Tpyowr UCIT PAH, mom 33, evin. 4, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021

DOI: 10.15514/ISPRAS-2021-33(4)-5

A Method for the Stateful Data-Plane Algorithm
State Synchronization
in the Network Processing Unit

Y.K. Kuzmin, ORCID: 0000-0001-9204-2141 <yaroslav_konst@Ivk.cs.msu.ru>
D.Y. Volkanov, ORCID: 0000-0001-9940-5822 <volkanov@asvk.cs.msu.ru>
J.A. Skobtsova, ORCID: 0000-0001-8351-3191 <xenerizes@Ivk.cs.msu.ru>

Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. This work presents a network processing unit based on specialized computational cores that is used
for packet processing in network devices (e.g. in network switches). Nowadays stateful data-plane algorithms
are developing in software-defined networks. The idea of stateful data-plane algorithms is to move a part of
control information from control plane to data plane. But these algorithms require hardware support because
they need resources for state handling. This work presents the network processing unit architecture
modifications that allow to use stateful data-plane algorithms that require state synchronization between the
NPU processing pipelines.

Keywords: software-defined networks; network processing unit; stateful packet processing; network protocols

For citation: Kuzmin Y K., Volkanov D.Y., Skobtsova J.A. A Method for the Stateful Data-Plane Algorithm
State Synchronization in the Network Processing Unit. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021,
pp. 69-76. DOL: 10.15514/ISPRAS-2021-33(4)-5

Acknowledgements. This work is partially supported by the Russian Foundation for Basic Research under
grant 19-07-01076.

06 ogHOM MeToAe CUHXPOHU3aLMN COCTOAHUA anropuTtMma
06paboTKN NakeToB B CETEBOM NPOLIECCOPHOM YCTPOUCTBE

A.K. Kyzomun, ORCID: 0000-0001-9204-2141 <yaroslav_konst@Ivk.cs.msu.ru>
J.IO. Boakanos, ORCID: 0000-0001-9940-5822 <volkanov@asvk.cs.msu.ru>
10.4. Crobyosa, ORCID: 0000-0001-8351-3191 <xenerizes@Ivk.cs.msu.ru>

Mockosckuii 2ocyoapcmeennulii ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue copul, 0. 1

AnnoTtanus. B nanHoii paboTe paccMaTpUBaeTCsl apXUTEKTypa IPOrPaMMHIPYEMOTO CETE€BOT0 IIPOLECCOPHOTO
ycrpoiictBa (CIIY), ocHOBaHHOTO Ha CIEIMAIM3HPOBAHHBIX BHIUHCIHTENBHBIX sAIpax. B HacTosmee BpeMs B
IIPOrPaMMHO-KOH(UIYPUPYEMBIX CETSIX Pa3BUBAIOTCS aJIrOPUTMbI OOpaOOTKM IAKETOB C XPAHEHHEM
cocTosHUs. OCOOCHHOCTBIO AITOPUTMOB JJAHHOTO THIIA SBJISETCS MEPEHOC YaCTH YNPaBISIOWUX QYHKIHMH 13
IUIOCKOCTH YIPaBIEHHUs B INIOCKOCTh Iepefadn AaHHBIX. Ho 1t paboTsl anropuTMoB 06pabOTKH MAKETOB C
XpaHEHHEeM COCTOSHHUs TpeOyeTcs mopnepxkka co croponsl CIIY. B paboTe mpemnoskeHsl MomupHKanuy
apxutekTypsl CITY, 103BoJIsI0IIME HCIIONIB30BATH AITOPUTMbI 00PAOOTKHU NAKETOB C XPAaHEHUEM COCTOSIHUS U
CHHXPOHH3UPOBATh COCTOSIHHE auroputMa o0paboTku makeroB Mexay mopramu CIIY. Ilposeneno
9KCHEePUMEHTAIbHOE HCCIIe[0BaHuEe MOAU(PUINPOBAaHHOH apxuTeKkTypst CITY.

69

Kuzmin Y K., Volkanov D.Y., Skobtsova J.A. A Method for the Stateful Data-Plane Algorithm State Synchronization in the Network
Processing Unit. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 69-76

KiioueBsble cjI0Ba: IPOrpaMMHO-KOH(HUIYPHPYEMBIE CETH; CETEBOE MPOLIECCOPHOE YCTPOHCTBO; alrOPHTMBI
00pabOTKH MAKETOB ¢ XPAHEHUEM COCTOSIHHS; CETEBBIE IPOTOKOJIBI

Jas uuruposanns: Kyssmun f.K., Bonkanos /[.}O., Ckobroa I0.A. O6 o1HOM MeTOAE CHHXPOHHM3ALMH
COCTOSIHMS aJITOpUTMa 00pabOTKHU MAaKeTOB B CETEBOM IporueccopHoM ycrpoiictse. Tpyast UCIT PAH, Tom 33,
BoII. 4, 2021 1., cTp. 69-76 (Ha anrauiickoM s3bike). DOL: 10.15514/ISPRAS-2021-33(4)-5

BaaronapnocTu: Pabota BbinosnHeHa npyu yacTuyHol noyiepskke PODOU, rpant Ne 19-07-01076.

1. Introduction

Nowadays software-defined networks (SDN) are being developed [1]. The main principle of SDN
technology is placing conrol functions in separate server called controller. Control functions are
moved from network devices to the controller.

The main functional element of a network device is the network processing unit (NPU). NPU is a
specialized integrated curcuit that is used for packet processing in network devices.

Nowadays programmable NPU are being developed. NPU of this type allow to load new packet
processing programs and define new data transfer protocols [2].

Packet processing in programmable NPU is done according to the packet processing program that
implements data-plane algorithm. One class of such algorithms is a class of stateful data-plane
algorithms. Stateful data-plane algorithms are used in data processing centers’ networks and in
telecommunication providers’ networks [3]. The state of data-plane algorithm is a set of changeable
variables, keeping their values on moving to next packet processing. The examples of such
algorithms are load balancing with consistency [4], port knocking algorithm [5], failure recovery
algorithm [4]. The main feature of stateful data-plane algorithm is the ability to introduce
dependency of the process of packet processing on the properties of packets, processed by this NPU
before. With the development of SDN and programmable NPU the task of implementing stateful
data-plane algorithms on programmable NPU appears.

If NPU does not have state handling support, the state will be stored on the controller. But the state
can change depending on the properties of packets, processed by the NPU. If the controller stores
the state, the network device will access the controller for every packet that will lead to network
device perfomance reduction, packet loss and network services work failures. So, implementing the
hardware support mechanism for stateful data-plane algorithm state storage in NPU becomes actual.
The architecture of the considered NPU RuNPU does not support stateful data-plane algorithms.
Thus, this work proposes the RuNPU architecture modifications that allow to use stateful data-plane
algorithms with synchronization between the ports of the network device.

2. Formulation of the problem

It is necessary to propose the RuNPU architecture modifications that will allow to support stateful
data-plane algorithms with state synchronization between NPU ports.

RuNPU architecture has the following features:

e Each NPU port has its processing pipeline.

e Processing pipelines are not connected to each other and operate in parallel.

e Packet processing time on one pipeline stage is limited to 250 ticks.

Data-plane algorithm state is represented as a set of variables. The following symbols are introduced:
e nis anumber of pipelines in the NPU;

e [is anumber of stages in each pipeline;

e g is a number of state variables available for each pipeline stage;

e P ={P,...,P,}is aset of the NPU’s pipelines;

e D;;isaj-th stage of i-th pipeline;

70

Kysbmun S1.K., Boakanos J1.1O., Cko6uosa F0.A. O6 01HOM MeTO/1e CHHXPOHH3ALMH COCTOSHUS alropuT™Ma 0OpaboTKH MaKeTOB B CETEBOM
nporeccopHoM yctpoiictse. Tpyost UCIT PAH, Tom 33, Beim. 4, 2021 1., c1p. 69-76

Kuzmin Y K., Volkanov D.Y., Skobtsova J.A. A Method for the Stateful Data-Plane Algorithm State Synchronization in the Network
Processing Unit. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 69-76

e S jk (t) is a value of k-th state variable of the stage D; j in the time moment #;

o 5= {Sij1 (®),..,Sijq (t)} is a state of the stage D;; in the time moment £

o S5i(t) ={S;1(t),...,S;(t)} is a state of the i-th pipeline in the time moment 7.

Time moments t,,,m = 0,1,2,...are considered. They correspond to the moment of the next
instruction execution beginning. The following situation is considered: during the instruction i — 1
execution the state of the x-th pipeline has changed. It means that 3y, 3k: Sy, (ti—1) # Syyr(t;). It
is necessary to propose state synchronization system that will allow other pipelines to have an access
to an updated state variable3da € N U{0}:Vp € {1,2,...,n} = S,k (tirq) = Sxyi(t;) with
minimum a. And the proposed modifications must take into consideraton the RuNPU architecture
features and limits.

3. RUNPU architecture description

During the processing the packet header and metadata are moving through every stage of the pipeline
(fig. 1). Every stage processes the packet header for fixed number of ticks. Now this value is equal
to 250 ticks. The stage consists of RISC processing core and memory device containing packet
processing program. Packet header processing on every stage runs according to the following
scheme. First of all, the packet header and metadata are loaded into the pipeline stage memory. After
it, the program loaded into the stage memory device is executed. When the program finishes its
work, the packet header and metadata are transferred to the next pipeline stage and new packet
header and metadata are loaded into the current pipeline stage memory.

This architecture has two aspects that do not allow to use stateful data-plane algorithms. Firstly,
pipelines do not have memory devices for the algorithm state. Pipeline stage memory device contains
only program microcode, packet header and metadata. Secondly, NPU architecture contains a set of
pipelines that work in parallel and do not have any connections to each other. It means that stages
of different pipelines can not exchange data to update state in all pipelines. So, this NPU architecture
does not allow to use stateful data-plane algorithms.

=
|

| stage 1 |_.,| stage 2 | ---------------------------------
H T

Ingress
port

Fig. 1. NPU processing pipeline scheme

4. Related work

The analysis of existing methods of memory synchronization in multicore systems was done. The
overview is carried out according to the following criteria:

e Synchronization delay, ticks (the paramerer a value).
e Memory access time, ticks.
e A possibility of long-time blocking.

71

4.1 Flexible multiprocessor locking protocol

Flexible multiprocessor locking protocol (FMLP) is a mutex based synchronization algorithm for
real time systems [6]. In this approach shared memory resources are protected using mutexes.
System operation time is divided into two phases: reading phase and writing phase. To get an access
to a shared memory the process must acquire the appropriate mutex for reading or for writing
depending on the access type. All memory reading operations start in the beginning of the phase and
the phase is not changed until all requests in the current phase are done. Writing operations are done
in the writing phase in FIFO order.

4.2 Combining mechanism

The work [7] proposes the following approach: the memory is a set of memory devices. Devices and
processing units are connected using a layered packet switched network.

The network has the following properties:

e The network is no overtaking. It means that if two messages are sent from one node in some
order and arrive later at some other node then they arrive in the same order as they were sent.
e A reply message is sent back using the same path as the request message.
The memory requests are Read-Modify-Write (RMW) operations. An RMW operation is equivalent
to the execution of the following function:
function RMW (X, £f)
begin
temp := X;
X := £(X);
return temp;
end

This operation applies the transformation f'to the value X stored in memory and returns the old X

value to the processing unit.

The combining mechanism is an approach to handle parallel requests to the same memory location.

A memory request has the form (id, addr, f), where id as a unique request identifier, addr is an

address of the memory location and f is an identifier of the transformation function. When two

requests to the same address are received on the same network switch they are combined into single

request. It is done in the following way: the messages are (id! , addr, f) and (id2 , addr, g). They

have the same memory address and conflict. Combining them into single request is done according

to the following steps:

e The switch saves id/, id2 and f'and forwards the message (id1, addr, f° g).

e When a reply message (idl, val) reaches the switch, the saved information is retrieved by
matching the ids. The message (idl, val) is forwarded as a reply to the first request and a
message (id2, f'(val) is forwarded as a reply to the second request.

4.3 Write-update algorithm

In the work [8] various cache coherent algorithms are overviewed. One of them is write-update
cache coherence policy. According to this policy, if some processing unit writes data to the memory
it is updated in the same cache blocks in other processing units’ cache.

It can be applied to the NPU in the following way: each processing unit has its memory device for
the packet processing algorithm state. Memory devices located at pipeline stages with equal depths
are connected with a shared bus. When a processing unit reads data from the state memory the value
is taken from the local memory device. When some processing unit writes data to the state memory
it is written to the local memory device and updated in all other memory devices using the bus.

72

Kysemun S1.K., Bonkanos JI.1O., Cko6uoBa FO.A. O6 01HOM METO/1e CHHXPOHH3ALHH COCTOSIHUS arOPUTMa 00pabOTKHM NTAKETOB B CETEBOM
nporeccopHoM yctpoiictse. Tpyost UCIT PAH, Tom 33, Beim. 4, 2021 1., c1p. 69-76

4.4 Result

The problem of the FMLP algorithm is that phases do not have fixed length, so this approach can
lead to request locking for an unestimated period of time what can lead to pipeline errors because it
has only 250 ticks to process a packet header. Two other approaches do not allow such behavior, so
their applicability and exact properties will be evaluated during the experimental research. The
overview results are shown in the table 1.

Table 1 Algorithm overview result

Algorithm Value Memory access time (read | Possibility of long-
/ write), ticks time blocking
FMLP Depends on the|l/1 +

blocking duration

Number of switches on the
route to memory device

Cobining mechnism 1

—_

1/2 -

Write-update algorithm

5. Proposed NPU architecture modifications

5.1 Memory synchronization via the shared bus

In this approach, the following modifications are proposed: memory devices containing the
algorithm state are added to each pipeline stage. Memory devices on pipeline stages with equal
depths are connected using a shared bus. The bus is used to synchronize data in the memory devices.
When a memory cell in some memory device is updated, the new value and memory cell address
are sent to other memory devices via the bus.

There are two operations available for the processing unit: read a value from a memory cell and
write a value to a memory cell. When the value is read it is taken from the memory device that is on
the same pipeline stage. When the value is written to the memory it is written to the memory device
on the same pipeline stages and then is sent to appropriate memory devices in other pipelines.

5.2 Combining mechanism

In this approach, memory devices and processing units are connected using a packet switched
network-on-chip with special switches that allow to combine memory requests. Memory requests
have a Read-Modify-Write form. Memory request has a form of a tuple (id, addr, f) where id is a
unique request identifier, addr is a memory cell address and f'is a memory operation identifier. The
response consists of two values: request identifier and the value that was in the memory cell before
the memory operation was done.

This approach requires memory cells and network switches to have specialized arithmetic units to
perform memory operations and memory request combinations.

6. RUNPU simulation model

The RuNPU simulation model is used for the experimental research. It is written in Python
programming language and allows to evaluate various NPU parameters such as pipeline throughput
and power consumption. The simulation model input consists of two parts: pcap files with test
packets and the packet processing program written in the assembly language. Each ingress port has
separate pcap file with a sequence of packets. The output consists of the statistics and pcap files with
packets that were sent via the NPU egress ports.

73

Kuzmin Y K., Volkanov D.Y., Skobtsova J.A. A Method for the Stateful Data-Plane Algorithm State Synchronization in the Network
Processing Unit. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 69-76

The simulation model consists of a number of the modules that are responsible for NPU modules

work simulation. These modules are:

e Main application module. This module is responsible for other modules initialization and
configuration.

e Pipeline module performs pipeline initialization and controls all pipeline components. There
are 24 pipelines in the RuUNPU simulation model.

e InFIFO module reads the network packets from the pcap file that corresponds to the NPU
ingress port.

e OutFIFO module writes processed packets to the pcap file that correponds to the NPU egress
port.

e DE (Decision Engine) module represents the NPU pipeline stage and is responsible for packet
header processing according to the packet processing program.

e PacketMem module stores the packet bodies while packet headers are being processed in the
pipelines.

For each proposed approach the simulation model was modified. For the synchronization method

based on shared bus the following modules were added: memory devices for the data-plane

algorithm state and the shared bus modules. For the combining mechanism approach the network

module, network switch modules and memory devices for the algorithm state were added to the

simulation model.

7. Experimental research

For the experimental research a program that implements flowlet switching algorithm was written.
This algorithm is used to balance packet flows on transport layer and requires state synchronization
between the NPU pipelines. Pcap files with test packets were generated. Test packet sequences
contain a number of packet groups. Each group consists of packets that belong to a single transport
flow.

During the experimental research the test packets were processed by the simulation model and the
required statistics was collected. The experimental research consists of a series of the NPU
simulation model runs with a different number of pipelines working with the state. It allows to
evaluate how the number of pipelines actively working with state affects the time required to process
a packet header.

250

150

100

Ticks per packet

2 68 69 69 69 69 70 69 69 71 71 71 70 72 g9 70 gg 13 O 74

M III I I III
1 2 3 4 5 6

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Pipelines working with state

Fig. 2 Shared bus approach evaluation results

74

Kysemun S1.K., Bonkanos JI.1O., Cko6uoBa FO.A. O6 01HOM METO/1e CHHXPOHH3ALHH COCTOSIHUS arOPUTMa 00pabOTKHM NTAKETOB B CETEBOM
nporeccopHoM yctpoiictse. Tpyost UCIT PAH, Tom 33, Beim. 4, 2021 1., c1p. 69-76

The experimental research results for the shared bus approach was finished (Fig. 2). It shows that
the number of ticks required to process a packet header does not exceed 250 ticks.

9. Conclusion and future work

This work proposes the RuNPU architecture modifications that allow to synchronize stateful data-
plane algorithm state between the NPU processing pipelines. An overview of the existing methods
was done and two approaches were selected for further implementation and experimental research.
A simulation model and test data for the experimental research were prepared.

In the future it is planned to finish an experimental research for the combining mechanism approach
and determine what approaches are applicable.

Cnucok nutepartypsbl / References

[1]. S Smeliansky R.L. System Defined networks. Open Systems. DBMS, issue 9, 2012, pp. 15-26 (in Russian)
/ Cmensuckuii P.JI. IIporpamMmHo-koHburypupyemsie ceti. OTkpbiThie cuctembl. CYB/, Bbim. 9, 2012 1.,
cTp. 15-26.

[2]. Bezzubtsev S.O., Vasin V.V. et al. An Approach to the Construction of a Network Processing Unit.
Modeling and Analysis of Information Systems, vol. 26, no. 1, 2019, pp. 39-62. (in Russian) / be33y0ues
C.0O., Bacun B.B. u ap. O0 oaHOM moJX0A€ K MOCTPOEHUIO CETEBOTO INPOLECCOPHOTO YCTPOMCTBA.
MopenupoBanue u aHaIU3 HHPOPMAITHOHHBIX CHCT] em, ToM 26, no. 1, 2019 r., ctp. 39-62.

[3]. Bifulco Roberto, and Gabor Rétvari. A Survey on the Programmable Data Plane: Abstractions,
Architectures, and Open Problems. In Proc. of the IEEE 19th International Conference on High
Performance Switching and Routing (HPSR), 2018, pp. 1-7.

[4]. Carmelo C., Pollini L. et al. Traffic Management Applications for Stateful SDN Data Plane. In Proc. of
the Fourth European Workshop on Software Defined Networks, 2015, pp. 85-90.

[5]. Bianchi Giuseppe, Bonola Marco et al. OpenState: programming platform-independent stateful openflow
applications inside the switch. ACM SIGCOMM Computer Communication Review, vol. 44, issue 2,
2014, pp. 44-51.

[6]. Brandenburg Bjorn B. and James H. Anderson. Reader-Writer Synchronization for Shared-Memory
Multiprocessor Real-Time Systems, In Proc. of the 21st Euromicro Conference on Real-Time Systems.
2009, pp. 184-193.

[7]. Kruskal Clyde P., Larry Rudolph, and Marc Snir. Efficient synchronization of multiprocessors with shared
memory. ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 10, issue 4, 1988,
pp. 579-601.

[8]. Stenstrom Per. A survey of cache coherence schemes for multiprocessors. Computer, vol. 23, no. 6, 1990,
pp. 12-24.

Information about authors / UHdopmaumsa 06 aBTopax

Yaroslav Konstantinovich KUZMIN is a student at the department of Computer Systems and
Automation of the Faculty of Computational Mathematics and Cybernetics. Research interests
include software-defined networks; network processing units.

SpocnaB KoncrantunoBud KY3bMUH — cryment marucrpatypbl kapenpsi ACBK ¢-ta BMK.
HayuHble HHTEpECHl BKITIOYAIOT IIPOTPaMMHO-OTIPEAENIEMBIE CETH, CETEBBIE TPOLIECCOPEL.

Dmitry Yuryevitch VOLKANOV — Candidate of Physical and Mathematical sciences, Associate
Professor at the department of Computer Systems and Automation of the Faculty of Computational
Mathematics and Cybernetics. Areas of research: analysis and design of network processing unit
architecture.

Jmvutpuit IOpeeBna BOJIKAHOB — kanauaaT $Gu3HKO-MaTeMaTHYECKUX HAYK, AOLEHT Kadeapsl
ACBK ¢-ta BMK. Hanpaenenus uccieIoBaHHA: aHAIU3 U pa3pabOTKa apXUTEKTYyphl CETEBOTO
Hpoleccopa.

75

Kuzmin Y K., Volkanov D.Y., Skobtsova J.A. A Method for the Stateful Data-Plane Algorithm State Synchronization in the Network
Processing Unit. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 69-76

Julia Alexandrovna SKOBTSOVA — Programmer, Faculty of Computational Mathematics and
Cybernetics, department of Computer Systems and Automation, laboratory of Computer Systems.
Research interests: software-configurable networks, network processor units, hardware description
languages.

H0Omus AnexcannposHa CKOBIIOBA — cnenunanuct, daxynsrer BMK, xadenpa aBromarusanuu
CHCTEM BBIUHCIUTEIBHBIX KOMIUIEKCOB, J1JaOOPAaTOpHUs BBIUUCIUTENBHBIX KOMILIEKCOB. Hayunele
UHTEpECH: MPOrpaMMHO-KOH(UIypUpyeMble CeTH, CETEBblE IPOIECCOPHbIE YCTPOICTBA, SA3BIKU
OIUCAHUS aNNapaTyphl.

76

