technology Transfer, vol. 20, issue
3, pp. 1-28, 2018.

[19] L. Baresi and M. Garriga. Microservices: The evolution and extinction of web services? In Microservices:
Science and Engineering, Springer, 2020, pp. 3-28.

[20] F. Rademacher, J. Sorgalla et al. Graphical and textual model-driven microservice development. In
Microservices: Science and Engineering, Springer, 2020, pp. 147-179.

[21] T. Margaria and A. Schieweck. The digital thread in industry 4.0. Lecture Notes in Computer Science, vol.
11918, 2019, pp. 3–24.

[22] S. Jorges, C. Kubczak et al. Model driven design of reliable robot control programs using the jabc. In Proc.
of the Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems
(EASe'07), 2007, pp. 137–148.

[23] T. Margaria and B. Steffen. Business process modeling in the jabc: the one-thing approach. In Handbook
of research on business process modeling. IGI Global, 2009, pp. 1-26.

[24] J. Neubauer, M. Frohme et al. Prototype driven development of web applications with dywa. Lecture Notes
in Computer Science, vol. 8802, 2014, pp. 56-72.

Chaudhary H.A.A., Margaria T. Integration of micro-services as components in modeling environments for low code development. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 19-30

30

[25] Angular dart open source packages. Available at: https://github.com/angulardart, accessed Feb, 2021.
[26] S. Windmüller, J. Neubauer et al. Active continuous quality control. In Proc. of the 16th International ACM

SIGSOFT Symposium on Component-based Software Engineering, 2013, pp. 111-120.
[27] Amazon translate; fluent and accurate machine translation. Available at:

https://aws.amazon.com/translate/, accessed Feb, 2021.
[28] Khan R., Schieweck A. et al. Historical Civil Registration Record Transcription Using an eXtreme Model

Driven Approach. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 3, 2021, pp. 123-142.

Information about authors / Информация об авторах
Hafiz Ahmad Awais CHAUDHARY is a PhD student in University of Limerick and associated with
Confirm – a SFI research centre in Smart Manufacturing, Ireland. His area of research includes
«Interoperability and Data Integrations in the Digital Smart Manufacturing». Before moving to
Ireland, he has been working as a Lecturer in University of Engineering and Technology, Lahore,
Pakistan.

Хафиз Ахмад Аваис ЧАУДХАРИ – аспирант Лимерикского университета, сотрудничающий
с Confirm – исследовательским центром Ирландского научного фонда в области
интеллектуального производства. Его область исследований включает «Функциональная
совместимость и интеграция данных в интеллектуальном цифровом производстве». До
переезда в Ирландию он работал преподавателем в инженерно-технологическом
университете в Лахоре, Пакистан.

Tiziana MARGARIA, PhD in Computer and Systems Engineering, Politecnico di Torino, Italy,
Professor at Computer Science and Information System Department at the University of Limerick,
Ireland. Research Interest: eXtreme Model Driven Design, lightweight formal methods, automatic
program synthesis, system correctness, in particular compliance and security, future education in SE
and IT.

Тициана МАРГАРИА, кандидат компьютерных наук и системной инженерии, Туринский
политехнический университет, Италия, профессор кафедры компьютерных наук и
информационных систем. Область научных интересов: проектирование на основе
экстремальных моделей, упрощенные формальные методы, автоматический синтез
программ, правильность системы, в частности соответствие и безопасность, будущее
образование в области программной инженерии и информационной технологии.

